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Abstract 

 
One of the approaches to automatic speech recognition is a distinctive feature-based 
speech recognition system, in which each of the underlying word segments is represented 
with a set of distinctive features. This thesis presents a study concerning acoustic 
attributes used for identifying the place of articulation features for stop consonant 
segments. The acoustic attributes are selected so that they capture the information 
relevant to place identification, including amplitude and energy of release bursts, formant 
movements of adjacent vowels, spectra of noises after the releases, and some temporal 
cues. 

An experimental procedure for examining the relative importance of these 
acoustic attributes for identifying stop place is developed. The ability of each attribute to 
separate the three places is evaluated by the classification error based on the distributions 
of its values for the three places, and another quantifier based on F-ratio. These two 
quantifiers generally agree and show how well each individual attribute separates the 
three places. 

Combinations of non-redundant attributes are used for the place classifications 
based on Mahalanobis distance. When stops contain release bursts, the classification 
accuracies are better than 90%. It was also shown that voicing and vowel frontness 
contexts lead to a better classification accuracy of stops in some contexts. When stops are 
located between two vowels, information on the formant structures in the vowels on both 
sides can be combined. Such combination yielded the best classification accuracy of 
95.5%. By using appropriate methods for stops in different contexts, an overall 
classification accuracy of 92.1% is achieved. 

Linear discriminant function analysis is used to address the relative importance of 
these attributes when combinations are used. Their discriminating abilities and the 
ranking of their relative importance to the classifications in different vowel and voicing 
contexts are reported. The overall findings are that attributes relating to the burst 
spectrum in relation to the vowel contribute most effectively, while attributes relating to 
formant transition are somewhat less effective. The approach used in this study can be 
applied to different classes of sounds, as well as stops in different noise environments. 
 
 
Thesis supervisor: Professor Kenneth Noble Stevens 
Title: Clarence J. LeBel Professor of Electrical Engineering and Professor of Health 
Sciences and Technology 
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Chapter 1  

Introduction 

1.1 Motivation 

The problem of automatic speech recognition has been approached by researchers in 

various ways. One of the most prevalent methods is a statistical method in which speech 

recognizers learn the patterns of the speech units expected in incoming utterances from 

some sets of examples and then try to match the incoming speech units with the patterns 

learned. Different choices of units of speech that are used to represent sounds in the 

incoming utterance have been examined [Davis and Mermelstein, 1980] [Jankowski, 

Hoang-Doan, and Lippman, 1995]. These representations include MFCCs, LPCs, 

wavelets [Malbos, Baudry, and Montresor, 1994], and other spectral-based 

representations [Kingsbury, Morgan, and Greenberg, 1998] [Hermansky, and Morgan, 

1994]. This approach to automatic speech recognition does not use much knowledge of 

human speech production, and the performance of the recognizer relies heavily on the 

training examples. The recognition performance is robust when the recognizer tries to 

match the sounds that are presented for a sufficient number of times in the training 

examples. However, it is problematic for the case where examples of some sounds are too 

sparse. The recognition performance also depends on the operating environment, such as 

background noise, types of microphones and types of channels. It does not perform well 

unless the operating environment matches one of the training examples. 

 

These problems can be overcome by avoiding learning of the patterns of the chosen 

speech units, which explicitly represent acoustic signals derived from the training 

examples. Instead, one could embed the knowledge about human speech production 

directly into the recognizer by choosing the speech units that reflect how the sounds are 

produced. Despite a great deal of variability in the surface acoustic speech signal, it is 

believed that, by uncovering the information on the vocal source and the movement of 

the vocal apparatus producing that signal, one can retrieve the underlying words. 
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Observing temporal and spectral cues, a trained spectrogram reader can identify the 

underlying words from the acoustic speech signals with a remarkable accuracy [Zue and 

Cole, 1979]. This tempts researchers to try to find these acoustic cues and incorporate 

them into automatic speech recognition systems. However, up to now there have been no 

major successes in this approach to automatic speech recognition in terms of the 

recognition accuracy relative to the use of traditional statistical methods. The reason is 

that although this field of research has been studied for decades, we still have insufficient 

understanding about human speech production and perception. 

 

Stop consonants represent one of the various classes of sounds in human speech. In 

English, there are six stop consonants, namely ‘b’, ‘d’, ‘g’, ‘p’, ‘t’, and ‘k’. Two things 

need to be known in order to uniquely identify the six English stop consonants. One is the 

voicing during their closure intervals and the other one is the articulators that make the 

constrictions, in other words the places of articulation of those stop consonants. In 

general spectrogram reading, given that the location of a stop consonant in an acoustic 

speech signal has already been identified, a reader will try to find any cues that will lead 

to the presence or lack of voicing and the place of articulation. For a machine to do such 

a task, the same method should be implemented. Thus, place of articulation classification 

is an important task that must to be solved in order to develop a module responsible for 

identifying stop consonants. The task is difficult since the acoustic properties of these 

consonants change abruptly during the course of their production. Due to the abrupt 

nature of stop consonants, traditional statistical methods do not classify them well 

without the assistance of semantic information. Also, more studies of the acoustic cues 

for identifying place of articulation are needed for the knowledge-based approach. The 

proper selection of cues clearly contributes to the recognition performance. So, the 

combination of cues selected should be studied in detail. Furthermore, the cues should be 

meaningful in the sense that they should be related to human speech production theory. 

 

If successful, the knowledge-based speech recognition system will be more robust to 

change in operating environment and phonological variations than the traditional speech 

recognizer, since the knowledge-based system does not simply match the surface signal 
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but tries to uncover the information that is not influenced by those variations. Also, the 

knowledge gained in developing the system should enhance our understanding of human 

speech production and perception, which in turn provides us with more understanding of 

how to approach other human articulatory and auditory problems such as speaking and 

hearing disorders. 

 

1.2 Distinctive feature-based Speech Recognition System 

Explicitly embedding the knowledge about the human articulatory and auditory system in 

the recognizer can be done by choosing meaningful speech units. Our choice of the 

speech unit is the discrete phonological unit called the distinctive feature. Certain 

combinations of such distinctive features, called feature bundles, can contrast all of the 

sounds in human speech. These distinctive features are universal for all languages but 

different subsets of them are used to distinguish sounds in different languages. There are 

about 20 such distinctive features in English, and each distinctive feature is specified by a 

binary value. More details on distinctive features can be found in [Stevens, 1998]. In a 

distinctive feature-based system, analog acoustic signals are mapped to sequences of 

bundles of distinctive features, representing sequences of various types of sounds, and 

these feature bundles are further processed in the system. This choice of speech unit is 

based on the assumption that words are stored in memory as sequences of discrete 

segments and each segment is represented by a set of distinctive features [Jakobson, Fant, 

and Halle, 1967] [Chomsky and Halle, 1968] [Stevens, 1972] [Stevens, 2002]. 

 

The binary values of the distinctive features describing the six stop consonants in English 

are shown in Table 1-1 below. The first two feature values, which are [-vocalic] and 

[+consonantal], identify that the sounds are consonants. The next two feature values, 

which are [-continuant] and [-sonorant], separate stop consonants from other kinds of 

consonants, i.e. nasals and fricatives. English voiced stops have [-spread glottis] and [-

stiff vocal folds] while the unvoiced ones have [+spread glottis] and [+stiff vocal folds]. 

The place of articulation of a stop consonant is specified by assigning [+] value to one of 



 20

the corresponding place features, i.e. [+lips] for a labial stop, [+tongue blade] for an 

alveolar stop, and [+tongue body] for a velar stop. 

 

When a human produces speech, sets of features are prepared in memory and then 

implemented using the articulators. Features are defined in terms of the articulatory 

gestures that produce the sound and the distinctive auditory and acoustic result of these 

gestures. Listeners are only exposed to the acoustic signal, resulting from the movement 

of the speaker’s articulators, not the intended articulator movements or the underlying 

features. So, the task for recognizing the speech signal is generally to extract the 

underlying features from acoustic cues contained in the signal. 

 
Feature P t k b d g 

Vocalic - - - - - - 
Consonantal + + + + + + 
Continuant - - - - - - 
Sonorant - - - - - - 
Lips +   +   
Tongue Blade  +   +  
Tongue Body   +   + 
Spread Glottis + + + - - - 
Stiff Vocal Folds + + + - - - 

Table 1-1: Feature values for the stop consonants in English 

 

1.3 An Approach to Distinctive Feature-based speech 

recognition 

This section explains the approach to the distinctive feature-based speech recognition 

system, which is proposed by the Speech Communication Group in the Research 

Laboratory of Electronics at MIT and in which the study of place of articulation 

classification for stop consonants in this thesis will be incorporated. The broad idea of 

how the approach can be used to uncover the underlying words from the acoustic signal 

is illustrated in Figure 1-1, which is elaborated below. Generally, the process can be 

thought of as consisting of 4 major tasks, 1) landmark detection [Liu, 1995] [Sun, 1996] 

[Howitt, 2000], 2) organization of landmarks into bundles of features, or segments, 3) 
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distinctive feature extraction [Choi, 1999] [Chen, 2000] and 4) lexical access, as in 

Figure 1-21. 

 

 

 

 

 

Figure 1-1: Distinctive feature-based approach for representing words from analog acoustic signal 

 

 

 

Figure 1-2: Illustration of an approach to distinctive feature-based speech recognition system 

 

                                                 
1 This figure shows the sequence of steps that are fundamental to the approach. It is intended for helping 

readers to create mental model of how the system should work. The actual system is not necessarily 

implemented in such a sequential process.  
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The first step is detecting the landmarks, which provide evidence for underlying 

segments, each of which can be fully specified by a feature bundle. There are four types 

of landmarks. The first one is called Abrupt-Consonantal (AC) that appears when there is 

an abrupt change in spectral shape involving the production of an underlying consonantal 

segment. When a constriction is made in the production of a consonant, an AC landmark 

occurs and after that when the constriction is released, before the start of the following 

non-consonantal segment, another AC landmark occurs. These two AC landmarks are 

called outer AC landmarks. There can be extra intraconsonantal AC landmarks between 

two outer AC landmarks in the case where this pair of outer AC landmarks involve the 

constriction and the release of different primary articulators, like the case of a consonant 

cluster. At the place where an abrupt change is caused by glottal or velopharyngeal 

activities without any major activities of primary articulators, an Abrupt (A) landmark 

can take place. An A landmark can be either intervocalic when it is located outside a pair 

of AC landmarks or intraconsonantal when it is located inside a pair of AC landmarks. 

When there is a constriction in the production of a semi-vowel, the constriction is not 

narrow enough to cause an abrupt change and this produces a non-abrupt (N) landmark. 

This type of landmark can only occur outside a pair of AC landmarks. The last type of 

landmark corresponds to the production of vowels. It is called vowel (V) landmark, 

which occurs when there is a local maximum in the amplitude of the acoustic signal and 

there is no narrow constriction involved. 

 

After the landmarks are found, the system goes into the segmentation process. In this 

step, the system attempts to interpret the landmark sequences and tries to identify the 

possible sequences of the underlying segments, which are usually not fully specified at 

this state. For example, given that an ideal landmark detection and an ideal segmentation 

is done on the word /s ih t/, the system will propose the segment sequence that appears as 

‘[a fricative segment] [a vowel segment] [a stop segment]’ without specifying the places 

for the two consonants and the quality of the vowel. Specialized detectors are used to find 

some relevant articulator-free features, i.e. features specifying the general manner of each 

segment without telling specific information on the primary articulator or the quality of 
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that segment, in order to classify the segments into broad classes, including stops, nasals, 

fricatives, affricates, vowels and glides. 

 

In general, outer AC landmarks relate to the closure or the release of stop consonants, 

fricatives, flaps, nasals and [l] next to non-consonantal segments. Intraconsonantal AC 

landmarks and intraconsonantal A landmarks relate to consonant clusters, while 

intervocalic A landmarks correspond to the onset and offset of glottal stops and aspiration 

in consonants. Finally, a vowel segment occurs at the location of a V landmark. The 

mappings between landmarks and segments are sometimes 1-to-1, such as a V landmark 

which corresponds to a vowel segment, but sometimes are not 1-to-1, such as a pair of 

AC landmarks which correspond to a fricative or stop segment and three AC landmarks 

which correspond to an affricate consonant segment. 

 

In the vicinity of the landmarks, after the segments are classified, articulator-bound 

features, i.e. features specifying the place of the primary articulator or the quality of that 

segment need to be found. For example, if a segment is found to be a stop consonant 

segment, one of the features [lips], [tongue blade], and [tongue body] need to be assigned 

a [+] value in order to specify that stop’s place of articulation. Also the values of some 

other features need to be found in order to specify whether it is a voiced or voiceless stop. 

Specialized modules, responsible for filling in the binary value of each feature, are 

deployed in order to measure acoustic parameters from the signal and consequently 

interpret them into cues that help to decide the values of the features. At this point, the 

feature bundles are fully specified, i.e. all of the features needed in the bundles are given 

either [+] or [-] values, unless noise or other distortion prevents some feature to be 

estimated with confidence. 

 

In the last step before the recognizer proposes the hypothesized words, it requires the 

mapping from sequences of distinctive feature bundles, or fully specified segments, to 

words. For a single-word recognition task, this step can be done simply by searching in 

the word repository for the word whose underlying segments match the proposed 

segments. However, for the recognition of word sequences or sentences, the system needs 
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to propose the possible word boundaries. In other words, the system needs to decide 

which bundles should be grouped together into the same words. In order to make the 

grouping decision, some linguistic constraints can be utilized. For example, one might 

prevent word boundaries that produce sound clusters that do not exist in English. 

Furthermore, semantic and syntactic constraints can also be used in making the decision. 

For example, one might prefer word sequences that produce syntactically correct and 

meaningful sentences to the ones that produce badly structured or meaningless sentences. 

Finally, the feature bundles between a pair of word boundaries can be mapped directly to 

a word in the same fashion as in the single-word recognition task. 

 

A more complex system that should resemble more closely the human speech recognition 

process, as well as yield better recognition performance by a machine, could be achieved 

by adding a feedback path. Such a path allows a comparison of real acoustic 

measurements from input speech signals with the acoustic measurements made on 

synthetic speech that is synthesized from the hypothesized landmarks and cues. Such an 

approach is illustrated in Figure 1-3. More details are not in the scope of this thesis, and 

can be found in [Stevens, 2002]. 

 

Figure 1-3: A diagram for a distinctive feature-based speech recognition system with the feedback 
path. (After Stevens, 2002) 
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1.4 Literature Review 

For several decades, different researchers have studied the acoustic cues that affect 

human discriminating ability for place of articulation for stop consonants. In most 

research, acoustic information in the speech signal in the interval following the release as 

well as the context leading to the stop consonant was utilized in classification 

experiments. As early as 1955, Delattre, Liberman and Cooper [1955] suggested that the 

second formant (F2) transition was sufficient in discriminating among the three places of 

articulation. According to the proposed locus theory, the F2 pattern was context-

dependent and it pointed to a virtual locus at a particular frequency for each place of 

articulation. However, only the F2 transition for /d/ was shown to have such behavior. 

While Delattre et al. looked at formant transitions, Winitz, Scheib, and Reeds [1972] 

picked the burst as cues for a listener to discriminate among /p/, /t/ and /k/ instead of 

formant transitions. 

 

Zue [1979] studied various aspects of temporal characteristics of stops, VOT duration of 

frication and aspiration, and spectral characteristics, such as frequency distribution in the 

burst spectrum. He suggested the presence of context-independent acoustic properties. 

However, the exact nature of the acoustic invariance remained unclear and needed further 

study. Blumstein and Stevens [1979] provided strong support for acoustic invariance. 

They suggested that cues for place of articulation could be perceived by a static snapshot 

of the acoustic spectrum near the consonant release. 80% place of articulation 

classification accuracy was achieved using a short-time spectrum in the interval of 10-20 

ms after the release. Searle, Jacobson, and Rayment  [1979] utilized spectral information 

by using features extracted from the spectral displays processed by one-third octave 

filters. Their experiment gave 77% classification accuracy. Kewley-Port [1983] claimed 

that in some cases using the static snapshot was sufficient in classification but in many 

cases it did not provide enough information. Instead, she experimented using time-

varying spectral properties in the beginning interval of 20-40 ms in consonant-vowel 

syllables. These time-varying properties included spectral tilt of the burst, the existence 

of a mid-frequency peak sustained at least 20ms, and a delayed F1 onset value. 
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Most of the later work was conducted based on the cues suggested in the earlier 

publications. The studies were more focused on experimenting on one or a small set of 

related cues or using combinations of various cues to achieve the best classification 

accuracy. Repp [1989] focused on studying the stop burst and suggested that using only 

the initial transient of the release burst was not worse than using the entire burst to 

identify stop consonant place of articulation. For this purpose, equivalent information 

was stored in the initial transient and the release burst. Alwan [1992] performed 

identification tests with synthetic Consonant-Vowel utterances in noise to study the 

importance of the F2 trajectory and found that the shape of F2 trajectory was sufficient 

for discriminating /ba/ and /da/, but when the F2 transition in C/a/ was masked, listeners 

perceived it as flat formant transition, i.e. /da/ was perceived as /ba/. When the F2 

trajectory was masked, then the amplitude difference between frequency regions could be 

used. The importance of F2 in stop consonant classification was also emphasized in the 

work of Foote, Mashao, and Silverman [1993]. An algorithm called DESA-1 was used in 

order to obtain information about the rapid F2 variations of the stop consonants in 

pseudo-words. The information was used successfully in classification of place of 

articulation. Nossair and Zahorian [1991] compared the classification accuracies between 

using attributes describing the shape of the burst spectra and attributes describing the 

formant movement of CV tokens. They found that the former ones were superior in 

classifying stop consonants.  

 

Bonneau, Djezzar, and Laprie [1996] performed a perceptual test in order to study the 

role of spectral characteristics of the release burst in place of articulation identification 

without the help of VOT or formant transition. It was found that, when listeners were 

trained in two necessary training sessions, the recognition rates were fairly high for the 

French /p/, /t/, and /k/ in CV contexts. Still, they suggested that the knowledge of the 

subsequent vowel might help the stop identification. 

 

Some of the more recent experiments that showed the potential of using combinations of 

acoustic attributes to classify stop consonant place of articulation were from Hasegawa-

Johnson [1996], Stevens, Manuel and Matthies [1999] and Ali [2001]. Hasegawa-
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Johnson categorized relevant contexts into 36 groups, including all possible combinations 

of speaker’s gender (male and female) and 18 right-hand (following) contexts, and 

performed context-dependent place classifications using manually measured formant and 

burst measurements. It was shown that when the formant measurements and the burst 

measurements were used in combination for place classification, the classification 

accuracy was 84%, which was better than using either the burst or the formant 

measurements alone. Also, he observed that the presence of either retroflex or lateral 

context on the right of stop consonants degraded place classification that was based on 

formant measurements. Stevens, Manuel and Matthies also showed that combining cues 

from bursts and formant transitions led to robust place of articulation classification 

especially when gender and the [back] feature of the following vowels were known. 

Experiments were performed on stop consonants in 100 read sentences. Syllable-initial 

consonants in various vowel environments were classified using various cues, which 

were hand measurements of F1 and F2 at vowel onset, the difference in frequency 

between F2 at vowel onset and 20 ms later, relative amplitudes between different 

frequency ranges within the burst spectrum as well as the amplitudes of the burst 

spectrum in different frequency ranges in relation to the amplitude of the following 

vowel. Discriminant analyses using these cues yielded 85% classification accuracy across 

all vowels. Ali also utilized combinations of acoustic attributes to classify stop 

consonants. An auditory front-end was used to process the speech signal before the 

attributes were extracted. The classification was based on decision trees with hard 

thresholds. It was pointed out that the single most important cue for such classification 

was the burst frequency, i.e. the most prominent peak in the synchrony output of the 

burst. Along with the burst frequency, F2 of the following vowel and the formant 

transitions before and after the burst were taken into consideration although it was found 

that formant transitions were secondary in the presence of the burst. Maximum 

normalized spectral slope was used to determine spectral flatness and compactness while 

voicing decision was used to determine the hard threshold values. 90% overall 

classification accuracy was achieved 
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Chen and Alwan [2000] used acoustic attributes, including some of the acoustic attributes 

suggested in [Stevens, Manuel and Matthies, 1999], individually to classify the place of 

articulation of stop consonants spoken in CV context. Those acoustic attributes can be 

categorized into two groups, including acoustic attributes derived from noise 

measurements, e.g. frication and aspiration noise after the release burst, and from formant 

frequency measurements. Along with the information used in the acoustic attributes 

suggested by [Stevens, Manuel and Matthies, 1999], the spectral information of the 

release burst in the F4-F5 region and the information on the third formant frequency were 

also used. Their results showed that the noise measurements were more reliable than the 

formant frequency measurements. The amplitude of noise at high frequency relative to 

the amplitude of the spectrum at the vowel onset in at F1 resulted in 81% classification 

accuracy in three vowel contexts. However, there was no single attribute that can cue 

place of articulation in all of the vowel contexts.    

 

Stop consonant place of articulation classification based on spectral representations of the 

surface acoustic waveform was shown to be more successful than the knowledge-based 

attempt. Halberstadt [1998] reported that the lowest classification error among various 

systems found in the literature, using a similar database (TIMIT), was achieved by using 

a committee-based technique. In such a technique, the decision about the place of 

articulation was made from the voting among several classifiers with heterogeneous 

spectral-based measurements. The lowest classification error reported was 3.8%. 

Halberstadt [1998] also performed a perceptual experiment on stop consonant place of 

articulation classification. Subjects were asked to identify the place of articulation of the 

stops in the center of three-segment speech portion extracted from conversational 

utterances. It was found that human subjects made 6.3% error rate on average, and 2.2% 

error rate by the voting of seven listeners. The average error rate could be viewed as the 

level that machine classifications of stop place should try to achieve, if they were to 

perform at the human level.  
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1.5 Thesis Goals 

Many of the previous works mentioned suggested places in the acoustic signal where one 

should look for cues for place of articulation classification for stop consonants, while the 

results obtained from the last three strongly suggested the use of acoustic attribute 

combinations as invariant acoustic cues for such a classification task. Despite these 

studies, the appropriate combination of cues remained unclear. Not much effort has been 

spent on studying the acoustic attributes used in the classification task in more detail, 

such as their contributions to the classification result and the dependencies among the 

attributes. 

 

And, despite some outstanding results in the classification of stop consonant place of 

articulation using spectral-based representations [Halberstadt, 1998], this thesis will be 

restricted to the study of acoustic cues that are chosen in a knowledge-based fashion.   

 

The purpose of this research is to select a set of reasonable acoustic attributes for the stop 

consonant place of articulation classification task based on human speech production 

knowledge. The introduction of some of the acoustic attributes studied in this thesis will 

be based on the results collectively found in the previous works mentioned above. Some 

of the acoustic attributes are new to the literature and are evaluated in this thesis.  Their 

discriminating properties across the three places of articulation and their correlations will 

be evaluated and utilized in the place classification experiments in various voicing and 

adjacent vowel contexts. Attention will also be paid to using these acoustic attributes as 

the basic units for a stop consonant classification module, which is one of the modules to 

be developed as part of our research group’s distinctive feature-based automatic speech 

recognizer. 

 

1.6 Thesis Outline   

The overview of human stop consonant production based on the simple tube model is 

provided in Chapter 2 of this thesis. This chapter describes the articulatory movements 
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when stop consonants with three different places of articulation are produced, along with 

the acoustic cues in the surface acoustic signal that reflect such movements. 

 

Chapter 3 introduces a set of acoustic attributes that are the focus of this study. This set of 

acoustic attributes is chosen in order to capture the acoustic cues that are useful in the 

stop consonant place of articulation classification based on the production theory 

discussed in Chapter 2. Common methods used throughout this thesis for obtaining the 

acoustic attributes as well as the database used are also discussed in this chapter. Results 

from statistical analyses on the values of each of these acoustic attributes are shown. The 

abilities of the individual acoustic attributes in separating the three places of articulation 

are compared. Furthermore, correlation analysis is conducted and the acoustic attributes 

with possible redundant information are identified. 

 

In Chapter 4, subsets of the acoustic attributes introduced in the previous chapter are used 

for real classification experiments. Some contexts, including the presence of the release 

bursts, the voicing of the stop consonants, and the frontness of the associated vowels, are 

taken into account in these classification experiments. The ability of our combinations of 

the acoustic attributes for place classification is then evaluated on the stop consonants in 

the entire database. 

 

Chapter 5 concerns discriminant analyses of our combinations of acoustic attributes. This 

chapter points out the level of contribution of each acoustic attribute provided to the place 

of articulation classification in various contexts. 

 

The final chapter summarizes this thesis in terms of its focus, the procedures used, and 

the findings, and also provides a discussion on some of the interesting results obtained 

from the experiments and analyses in this thesis. Assessment of the classification 

accuracies obtained using our combinations of acoustic attributes along with ideas for 

future work are also included in this final chapter. 
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Chapter 2  

Acoustic Properties of Stop Consonants 

The purpose of this chapter is to provide some basic knowledge on human production of 

stop consonants. The articulatory mechanism that a person uses to utter the sound of a 

stop consonant is described in the first section. The mechanism is translated into the 

source and filter viewpoint, which is used in order to explain acoustic events reflected in 

acoustic speech waveform as well as its frequency domain representation. In later 

sections, the three types of stop consonant used in English, including labial, alveolar, and 

velar stop consonants, are contrasted in terms of the characteristics of some acoustic 

events expected to be useful in discriminate among the three types. Differences between 

aspirated and unaspirated stop consonants in relation to our attempt to discriminate 

among the three types of stop consonants are also noted. 

 

2.1 The Production of Stop Consonants 

The human speech production process can be viewed as consisting of two major 

components. One is the source that generates airflow. The other is the path the air flows 

through. The source of airflow is simply the lungs, while the path is formed by the 

trachea, larynx, pharynx, oral cavity and nasal cavity. While the air flows from the lungs 

and passes through the lips and the nose, the shape of the path is dynamically controlled 

by the movement of various articulators along its length, such as glottis, velum, tongue 

and lips. 

 

In English, a stop consonant is uttered by using one primary articulator, an articulator in 

the oral cavity, to form a complete closure in the oral region of the vocal tract while 

maintaining the pressure in the lungs. Due to the blockage of the airflow, the pressure 

behind the constriction increases until it approaches the sub-glottal pressure level. This 

results in the termination or inhibition of the glottal airflow. Then the closure is released 

rapidly, causing the rushing of air through the just-released constriction. At this stage, 
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noise is generated at the constriction due to the rapid moving of the air through the small 

opening. This airflow generated by the noise is referred to as the burst at the release. If 

the stop consonant is immediately followed by a vowel, the glottis will start vibrating 

again in order to utter the vowel. The time interval, starting from the moment of the 

release until the start of the glottal vibration, is referred to as the voice onset time (VOT). 

For an aspirated stop consonant, the glottis remains spread after the release and lets the 

air flow upward through it causing the noise, similar to the one generating the burst but 

usually exciting the whole length of the vocal tract. The noise generated by turbulence in 

the glottal airflow is referred to as aspiration noise. 

 

The way these articulators are manipulated during the production of a stop consonant 

reflects on the corresponding acoustic signal. The process can be explained from the 

spectrogram of the utterance /� g ae g/ in Figure 2-1, as an example. In the region marked 

by (1), complete closure, formed by the tongue body and the hard palate, causes the 

reduction in high frequency energy. Only low frequency energy can radiate outside 

through the oral cavity wall. Next, in (2), the closure is released and rapid airflow rushes 

through the small opening causing the release burst. The section of the vocal tract starting 

from the closure to the outside of the oral cavity is excited by turbulence noise. Finally, in 

(3), the vocal folds start vibrating again. The vocal tract moves from the shape at the time 

the closure was formed to the shape that will be used in articulating the following vowel, 

causing movement of the formants. 

 

In English, three primary articulators, which are lips, tongue blade and tongue body, are 

used to produce different stop consonants. For labial stop consonants, the closure is 

formed by the lips. For alveolar stop consonants, the closure is formed by the tongue 

blade and the alveolar ridge, while the tongue body and the soft palate, or the posterior 

portion of the hard palate, form the closure for velar stop consonants. Evidence for the 

three different locations of the closures of stop consonants in VCV context, e.g. /aa b aa/, 

can be seen temporally and spectrally in the acoustic signal as described in the following 

sections. 
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Figure 2-1: A spectrogram of the utterance /���� g ae g/. The movement of the articulators that is 
reflected in the acoustic signal in the area marked (1), (2) and (3) is explained in the text above.  

 

2.2 Unaspirated Labial Stop Consonants 

When an unaspirated labial stop consonant, i.e. a /b/ or an unaspirated /p/, is followed by 

a vowel, the tongue body position corresponding to that vowel is close to being in place 

already at the time of the closure release. So the formant movement following the release 

depends, to some extent, on the following vowel, and the major part of the F2 transition 

is caused by the motion of the lips and jaw rather than the movement of the tongue body 

(except as the tongue body rests on the mandible). By modeling the human vocal tract 

based on the resonance of concatenated uniform tube model, it has been found that 

progressing from labial release to a back vowel, F1 rises rapidly while there is a small 

upward movement in F2. F1 rises in the same fashion in the context of front vowel, but 

F2 rises more rapidly. The spectral shape of the burst is rather flat since the constriction, 

where the noise is generated, is close to the opening of the tube. Thus the spectrum of the 

/ � g ae g / 
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burst is roughly the spectrum of the noise with smooth spectral shape (as modified by the 

radiation characteristic), without being filtered by any transfer functions. Similarly, when 

the stop is preceded by a vowel, the formant movement looks like a mirror image of the 

former case. Examples of spectrograms showing the formant movements for a front 

vowel and a back vowel surrounded by labial stops are shown in Figure 2-2 (a) and (b) 

respectively. 

 

2.3 Unaspirated Alveolar Stop Consonants 

The stop consonants that belong to this category are /d/ and unaspirated /t/. In order for a 

speaker to make the constriction between the tongue blade and the alveolar ridge, the 

tongue body is placed in a rather forward position. Such a configuration has an F2 that is 

a little higher than F2 of the neutral vocal tract configuration. Progressing from the 

release of an alveolar stop consonant to a back vowel, F2 decreases due to the backward 

movement of the tongue body to produce a back vowel. In the case of an alveolar stop 

followed by a front vowel, the tongue body at the constriction generally moves slightly 

forward into the position of the front vowel, resulting in the increasing of F2. For both 

types of following vowels, F1 increases due to the tongue body’s downward movement. 

Furthermore, the constriction at the alveolar ridge forms a short front cavity with high 

resonance frequency, resulting in a burst spectrum with energy concentrating more in the 

high frequency region when the cavity is excited by the frication noise. Examples of the 

spectrograms showing the formant movements of a front vowel and a back vowel 

surrounded by alveolar stops are shown in Figure 2-2 (c) and (d) respectively. 

 

2.4 Unaspirated Velar Stop Consonants 

The stop consonants that belong to this category are /g/ and unaspirated /k/. The 

constriction made by the tongue body and the soft palate or the posterior potion of the 

hard palate makes F2 and F3 relatively close together in the burst compared with the 

spacing between F2 and F3 of the uniform vocal tract. The position of the constriction 

depends a lot on the vowel context, but in general the vocal tract configuration for the 
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velar constriction has a high F2. For a back vowel, the convergence of F2 and F3 is lower 

than in the case of a front vowel. For most vowels, F2 typically goes down when moving 

from the velar stop release into the following vowel. However, for some cases in which 

the following vowels have very high F2, e.g. for /iy/, F2 moves upward to reach F2 of the 

following vowel. At the closure, F1 is low since the tongue body is in a high position to 

make the constriction. Then, it moves upward as the tongue body is lowered when 

progressing towards the vowel region. The movement of the formant is not as rapid as the 

ones in the alveolar and labial cases, since there is a greater length of constriction for 

velar stops. Figure 2-2 (e) and (f) show spectrograms of the utterances /g aa g/ and /g iy 

g/ respectively. An example of the case in which F2 moves downward from a velar stop 

into a front vowel can be seen in Figure 2-1, which shows a spectrogram of the utterance 

/� g ae g/. 

 

 

Figure 2-2: Spectrograms of the utterances of (a) /b aa b/, (b) /b iy b/, (c) /d aa d/, (d) /d iy d/, (e) /g aa 
g/, and (f) /g iy g/. (The horizontal axes in all plots show time in seconds) 

(a) (b) 

(c) (d) 

(e) (f) 
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2.5 Aspirated Stop Consonants  

When aspirated stop consonants (i.e. the aspirated version of /p/, /t/, and /k/) are followed 

by vowels, aspiration noise appears immediately after the release burst and ends shortly 

after the vocal folds start vibrating again to produce the vowels. The glottis is open near 

the moment of oral cavity closure. The closure of the glottis is delayed following the 

release of the oral closure, and this is the main cause of this aspiration noise. This is 

different from the unaspirated case where the glottis remains in a more closed position at 

least following the release. As soon as the oral cavity closure opens, the pressure from the 

lungs drives the air to flow rapidly through the glottis opening, causing small rotating 

airflows that act as a noise source at the glottis. This noise source excites the vocal tract 

all the way from the point it is generated to the mouth opening. Consequently, though it is 

noisy, we can usually observe the formant structure and formant movement as the vocal 

tract moves from the stop to the configuration for the following vowel. The release 

bursts, like the ones in their unaspirated counterparts, are still generated in the same 

fashion, and are superimposed with the aspiration noise. Furthermore, the voice onset 

time (VOT) in aspirated stop consonants is typically longer than in unaspirated 

consonants. 

2.6 Chapter Summary 

In this chapter, the articulatory mechanism in human production of stop consonants was 

described along with the expected characteristics of some acoustic events based on the 

movements of articulators involved in the mechanism. Such characteristics are reflected 

in the surface acoustic signal in both the time and frequency domains, and they differ 

across stops with the three places of articulation. Acoustic attributes used for 

discriminating among the three places of articulation of stop consonants in this study 

were selected based on these differences. Such acoustic attributes will be introduced in 

the next chapter.  
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Chapter 3  

Acoustic Attribute Analysis 

In this chapter, various acoustic attributes that have potential for discriminating stop 

consonant place of articulation, based on the model of stop consonant production 

mentioned earlier, are introduced and investigated in detail. These acoustic attributes are 

chosen such that, at some level, they capture various properties of the surface acoustic 

signals that are useful for identifying places of articulation. These properties include the 

shape of the release burst spectrum, the movement of the formant frequencies into or out 

of adjacent vowels, the characteristic of aspiration noise after the stop release and some 

temporal measurements that reflect the timing of the articulators involved. The values of 

these acoustic measurements are believed to distribute in statistically different manners 

among different places of articulation. Thus, to know the nature of their distributions and 

to evaluate the discriminating capability of each acoustic attribute is essential for the 

development of the stop place of articulation module. 

 

The inclusion of all of the acoustic attributes in this study was based solely on their 

potential for discriminating stop consonant place of articulation as indicated from the 

model of stop consonant production. Attempts were made to select a set of attributes that 

capture the information known to be useful to place of articulation identification, and 

which are feasible to measure automatically. The set of attributes selected was not 

guaranteed to be mutually exclusive in their discriminating property. In fact, the effects 

of some attributes were expected to be redundant. Also, some subsets of the attributes 

were experimental, e.g. some attributes were intended to be used to capture similar 

information but were measured in different time intervals. Thus, it is crucial to identify 

the correlation among each pair of the attributes and to prevent the correlation among the 

attributes to interfere with our analysis or to degrade the performance of the classification 

experiment to be conducted. 
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In the first section of this chapter, the database constructed for the study in this thesis is 

described. Stop consonants in the utterances contained in this database formed the CV 

and VC tokens used throughout this study, including the statistical analyses in this 

chapter, the classification experiments in Chapter 4, and the discriminant analyses in 

Chapter 5. The restrictions on the CV and VC tokens that are considered to qualify for 

the study are also described. In the next section, general techniques used in the extraction 

of the acoustic attributes are explained. Then, the acoustic attributes used throughout this 

study are introduced along with their expected behaviors for the three places of 

articulation. After that the measurements of those attributes made on CV and VC tokens 

from the database described in section 3.1 are shown. Finally, the result of correlation 

analysis among the attributes is shown. Additional discussions about the results reported 

in this chapter will be found in the summary and discussion section in Chapter 6. 

 

3.1 SP Database 

The database used in this study is called the Stop Place of articulation (SP) database. One 

hundred and ten meaningful and grammatically correct sentences with an average length 

of 10.9 words were constructed. The 110 sentences are listed in Appendix A. The 

sentences were selected so that there was a large number of stop consonants, and the 

number of the stop consonants with the three places of articulation and the two voicing 

properties were fairly well balanced. Two male and two female speakers were asked to 

speak each sentence naturally in a quiet room. Each sentence was shown on a monitor in 

front of the speaker twice. The first one, which was the practice step, was meant for the 

speaker to be familiar with the sentence in order to speak it accurately and as naturally as 

possible. The recording was done when the sentence reappeared the second time 

immediately following the practice step. Each recorded signal was passed through an 

anti-aliasing filter with the cut-off frequency at 8kHz, digitized at 16kHz, and stored 

directly to a computer. Any utterances that had any defects were rejected, and the practice 

and the recording steps for those utterances were repeated. 
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We restricted the stop consonants to be included in this study to only the stop consonants 

that were located next to at least one vowel. The vowel can be on either side of the stop 

consonant segment as long as it is adjacent to that stop segment regardless of any word or 

syllable boundaries. The underlying segments, e.g. stop consonant segments and vowel 

segments, were determined as appeared in the transcriptions of the sentences. Here, we 

will define a CV token as a stop consonant segment that has a vowel segment 

immediately to the right and a VC token as a stop consonant segment that has a vowel 

segment immediately to the left. Thus, a stop consonant that was included in this study 

must create either a CV or VC token, or both types of token. It is worth noting that the 

notion of the CV and VC tokens used here is for the purpose of referring to stop 

consonants that have the right and left contexts that are of interest to us. The 

measurements involving any CV or VC tokens were made from the original acoustic 

signal at the place where the tokens of interest were located. 

 

Additional restrictions were imposed on all of the CV and VC tokens. The “qualified” 

CV and VC tokens must meet the following requirements: 

 

- The vowel in each CV or VC token must not be reduced. A vowel that is short in 

duration and had neutral formant structure is considered a reduced vowel. 

- If the transcription of a stop consonant is alveolar, that stop consonant must not be 

a flap. 

- The closure made in a stop consonant must be complete. Formant structure must 

not be clearly visible during the closure. 

- CV or VC tokens whose third formant tracks are too low in frequency due to the 

effect of a nearby /r/ are omitted. 

- The second stop consonant in a stop consonant cluster must show the formant 

transition and the release burst that are consistent with its transcription. 

Assimilated stop consonants in stop consonant clusters are omitted.   

 

Table 3-1 shows the number of stop consonants found in all of the recorded utterances. 

65.2% of the total stop consonants residing in the recorded utterances were considered as 
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qualified stop consonants and were used in this study, while 34.8% were left out due to 

the absence of adjacent vowel or the restriction described above. Among the 65.2%, 

15.0% have vowels on both sides, 28.9% have vowels only on the right, and 21.3% have 

vowels only on the left. 

 
Set # of stops  % of total 

Unqualified stop consonants 2181 34.8% 
Total qualified stop consonants 4094 65.2% 

Qualified stops with vowels on both sides 944 15.0% 
Qualified stops with vowels only on the right  1812 28.9% 
Qualified stops with vowels only on the left 1338 21.3% 

Total stop consonants 6275 100.0% 

Table 3-1: Distribution of stop consonants in the SP database 

 

The time points at the release burst, the voicing offset of the preceding vowel, and the 

voicing onset of the following vowel, associated with each stop consonant were manually 

marked. The manually marked voicing onset and offset were also refined automatically 

for consistency by the procedure described in section 3.2.2. 

 

3.2 Acoustic Attribute Extraction 

3.2.1 Averaged Power Spectrum 

The determination of many acoustic attributes involves measuring spectral amplitudes at 

appropriate points in the acoustic signals. In this study, the spectral amplitudes were 

measured from the averaged power spectra, which were obtained by averaging squared 

spectra in certain time intervals. Time averaging was used to provide robustness against 

variations introduced from the process of manually time-marking the acoustic signals. 

The advantage of using the power spectra, or, in other words, squaring the signal, before 

the averaging is that high amplitude spectral peaks, which are believed to be more 

informative about the place of articulation, are emphasized more than the smaller peaks. 

 

In a general case, 16 power spectra, each obtained by squaring the DFT of a certain 

segment of interest in the acoustic signal, were averaged in time. These segments were 

obtained by windowing the acoustic signal with a 6.4ms. Hanning window centered at 
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every 1 ms starting from 7.5 ms prior to the desired time point to 7.5 ms after that. In the 

case where a mean-squared spectrum of a release burst is desired, the number of the 

power spectra to be averaged can be less than 16 if the time of the burst is close to the 

time of the voicing onset of the following vowel. In such case, the first window is still at 

7.5 ms prior to the time of the burst and the interval between each window used is 1 ms 

but the number of the windows used is selected so that the tail of the last window does 

not fall beyond the time of the voicing onset.     

 

3.2.2 Voicing Onsets and Offsets 

There are some acoustic attributes that require measurements to be made at the time of 

the voicing onset or the voicing offset of a vowel. Although in this study, such time 

points were located manually by time-aligning the acoustic waveforms with their 

corresponding transcriptions, a way to pinpoint those time points consistently across all 

of the vowels in all of the utterances was needed. In this study, the manually marked 

voicing onsets or offsets were refined by an automatic procedure in order to obtained 

such consistency. The refining procedure calculated low frequency energy of the signal 

every 1 ms. in the vicinity of each of the manually marked time points. Then, the time 

point where the rate of change of the low frequency energy was maximal was picked as 

the refined time point. The refined voicing onset location corresponds to the time point 

where the low frequency energy in the vicinity of the manually marked location increases 

the most rapidly, while the refined voicing offset location corresponds to the time where 

it decreases the most rapidly. The choice of using the rate of change in the low frequency 

region in order to mark the beginning and the end of the glottal vibration consistently was 

chosen in order for the procedure to be somewhat similar to the [g] landmark defined for 

the distinctive feature-based speech recognition approach by Liu [1995]. 

3.2.3 Measurement of Formant Tracks 

Since the primary purpose of this study is to investigate the ability of a selected set of 

acoustic attributes to discriminate among the three places of articulation of stop 

consonants, we do not want the values of each of the acoustic attributes to be corrupted 

with noise caused by measurement errors. Among all of the acoustic attributes used, the 
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acoustic attributes whose values rely on locating the formant frequencies are the hardest 

to achieve automatically with high accuracy, due to the lack of good automatic formant 

trackers. Thus, in this study we decided to trace the relevant formant tracks manually2. 

 

The formant frequencies at particular time points were not stored directly. Instead, we 

stored the formant tracks in the time intervals in which we are interested. For the vowel 

in each of the qualified CV tokens, the first three formant frequencies were traced from a 

time point approximately at the middle of the vowel back toward the release burst if it 

existed, or toward the time point where the voicing onset occurred, if the release burst did 

not exist. For VC tokens, the first three formant frequencies were traced from a time 

point approximately at the middle of the preceding vowel toward the release burst or the 

voicing offset of that vowel, depending on the existence of the release burst. The time 

intervals over which the formant tracks were traced were not necessarily precise. The 

formant tracks captured the gross movements of the formant frequencies of a vowel 

instead of the exact values of the formant frequencies as appeared in the spectra. During 

the closure interval and the interval between the release burst and the marked voicing 

onset, the formant structures are not usually visible in the spectrogram. Thus, during such 

intervals, the formant tracks were approximated manually by interpolation based on the 

structures of the formant frequencies during the vowels and the spectrum shapes of the 

adjacent release bursts.   

 

The tracing was done by visually investigating the spectrograms and their corresponding 

waveforms by a graduate student who is familiar with stop consonant production. The 

tracer had access to the transcriptions and was able to use his judgment in deciding the 

formant tracks that were the most suitable for their surrounding contexts. The tracer first 

marked a variable number of points onto the spectrogram in the places, i.e. the 

                                                 
2 However, in a complete recognition system of the type envisioned, an analysis-by-synthesis component is 

included, in which hypothesized words are verified or rejected by comparing synthesized acoustic patterns 

against acoustic patterns present in the signal. In such a component, it is possible to determine whether a 

hypothesized formant track is consistent with the acoustic evidence. This procedure is likely to lead to a 

more effective interpretation of acoustic data that may be somewhat noisy. 
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(frequency, time) coordinates, that were on the formant track and the time of interest. 

Then, those points were used for fitting a 3rd order polynomial under the least-square 

error criteria. Each formant track was then stored by the four coefficients of the 

corresponding 3rd order polynomial. These coefficients were used for calculating the 

acoustic attributes related to the formant frequencies. 

 

3.3 Acoustic Attribute Description 

The set of acoustic attributes used in this study can be described in four categories, 

including: 

1) Attributes describing the spectral shape of the release burst 

2) Attributes describing the formant frequencies 

3) Attributes describing the spectral shape between the release burst and the voicing 

onset of the following vowel 

4) Attributes describing some possible temporal cues 

 

Six of the acoustic attributes, which are Av-Ahi, Ahi-A23, Av-Amax23, F1o, F2o, and 

dF2, are picked so that they carry information similar to the attributes used in [Stevens, 

Manuel and Matthies, 1999]. However, some measurement procedures used to obtain 

these acoustic attributes might be different.  

3.3.1 Attributes Describing Spectral Shape of the Release Burst 

During the closure phase in the production of a stop consonant, the intraoral pressure is 

built up due to the blocking of the airflow by the primary articulator for that stop. And 

when that closure is promptly released, the pressure behind the point of closure pushes 

the air to flow rapidly through that point, now a narrow constriction for which the cross-

sectional area is increasing. This flow causes some frication noise that excites the frontal 

portion of the vocal tract, i.e. the vocal tract from the point of closure to the open space at 

the lips. There may also be weaker acoustic excitation of cavities upstream from the 

constriction. The length and the shape of this frontal part of the vocal tract depend on the 

place where the closure was made. In the case of a labial stop, the frication noise excites 
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just the radiation characteristic of the lip opening. We can think of this in terms of the 

source-filter model where the source is the frication noise and the filter has a transfer 

function that represents the characteristic of the frontal portion of the vocal tract. Then 

we can predict the spectral shapes of the outputs of the model, which are the release 

bursts measured from surface acoustic signals, for each of the three places of articulation. 

However, a certain level of variation to the spectral shape is also expected since the point 

in the vocal tract where the closure is somewhat dependent on the context, such as the 

frontness of the adjacent vowel. 

 

The acoustic attributes that were used to capture the burst-related information in this 

study are: 

3.3.1.1 Av-Ahi 

This attribute is the measure of how large is the high frequency component of the release 

burst in comparison to the amplitude of the first formant prominence of the adjacent 

vowel. It is calculated from: 

Av-Ahi(dB) = 20log( Av / Ahi ) 

where:   

- Av is the amplitude of the first formant prominence measured at either the voicing 

onset or the voicing offset of the adjacent vowel. 

- Ahi is the amplitude of the biggest peak of the burst spectrum in the range from 

3.5kHz to 8kHz. 

 

Av-Ahi is expected to be the least for alveolar stops and the greatest for labial stops due 

to a large Ahi for alveolar stops and a small Ahi for labial stops. 

3.3.1.2 Ahi-A23 

This attribute is the measure of the tilt of the release burst spectrum. It is calculated from: 

Ahi-A23(dB) = 20log( Ahi / A23 ) 

where:   
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- Ahi is the amplitude of the biggest peak of the burst spectrum in the range from 

3.5kHz to 8kHz. 

- A23 is the average peak amplitude of the burst spectrum in the range from 1.25kHz to 

3kHz. 

 

Ahi-A23 is expected to be the greatest for alveolar stops, while, for velar stops, it is 

expected to be in between the other two types of stops. 

3.3.1.3 Av-Amax23 

This attribute is the measure of how large is the mid frequency component of the release 

burst in comparison to the amplitude of the first formant prominence of the adjacent 

vowel. It is calculated from: 

 

Av-Amax23(dB) = 20log( Av / Amax23 ) 

where:   

- Av is the amplitude of the first formant prominence measured at either the voicing 

onset or the voicing offset of the adjacent vowel. 

- Amax23 is the amplitude of the biggest peak of the burst spectrum in the range from 

1.25kHz to 3kHz. 

 

Av-Amax23 is expected to be the highest for labial stops due to the weakness of the 

bursts and the smallest for velar stops due to their high amplitude in F2 and F3 regions. 

 

Examples of the average power spectra of stops with the three places of articulation are 

shown in Figure 3-1. In the figure, the values of Ahi, A23, and Amax23 calculated from 

the sample spectra are also shown. 

3.3.1.4 Avhi-Ahi, Av3-A3, Av2-A2 

Each of these attribute is the measure of how large is the frequency component of the 

release burst in some frequency regions, including a high frequency region and two mid 
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frequency regions, in comparison to the frequency component of the adjacent vowel in 

the corresponding regions. They are calculated from: 

 

Avhi-Ahi(dB) = 20log( Avhi / Ahi ) 

Av3-A3(dB) = 20log( Av3 / A3 ) 

Av2-A2(dB) = 20log( Av2 / A2 ) 

where:   

- Avhi is the amplitude of the biggest peak of the vowel spectrum in the range from 

3.5kHz to 8kHz measured at either the voicing onset or the voicing offset of the 

adjacent vowel. 

- Ahi is the amplitude of the biggest peak of the burst spectrum in the range from 

3.5kHz to 8kHz 

- Av3 is the amplitude of the biggest peak of the vowel spectrum in the range from 

1.5kHz to 3kHz measured at either the voicing onset or the voicing offset of the 

adjacent vowel. 

- A3 is the amplitude of the biggest peak of the burst spectrum in the range from 

1.5kHz to 3kHz 

- Av2 is the amplitude of the biggest peak of the vowel spectrum in the range from 

1.25kHz to 2.5kHz measured at either the voicing onset or the voicing offset of the 

adjacent vowel. 

- A2 is the amplitude of the biggest peak of the burst spectrum in the range from 

1.25kHz to 2.5kHz 

 

The greatest Ahi-Avhi is expected for alveolar stops, while the other two attributes 

should be greatest for velar stops. 

3.3.1.5 Ehi-E23 

This attribute is another attempt to capture the tilt of the release burst spectrum like Ahi-

A23. However, this attribute tries to evaluate the steepness of the spectral tilt by 

comparing the energy of the spectrum between the high frequency region and the mid 

frequency region. It is calculated from: 
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Ehi-E23(dB) = 10log( Ehi / E23 ) 

Where:   

- Ehi is the total energy of the burst spectrum in the range from 3.5kHz to 8kHz. 

- E23 is the total energy of the burst spectrum in the range from 1.25kHz to 3kHz. 

 

Ehi-E23 is expected to be the greatest for alveolar stops. 

 

 

 

 

 

 

 
 

Figure 3-1: Examples of average power spectra of stops with the three places of articulation. The 
values of Ahi, A23, and Amax23 (calculated from these sample spectra) are shown by the location in 

the direction of the dB axis of their associated horizontal lines. 
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3.3.2 Attributes Describing the Formant Frequencies 

When a stop consonant is to be made immediately after a vowel, the vocal tract 

configuration changes from the vowel configuration into the configuration of the closure 

of the stop. As the configuration changes, one can observe the change in the formant 

structure, from deep inside the vowel until the closure is formed. Similarly, when a stop 

consonant is made immediately prior to a vowel, the vocal tract configuration at the 

closure changes into the configuration that allows the speaker to utter the following 

vowel. Given enough information, one should be able to uncover the vocal tract 

configuration at any point in time during the vowel-to-stop or stop-to-vowel transition 

from the locations of the formant frequencies at the corresponding time. Then the 

configuration of the vocal tract at the closure of a stop can be uncovered. However, it is 

obvious that the use of this piece of information in uncovering the stop place of 

articulation is highly dependent on the quality of the adjacent vowel. 

 

The acoustic attributes that were used to capture the information of the formant 

frequencies in this study are: 

3.3.2.1 F1o, F2o, F3o, F2b, F3b 

F1o, F2o and F3o are the frequencies of the first, second and third formant at either the 

voicing onset or the voicing offset of the adjacent vowel respectively. According to 

acoustic theory, F1o values are expected to be the highest for labial stops due to their fast 

F1 movement, and the lowest for velar stops due to their slow F1 movement, while F2o 

values for labial stops should be lower than for the other two types [Stevens, 1998]. 

However, the comparison of F2o values between alveolar stops and velar stops depends 

on the vowel context. F2o is higher for alveolar stops in the back vowel context, while it 

is higher for velar stops in the front vowel case. F2b and F3b are the frequencies of the 

second and the third formant frequencies at the time of the release burst. The expected 

value of F2b among the three places of articulation relative to one another should be 

rather similar to the one for F2o. The distributions of F3o and F3b will be discovered in 

the experiments in this chapter. 
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3.3.2.2 dF2, dF3, dF2b, dF3b 

dF2 is the difference between F2o and the second formant frequency at 20 ms after the 

voicing onset of the following vowel or at 20 ms prior to the voicing offset of the 

preceding vowel, while dF3 is similar to dF2 but for the third formant frequency. dF2b is 

the differences between F2b and the second formant frequency at 20 ms after the release 

burst for the CV case or at 20 ms prior to the release for the VC case. These frequencies 

are obtained from the second formant track evaluated at the corresponding time points. 

dF3b is similar to dF2b but for the third formant frequency. These acoustic attributes 

reflect the direction and the rate of the movement of the F2 and F3 tracks. If the formant 

frequencies move upward into the middle of the vowel, the values of these attributes are 

negative numbers whose magnitudes are measures of the rate of the movement. If the 

formant frequencies move in the opposite direction, these attributes are positive numbers. 

In general, labial stops have negative dF2, dF2b, dF3 and dF3b. For front vowels, dF2 

and dF2b are on average higher for velar stops than for alveolar stops, while for back 

vowels dF2 and dF2b for velar stops and alveolar stops are more similar. dF3 and dF3b 

are usually positive numbers for an alveolar stop while they are usually negative numbers 

for a velar stop. However, these predictions are not always precise for the VC or CV 

tokens extracted from continuous speech. Their values depend highly on the surrounding 

contexts and the speaking style.  

3.3.2.3 F3o-F2o, F3b-F2b 

F3o-F2o is the difference in frequency between the third and the second formant 

frequencies at the voicing onset of the following vowel or the voicing offset of the 

preceding vowel. Similarly, F3b-F2b is the difference between the two formant 

frequencies at the time marked as release burst. These two acoustic attributes show how 

close the second and the third formant frequencies are at the time near the time of the 

stop constriction. The two formant tracks usually come close to each other at the 

constriction of velar stop consonants. Thus, on average, velar stops should have smaller 

F3o-F2o and F3b-F2b than the other two types of stop consonants.  
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3.3.3 Attributes Describing the spectral shape between the release 

burst and the voicing onset of the following vowel 

Each of the acoustic attributes in this group reflects the location, in frequency, where 

there is a concentration of energy of a portion of the signal, after the time marked as the 

release burst but before the start of the voicing onset. For aspirated stop consonants, these 

acoustic attributes reflect the energy concentration of both the frication noise at the 

release burst and the aspiration noise after the start of the release burst. However, for the 

unaspirated stop consonants, these acoustic attributes mostly capture the energy 

concentration of the frication noise at the release bursts. The acoustic attributes in this 

group include cgF10a, cgF20a, and cgFa. The value of each attribute is the center of 

gravity in the frequency scale of the power spectrum obtained from a specific portion of 

the speech signal. The portion that corresponds to cgF10a is from the time marked as the 

release burst to the point 10 ms. after that. For cgF20a, it is the portion from the time 

marked as the release burst to the point 20 ms. after that. For cgFa, the corresponding 

portion is from the time marked as the release burst to the time marked as the voicing 

onset of the following vowel. If the time interval between the release burst and the 

voicing onset of the following vowel is shorter than the length of the selected portion of 

the signal, which are 10 ms and 20 ms in the cgF10a and cgF20a cases respectively, the 

signal portion used will be from the time marked as the release burst to the time marked 

as the voicing onset only. This will result in a signal portion that is similar to the portion 

used for cgFa. This was done to prevent the following vowel from affecting the energy 

concentration of the frication and the aspiration noises that we are interested in. The 

values of the acoustic attributes in this group are expected to be the highest for alveolar 

stop consonants and the lowest for the labial stop consonants, while the values for velar 

stop consonants should be in between. This group of acoustic attributes apply only to the 

CV tokens whose stop consonants contain release bursts. 

3.3.4 Attributes Describing Some Temporal Cues 

Apart from the spectral properties of speech signals, using some temporal properties 

should also benefit the identification of the place of articulation of a stop consonant. 

Voice-Onset-Time (VOT), which is the time between the release of a stop consonant and 
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the start of the glottal vibration for the vowel that follows, is known to be different 

among stop consonants with the three places of articulation. With the same voicing 

condition, a labial stop consonant generally has the shortest VOT, while a velar stop 

consonant usually has the longest VOT. The VOT of an alveolar stop consonant lies in 

between the two. However, VOT exists only for a CV token. For a CV token, the VOT is 

calculated as the difference between the time marked as the voicing onset of the vowel 

and the time marked as the release burst. Here, we would like to try a temporal cue for 

the VC token that is calculated from the difference between the time marked as the 

release burst and the time marked as the voicing offset of the corresponding vowel. This 

quantity can be thought of as the closure duration of the stop consonant and will be 

referred to in this thesis as CLS_DUR. These temporal acoustic attributes only apply to 

the CV or VC tokens whose stop consonants contain the release bursts. An example of 

how to measure the values of CLS_DUR and VOT is shown in Figure 3-2. 

 

 
 

Figure 3-2: An example of CLS_DUR and VOT of the consonant /k/ in a portion of a waveform 
transcribed as  /l uh k ae t/. CLS_DUR is the time interval between the voicing offset of the vowel /uh/ 

to the release of the /k/ burst. VOT is the time interval between the release of the /k/ burst to the 
voicing onset of the vowel /ae/.    
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3.4 Statistical Analysis of Individual Attributes 

In order to learn the capability of each of the selected acoustic attributes in discriminating 

the three places of articulation for stops, we first looked at the distribution of the values 

of each attribute for each place of articulation and evaluated how well each of them 

discriminated the place of articulation. For an attribute to be able to do such a task, we 

must show that its values for the three places of articulation are sampled from different 

pools of population, i.e. the true distributions of that attribute’s value for each of the stops 

with the three places of articulation are different. Intuitively, one would expect a good 

discriminating property from the attributes whose true distributions of the three places of 

articulation have significant difference in means while the distribution for each place 

shows little variation. 

 

All of the attributes, whenever applicable, were measured from all of the VC and CV 

tokens extracted from the utterances in the SP database described earlier. The spectral 

amplitude measurements were made automatically while the related time points, 

including the time point of the release burst and the voicing onset/offset of the adjacent 

vowel were obtained manually. For consistency across all of the tokens, the manually 

marked voicing onset and offset were automatically refined according to the rate of 

change of the low frequency energy described earlier in this chapter.  The acoustic 

attributes that require the values of formant frequencies at any particular time points were 

obtained from the manually traced formant tracks obtained as described earlier. If any 

acoustic attribute for a token was more than 5 times the standard deviation for that 

attribute, then that token was omitted from the analysis. This was done to prevent outliers 

from contaminating the rest of the clean data points. It was assumed that some 

inadvertent error such as a manual labeling error occurred for such a token.   

 

For each of the acoustic attributes, we are interested in how their values distribute across 

the three places of articulation. Box-and-whiskers plots were made for all of the acoustic 

attributes. These plots show the acoustic attribute values in the form of boxes and their 
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whiskers, whose interpretation is illustrated by an example in Figure 3-3. The vertical 

axis of a box-and-whiskers plot shows the acoustic attribute value. The upper edge of the 

box is at the value of the 75th percentile, while the lower edge of the box is at the value of 

the 25th percentile. In the middle of the box, there is a line showing the median value. The 

height of the box is equal to the range from the 25th percentile to the 75th percentile, 

which is called the Inter-Quartile Range (IQR). This range covers half of all the data 

analyzed. A whisker points from the top of the box to the maximum value in the dataset 

that is still below the value that is higher than the 75th percentile by a factor of 1.5 times 

the IQR. Another whisker points downward from the bottom of the box to the minimum 

value in the dataset that is still above the value that is lower than the 25th percentile by a 

factor of 1.5. Data points whose values are beyond the whiskers are plotted individually. 
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Figure 3-3: A diagram showing an example of a box-and-whiskers plot used in this study 

 

The box-and-whiskers plots illustrate the ability of each acoustic attribute to separate the 

three places of articulation. They allow us to examine the values of each acoustic 

attribute graphically. In general, less overlapping among the boxes corresponding to the 

three places of articulation indicates a better chance that the acoustic attribute can 

separate the three places of articulation well. Therefore, an acoustic attribute that shows 

good separation should have large mean differences among the three places of 

articulation while the standard deviation of each place is relatively small. 
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Analysis of Variance (ANOVA) was done on every acoustic attribute in order to analyze 

the variation in the values of the acoustic attributes across different places of articulation. 

While the differences among the acoustic attribute values of the three places of 

articulation can be observed graphically from the box-and-whiskers plots, ANOVA 

yields levels of confidence that the observed differences are due to the difference in the 

place of articulation rather than coincidence. The minimal condition for an acoustic 

attribute to be able to separate three groups of tokens, each of which is corresponding to a 

different place of articulation, is that the mean of the values in each group is different 

from the means of the other two groups. Even if the experimental data shows difference 

among the means, we need to evaluate how much of this difference is caused by the fact 

that the place of articulation for each group is different from another (place effect) rather 

than by chance due to the variations within each of the groups (error). In ANOVA, this is 

done by testing the following hypotheses. 

 

Ho: �1 = �2  = �3 

H1: �i ≠ �j : for at least one pair (i,j) 

 

Under Ho, it is hypothesized that the true mean values of the three groups are the same, 

while under H1, at least a pair of the mean values are different. In order for an acoustic 

attribute to be able to separate the three groups, Ho must be rejected. The test statistic for 

this purpose is the F-ratio statistic, which can be computed from: 
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F-ratio is distributed as an F distribution with a-1 and N-a degrees of freedom, where a is 

the number of groups, which is 3 in this case, and N is the number of total data points. 

SSPlace is the sum square accounted by the place effect, while SSE is the sum square 
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accounted by the error. MSPlace and MSE are the mean squares due to the place effect and 

the error, respectively. SSPlace and SSE can be computed from the following equations. 
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where ni is the number of data points for the ith place of articulation, .iy is the mean value 

of the data points in the ith group, ..y is the grand mean calculated from all of the data 

points regardless of their place of articulation and yij is the value of the jth data point in 

the ith group. In doing the hypothesis testing, F-test is utilized. In this test, the hypothesis 

Ho should be rejected if 

 

F-ratio > Fα,a-1,N-a 

 

where 1-α is the confidence level, which we set to 99% in this study (α=0.01). Here, we 

used the P-value corresponding the F-ratio at the right degrees of freedom and compare 

its value to α. If P-value is smaller than α, we reject the null hypothesis. Specifically in 

this study, when the null hypothesis is rejected, we conclude that the mean difference 

observed in the corresponding study is significant or is due to the place effect rather than 

the error. 

 

Note that to reject the null hypothesis means that at least one pair of the group means are 

statistically different. However, this does not mean that all of the group means are 

statistically different. To test the significance of the mean difference between two groups, 

the pair-wise F-test was used on the three possible pairs, including labial vs. alveolar, 

labial vs. velar, and alveolar vs. velar. The interpretation of the P-value obtained from the 

pair-wise F-test is similar to the three-group F-test.  
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In the analysis of each of the acoustic attributes, we were also interested in investigating 

the effect of the frontness of the adjacent vowel on the acoustic attribute value 

distribution. Our assumption is that there are some acoustic attributes whose value 

distributions are statistically different between the cases where the corresponding vowels 

are front vowels and the cases where they are back vowels. Pair-wise F-tests were also 

used to compare the mean differences between tokens with different vowel frontnesses in 

the same place of articulation group. 

 

In order to quantify the separabilities across all of the acoustic attributes we are interested 

in, we can use the F-ratio as the measure of separability. Since F-ratio is proportional to 

MSPlace and inversely proportional to MSE, the bigger F-ratio reflects the larger portion of 

the variation of the attribute values due to the place effect compared to the variation due 

to the error, and in turn, the better that individual acoustic attribute can separate the three 

places of articulation. However, the magnitude of MSPlace depends on the number of the 

data points involved in the analysis. Thus, to compare the separabilities across difference 

acoustic attributes, the F-ratio for each acoustic attribute should be normalized by the 

number of data points used in the analysis of that acoustic attribute.  

 

Another criterion that we used for comparing the abilities to separate the three places of 

articulation among all of the acoustic attributes is the estimated Maximum-Likelihood 

classification error. For each individual acoustic attribute, all of the tokens containing that 

acoustic attribute were classified based on their values of that acoustic attribute. We 

assume normal distributions for all of the three groups. The parameters required for the 

models, which are the mean and standard deviations of each group, were calculated from 

the same set of tokens grouped according to their corresponding places of articulation. A 

token was classified according to the place k that yields the maximal P(y|k), the 

probability density function of the attribute of interest given that the place of articulation 

is k evaluated at y, the value of this acoustic attribute for that token. 
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3.4.1 Results 

3.4.1.1 Av-Ahi 

The box-and-whiskers plots of the values of Av-Ahi are shown in Figure 3-4. The mean 

of Av-Ahi of labial stops is 18.3 dB, which is, as predicted, higher than the ones of the 

other two places. The mean of velar stops is less than 1dB higher than the mean of 

alveolar stops. By visually observing the box-and-whiskers plots, the Av-Ahi value of the 

labial stops within the IQR does not overlap with the IQRs of the other two places of 

articulation. Thus, Av-Ahi should be able to do well in discriminating labial stops from 

the other two types of stop, while it is questionable for discriminating between alveolar 

and velar stops. From ANOVA, the P-value obtained is 0, which means that it is quite 

likely that Av-Ahi values for at least one of the three types of stop was sampled from 

different distributions. The pair-wise analysis was also done and the resulting P-values 

are also shown in Figure 3-4 in which all of the P-values are less than 0.01. So we can 

say that the differences in the means of Av-Ahi for the three types of stop consonant are 

significant. The estimated probability of error based on ML classification is 0.44. 

 

Table 3-2 compares the means of Av-Ahi for each place of articulation for the front and 

the back vowel cases. The result shows that the frontness of the adjacent vowel does not 

statistically affect the value of Av-Ahi for the labial case while it does for the other two 

places of articulation. The estimated probability of error based on ML classification for 

the front vowel case is 0.45, which is a little worse than when the vowels are mixed. The 

increasing of the classification error probability is caused by the fact that the means of 

alveolar stops and velar stops are closer to each other when the adjacent vowels are front 

vowels. The velar closures are made at more forward locations in the front vowel context, 

and this results in larger Ahi values, resulting in Av-Ahi values of velar stops closer to 

the ones of alveolar stops. However, the estimated probability of error is 0.42 for the back 

vowel case, which is better than when the vowels are mixed. 
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 number mean SD 
L 1369 18.3 3.2 
A 1233 11.7 4.0 
V 1617 12.3 3.7 

 
F-ratio = 1369.0, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 2178.5 2184.5 
A - 16.71 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 5.9 x 10-5 

 
 

 

Figure 3-4 : Box-and-whiskers plot and statistics of Av-Ahi values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 18.2 3.2 18.4 3.1 0.19 NO 

Alveolar 12.1 3.8 11.3 4.1 0.0005 YES 
Velar 11.9 3.5 12.7 3.9 1.8x10-5 YES 

Table 3-2 : Comparison of the means of Av-Ahi between the front and back vowel cases 

 

3.4.1.2 Ahi-A23 

The box-and-whiskers plots of the values of Ahi-A23 are shown in Figure 3-5. The mean 

of Ahi-A23 of alveolar stops is 2.14 dB, which is, as predicted, higher than the ones of 

the other two places. The IQRs in the labial and alveolar cases do not overlap, although 

both overlap with the one of the velar case. From ANOVA, the P-value obtained is 0, 

which means that it is quite likely that Ahi-A23 values for at least one of the three types 

of stop was sampled from different distributions. The resulting P-values from the pair-

wise analysis are also shown in Figure 3-5 in which all of the P-values are less than 0.01. 

So we can say that the differences in the means of Ahi-A23 for the three types of stop 

consonant are significant. The estimated probability of error based on ML classification 

is 0.44.  
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 number mean SD 
L 1369 -2.4 2.0 
A 1233 2.1 3.1 
V 1617 -1.1 2.9 

 
F-ratio = 963.0, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 1984.1 187.6 
A - 839.2 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-5 : Box-and-whiskers plot and statistics of Ahi-A23 values for the three places of 
articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial -2.7 2.0 -2.1 2.0 1.7x10-8 YES 

Alveolar 2.0 2.9 2.2 2.2 0.44 NO 
Velar -0.7 3.0 -1.5 2.7 1.5x10-8 YES 

Table 3-3 : Comparison of the means of Ahi-A23 between the front and back vowel cases 

 

Table 3-3 compares the means of Ahi-A23 for each place of articulation for the front and 

the back vowel cases. The result shows that the frontness of the adjacent vowel does not 

statistically affect the value of Ahi-A23 for the alveolar case while it does for the other 

two places of articulation. The estimated probability of error based on ML classification 

for the front vowel case is 0.43, better than when the vowels are mixed. However, the 

estimated probability of error is 0.45 for the back vowel case, which is worse than when 

the vowels are mixed. 

3.4.1.3 Av-Amax23 

The box-and-whiskers plots of the values of Av-Amax23 are shown in Figure 3-6. As 

predicted, the mean of Av-Amax23 in the velar case, which is 7.3dB, is lower than the 
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means for the other two cases. Also it is rather well separated from the other two cases, in 

which the mean is 14.0dB and 12.0dB for labial and alveolar stops respectively. From 

ANOVA, the P-values for the overall analysis and the pair-wise analysis are 0 in every 

case, which means that the differences in the means of Av-Amax23 for all of the three 

places of articulation are significant. The estimated probability of error based on ML 

classification is 0.45. 

 

 
 

 number mean SD 
L 1369 14.0 3.8 
A 1233 12.0 3.7 
V 1617 7.3 4.2 

 
F-ratio = 1143.8, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 181.8 2151.9 
A - 964.2 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

Figure 3-6 : Box-and-whiskers plot and statistics of Av-Amax23 values for the three places of 
articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 13.4 3.9 14.5 3.7 8.3x10-8 YES 

Alveolar 12.4 3.8 11.6 3.6 0.0004 YES 
Velar 8.1 3.9 6.4 4.2 1.0x10-15 YES 

Table 3-4 : Comparison of the means of Av-Amax23 between the front and back vowel cases 

 

Table 3-4 compares the means of Av-Amax23 for each place of articulation for the front 

and the back vowel cases. The result shows that the frontness of the adjacent vowel 

statistically affects the value of Ahi-Amax23 for all of the three places of articulation. 

The estimated probability of error based on ML classification for the front vowel case is 

0.50, which is worse than when the vowels are mixed, while the estimated probability of 
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error reduces to 0.40 for the back vowel case, which is better than when the vowels are 

mixed. 

3.4.1.4 Avhi-Ahi 

The box-and-whiskers plots of the values of Avhi-Ahi are shown in Figure 3-7. For this 

attribute, the labial case stands out from the other two cases. Its mean is at 2.0dB, which 

is higher than the means of the other two cases. The mean of –2.4 dB is the same for 

alveolar and velar stops. Thus, Avhi-Ahi is not expected to do well in separation between 

alveolar and velar stops. The overall P-value, which is also shown in Figure 3-7, is 0 

while one of the P-values from the pair-wise test (alveolar-velar) is larger than 0.01. This 

means that the values of Avhi-Ahi are statistically the same for alveolar and velar stops 

and they are different from labial stops, which is consistent with what we have observed 

from the box-and-whiskers plots. The estimated probability of error based on ML 

classification is 0.51. 

 
 

 Number mean SD 
L 1369 2.0 3.9 
A 1233 -2.4 4.9 
V 1617 -2.4 4.1 

 
F-ratio = 485.9, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 658.8 877.4 
A - 0.07 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0.8 

 
 

Figure 3-7 : Box-and-whiskers plot and statistics of Avhi-Ahi values for the three places of 
articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 2.8 4.0 1.3 3.7 1.4x10-13 YES 

Alveolar -1.9 4.8 -2.9 4.9 0.0001 YES 
Velar -2.0 4.1 -2.7 4.2 0.0004 YES 

Table 3-5 : Comparison of the means of Avhi-Ahi between the front and back vowel cases 
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Table 3-5 compares the means of Avhi-Ahi for each place of articulation for the front and 

the back vowel cases. The result shows that the frontness of the adjacent vowel 

statistically affects the value of Avhi-Ahi for all of the three places of articulation. 

However for the front vowel case, the estimated probability of error based on ML 

classification is still 0.51 which is indifferent from the case when the vowels are mixed. 

The estimated probability of error increases to 0.52 for the back vowel case. 

3.4.1.5 Av3-A3 

The box-and-whiskers plots of the values of Av3-A3 are shown in Figure 3-8. For this 

attribute, the data for the velar stops stand out from the other two cases, in which the 

values are the smallest, as predicted. The means for the labial and the alveolar cases are 

3.4dB and 3.1dB, which are close to each other. ANOVA gives the overall P-values of 0, 

which means that at least one of the places of articulation has a mean that is significantly 

different from the others while the pair-wise analysis suggests that only the velar stops 

have Av3-A3 that is significantly different from the other two cases since the pair-wise P-

value is greater than 0.01 for the labial-alveolar case and is 0 for the cases involving velar 

stops. The estimated probability of error based on ML classification is 0.53. 

 

 
 

 Number mean SD 
L 1369 3.4 5.1 
A 1233 3.1 5.2 
V 1617 -1.9 5.1 

 
F-ratio = 508.1, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 1.41 800.1 
A - 674.0 

 
 

 
Pair-wise P-value 

 
 A V 
L 0.24 0 
A - 0 

 
 

 

Figure 3-8 : Box-and-whiskers plot and statistics of Av3-A3 values for the three places of articulation 



 63

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 4.7 4.9 2.2 5.0 0 YES 

Alveolar 3.2 5.3 3.0 5.2 0.5 NO 
Velar -1.1 4.5 -2.8 5.1 2.1x10-11 YES 

Table 3-6 : Comparison of the means of Av3-A3 between the front and back vowel cases 

 

Table 3-6 compares the means of Av3-A3 for each place of articulation for the front and 

the back vowel cases. The result shows that the frontness of the adjacent vowel does not 

statistically affect the value of Av3-A3 for the alveolar case while it does in the other two 

places of articulation. The estimated probabilities of error based on ML classification are 

0.51 and 0.52 for the front and the back vowel cases respectively, which are a little better 

than when the vowels are mixed. 

3.4.1.6 Av2-A2 

The box-and-whiskers plots of the values of Av2-A2 are shown in Figure 3-9. The mean 

of Av2-A2 for the velar stops is -1.3 dB, which is, as predicted, the smallest of the three 

places. The means of the labial and the alveolar cases are close to each other and visually 

observation of the box-and-whiskers plots shows that the IQRs overlap considerably. 

Thus, Av2-A2 is not expected to do as well in discriminating between the labial and the 

alveolar stops as in separating the velar stops from the other two. However, from 

ANOVA, the P-value obtained is 0 and all of the pair-wise analyses give P-values that are 

less than 0.01. So we can say that the differences in mean of Av2-A2 of the three types of 

stop consonant are significant. The estimated probability of error based on ML 

classification is 0.53. 

 

Table 3-7 compares the means of Av2-A2 for each place of articulation for the front and 

the back vowel cases. The result shows that the frontness of the adjacent vowel does not 

statistically affect the value of Av2-A2 for the alveolar case while it does for the other 

two places of articulation. The estimated probability of error based on ML classification 

is 0.54 for the front vowel case, which is worse than when the vowels are mixed. For the 

back vowel case, the probability of error is estimated at 0.52, which is better than when 

the vowels are mixed. 
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 Number mean SD 
L 1369 4.2 5.0 
A 1233 3.6 5.3 
V 1617 -1.3 5.2 

 
F-ratio = 515.7, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 9.6 864.5 
A - 615.9 

 
 

 
Pair-wise P-value 

 
 A V 
L 0.002 0 
A - 0 

 
 

 

Figure 3-9 : Box-and-whiskers plot and statistics of Av2-A2 values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 4.7 4.9 3.8 5.1 0.002 YES 

Alveolar 3.3 5.5 3.9 5.2 0.07 NO 
Velar -0.5 5.1 -2.1 5.1 3.6x10-10 YES 

Table 3-7 : Comparison of the means of Av2-A2 between the front and back vowel cases 

 

3.4.1.7 Ehi-E23 

The box-and-whiskers plots of the values of Ehi-E23 are shown in Figure 3-10. The mean 

of Ehi-E23 for the velar stops is -14.7 dB, which is, as predicted, the smallest of the three 

places. The standard deviation in the labial case is quite small compared to the standard 

deviations of the other two cases but, unfortunately, the majority of the values for the 

labial case also fall into the IQR of the velar case. From the distribution of the Ehi-E23 

values observed from the box-and-whiskers plots, Ehi-E23 should be able to do 

reasonably well in discriminating the three places of articulation. From ANOVA, the 

overall P-value obtained is 0 and all of the pair-wise analyses also give the P-values of 0. 

That means we can say that the differences in mean of Ehi-E23 of the three types of stop 
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consonant are significant. The estimated probability of error based on ML classification 

is 0.34. 

 

 
 

 number mean SD 
L 1359 -3.3 8.2 
A 1230 17.8 27.2 
V 1612 -14.7 26.3 

 
F-ratio = 871.2, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 843.7 290.2 
A - 1211.4 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-10 : Box-and-whiskers plot and statistics of Ehi-E23 values for the three places of 
articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial -4.6 9.5 -2.2 6.6 2.4x10-10 YES 

Alveolar 16.1 22.8 19.6 30.6 0.02 NO 
Velar -8.0 25.5 -21.1 25.2 0 YES 

Table 3-8 : Comparison of the means of Ehi-E23 between the front and back vowel cases 

 

Table 3-8 compares the means of Ehi-E23 for each place of articulation for the front and 

the back vowel cases. The result shows that the frontness of the adjacent vowel does not 

statistically affect the value of Ehi-E23 for the alveolar case while it does in the other two 

places of articulation. For the front vowel case, the estimated probability of error based 

on ML classification is 0.39, which is worse than when the vowels are mixed. However, 

the estimated probability of error is 0.27 for the back vowel case, which is better. 
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3.4.1.8 VOT 

The box-and-whiskers plots of the values of VOT are shown in Figure 3-11. The mean of 

VOT of labial stops is 30.9 ms, which is the shortest among the three places of 

articulation. The mean in the velar case is 47.0 ms, which is the longest, and it is 41.8 ms 

for the alveolar stop consonants. Visual observation of the box-and-whiskers plots shows 

a high degree of overlap among the three places of articulation. Thus, VOT might not be 

able to do well in discriminating the three places of articulation. From ANOVA, the P-

value obtained is 0, which means that even though the differences among the three means 

are small, they are highly likely to be caused from the place effect rather than the error 

within group. The pair-wise analysis showed that all of the P-values are less than 0.01. 

The estimated probability of error based on ML classification is 0.59. 

 

 
 

 number mean SD 
L 920 30.9 25.7 
A 776 41.8 30.8 
V 900 47.0 30.1 

 
F-ratio = 79.8, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 64.5 167.8 
A - 13.13 

 
 

 
Pair-wise P-value 

 
 A V 
L 1.8 x 10-15 0 
A - 0.0003 

 
 

 

Figure 3-11 : Box-and-whiskers plot and statistics of VOT values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 30.1 24.7 31.4 26.7 0.45 NO 

Alveolar 39.1 30.2 45.4 31.3 0.01 YES 
Velar 49.7 29.4 44.8 30.8 0.01 YES 

Table 3-9 : Comparison of the means of VOT between the front and back vowel cases 
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It is widely known that the values of VOT distribute differently between the voiced and 

voiceless stop consonants. Thus, we also constructed the box-and-whiskers plots of the 

values of VOT in the voiced and voiceless cases separately. Figure 3-12 shows the box-

and-whiskers plots and the ANOVA result for the voiced case. As expected, the standard 

deviations of the three places of articulation in this case are noticeably smaller than the 

case where the voiced and voiceless stop consonants are mixed. The box-and-whiskers 

plots show less overlapping among the three places. The relative values of VOT among 

the three places are still the same but they are all shorter than their counterparts in the 

case where the voicings are mixed together. The mean of the labial case, which is 13.4 

ms, is still the smallest among the three, while it is still the largest for the velar case, 

which is 24.1 ms. The mean of 18.1 ms for the alveolar case is again in between the other 

two cases. The ANOVA result shows a zero P-value as well as a bigger F-ratio in this 

case than the mixed voicing case. The pair-wise analysis showed that all of the P-values 

are less than 0.01. The estimated probability of error based on ML classification is 0.57, 

which also shows better separability than the mixed voicing case. 

 

Figure 3-13 shows the box-and-whiskers plots and the ANOVA result of the voiceless 

case. The standard deviations of the three places of articulation in this case are again 

smaller than when the voiced and voiceless stop consonants are mixed. However, they 

are still relatively large compared to their voiced counterparts. As expected, the VOT of 

the voiceless stop consonants are generally longer than their voiced counterparts. The 

overlapping of the box-and-whiskers plots does not improve much, if at all, from the 

mixed voicing case. The differences among the three means are still significant and the 

pair-wise P-values are all under 0.01, but the separability is shown to be poorer than the 

mixed voicing case as shown by the smaller F-value, which is 28.7 compared to 79.8, and 

the worse estimated probability of ML classification error, which is 0.60 compared to 

0.59. 
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 number mean SD 
L 510 13.4 7.1 
A 319 18.1 9.3 
V 386 24.1 15.4 

 
F-ratio = 182.3, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 76.0 381.1 
A - 72.4 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 1.1x10-16 

 
 

Figure 3-12 : Box-and-whiskers plot and statistics of VOT values for ‘b’, ‘d’ and ‘g’ 

 

 
 

 number mean SD 
L 438 51.1 24.9 
A 456 58.3 29.9 
V 513 64.1 27.1 

 
F-ratio = 28.7, P-value = 5.9x10-13 

Pair-wise F-ratio 
 

 A V 
L 15.32 66.5 
A - 11.1 

 
 

 
Pair-wise P-value 

 
 A V 
L 9.7x10-5 1.1x10-15 
A - 0.0009 

 
 

Figure 3-13 : Box-and-whiskers plot and statistics of VOT values for ‘p’, ‘t’ and ‘k’ 

 

Table 3-9 compares the VOT values for the front and back vowel cases when the 

voicings are mixed. First, it shows that, for the labial case, the values of VOT are not 

significantly different whether the vowels are front or back, while they are in the alveolar 

and the velar cases. Considering only the tokens with front vowels, the separation 

between alveolar and velar stops is a little better than when the vowels are mixed. The 
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difference in mean between the two places is larger and both of the standard deviations of 

the two places get smaller when only the tokens with front vowels are considered. This 

does not happen in the back vowel case. 

 

For the voiced tokens, the ML classification error probabilities are 0.44 for the front 

vowel case and 0.50 for the back vowel case. Both show better separability than the case 

where the voicing is mixed. For the voiceless case, the error probabilities are 0.58 for the 

front vowel case and 0.60 for the back vowel case. These error probabilities are better 

than and similar to the ones in the mixed voicing case respectively.  

3.4.1.9 cls_dur 

Figure 3-14 shows the box-and-whiskers plots of the value distributions of cls_dur. The 

cls_dur values of the three places of articulation do not separate well from one another. 

The means are 77.5 ms., 75.2 ms., and 72.3 ms. for labial, alveolar and velar stop 

consonants respectively. The standard deviations for the three cases are quite large 

compared to the difference among the means. The box parts of the labial and the velar 

cases are completely overlapped with the box part of the alveolar case. Thus, cls_dur 

alone should not be expected to do well in separating the three places of articulation. The 

F-ratio is only 5.0. However, the overall P-value is smaller than 0.01, which indicates that 

despite small differences in means, the differences are caused from the place effect rather 

than the error. Also, it was shown from the pair-wise P-values that such differences are 

caused only by the difference between the labial and the velar cases. The estimated 

probability of error based on ML classification is 0.59. 
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 number mean SD 
L 418 77.5 22.7 
A 457 75.2 36.2 
V 712 72.3 27.6 

 
F-ratio = 5.0, P-value = 0.0066 

Pair-wise F-ratio 
 

 A V 
L 1.3 13.8 
A - 2.81 

 
 

 
Pair-wise P-value 

 
 A V 
L 0.3 0.0002 
A - 0.094 

 
 

 

Figure 3-14 : Box-and-whiskers plot and statistics of cls_dur values for the three places of 
articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 76.2 25.4 78.8 20.5 0.22 NO 

Alveolar 76.4 36.7 74.8 35.3 0.65 NO 
Velar 68.4 23.2 76.0 31.1 1.2x10-5 YES 

Table 3-10 : Comparison of the means of cls_dur between the front and back vowel cases 

 

The comparison of the cls_dur value distributions for the front and back vowel cases is 

shown in Table 3-10. The P-values in Table 3-10 suggest that only the distribution of 

cls_dur value in the velar case changes when the information about the frontness is 

known. In the other two cases, the mean differences between the front and back vowel 

cases are not significant. The result shows shorter cls_dur values in the front vowel case. 

They also contain less variation than the back vowel and the mixed vowel cases. The ML 

classification errors are 0.58 for both the front and the back vowel contexts. 

3.4.1.10 F1o 

Figure 3-15 shows the box-and-whiskers plots of the distributions of F1o. As predicted, 

F1o is the highest for labial stop consonants and the lowest for velar stop consonants. 

However, the F1o values of the three places of articulation do not separate well from one 
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another. The mean of F1o for the labial case is just slightly higher than the other two 

cases, while, for the velar case, it is not much lower than the other two. The box parts of 

the three groups overlap significantly. The means for the three places are 484.2 Hz, 461.9 

Hz, and 444.7 Hz for labial, alveolar and velar stop consonants respectively. The F-ratio 

is low. Thus, F1o is another acoustic attribute that should not separate the three places of 

articulation well. The estimated probability of error based on ML classification is 0.62. 

However, the pair-wise test shows that all of the P-values that are less than 0.01. That 

means that, despite the small magnitude of the difference, this different is highly likely to 

be caused from the place effect.  

. 

 
 

 number mean SD 
L 1666 484.2 161.1 
A 1720 461.9 141.9 
V 1760 444.7 157.0 

 
F-ratio = 28.7, P-value = 3.9 x 10-13 

Pair-wise F-ratio 
 

 A V 
L 18.7 53.6 
A - 11.4 

 
 

 
Pair-wise P-value 

 
 A V 
L 1.6x10-5 3.0x10-13 
A - 0.0008 

 
 

 

Figure 3-15 : Box-and-whiskers plot and statistics of F1o values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 459.8 162.9 504.7 156.8 7.82x10-9 YES 

Alveolar 438.6 130.0 487.1 152.2 4.54x10-12 YES 
Velar 414.9 145.4 474.6 163.3 1.22x10-15 YES 

Table 3-11 : Comparison of the means of F1o between the front and back vowel cases 

 

Table 3-11 compares the F1o values for the front and back vowel cases. It shows that the 

mean values of F1o are significantly different between the two cases for all of the three 

places of articulation. Across all of the three places, F1o for the front vowel case is 
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generally lower than for the back vowel case. Alveolar and velar stop consonants exhibit 

less variation in the front vowel case than in the back vowel case, while the F1o variation 

of labial stop consonants is rather similar for both the front and the back vowel cases. The 

ML classification error for the front vowel case is 0.61, which is lower than the one for 

the back vowel case, which is 0.64. 

3.4.1.11 F2o 

Figure 3-16 shows the box-and-whiskers plots of the distributions of F2o. As predicted, 

F2o of the labial case is the lowest among the three cases. The standard deviation for the 

velar case is 551.0 Hz, which is rather large compared to the standard deviations for the 

labial and alveolar cases, which are 446.8 Hz and 354.6 Hz respectively. As mentioned 

earlier, F2o values of velar stops are expected to be quite dependent on the frontness of 

the adjacent vowel. Thus, this large variation when all of the vowels are mixed should be 

expected. Despite this, the P-Value obtained from ANOVA is zero, which indicates that 

the mean difference results from the place effect even when the vowels are mixed. Also, 

all of the pair-wise P-values are smaller than 0.01 and the estimated probability of error 

based on ML classification is 0.51. 

 

 
 

 number mean SD 
L 1667 1445.8 446.8 
A 1718 1780.8 354.6 
V 1760 1837.6 551.0 

 
F-ratio = 360.8, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 585.7 519.4 
A - 12.98 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0.0003 

 
 

 

Figure 3-16 : Box-and-whiskers plot and statistics of F2o values for the three places of articulation 
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Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 1778.9 364.9 1132.8 252.0 0 YES 

Alveolar 1967.6 328.3 1593.1 275.7 0 YES 
Velar 2270.0 367.6 1416.2 349.7 0 YES 

Table 3-12 : Comparison of the means of F2o between the front and back vowel cases 

 

 

Table 3-12 compares the F2o values for the front and back vowel cases. The P-values 

show that the F2o value distributions are different for front and back vowel contexts for 

all three places of articulation. As one should expect, the means of F2o value are higher 

for the front vowel cases than the back vowels cases for all three places. The means of 

F2o value for labial stop consonants are still the lowest among the three places regardless 

of the vowel frontness. Also, velar stop consonants have mean F2o values that are higher 

than for alveolar stop consonants in the front vowel case but lower in the back vowel 

case. All of the standard variations are reduced when the frontness of the vowels is taken 

into account. This reduction in the variation leads to better separability. The estimated 

probability of error based on ML classification is 0.49 for the front vowel case, and it is 

0.47 for the back vowel case. Both are lower than the probability of error in the case 

where the vowels are mixed. This is a good indication of how the place of articulation 

classification can benefit from the information about the frontness of the adjacent vowels. 

The box-and-whiskers plots for the F2o value distributions for the front and the back 

vowel cases are shown in Figure 3-17 and Figure 3-18 respectively. 
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 number Mean SD 
L 799 1771.2 369.7 
A 897 1947.9 336.5 
V 885 2257.9 374.5 

 
F-ratio = 420.7, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 106.2 779.8 
A - 368.2 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-17 : Box-and-whiskers plot and statistics of F2o values where the vowels are front vowels 
for the three places of articulation 

 

 

 
 

 number Mean SD 
L 886 1142.8 265.2 
A 821 1598.2 275.1 
V 870 1418.8 351.8 

 
F-ratio = 503.3, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 1242.5 349.5 
A - 135.4 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-18 : Box-and-whiskers plot and statistics of F2o values where the vowels are back vowels for 
the three places of articulation 
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3.4.1.12 F2b 

Figure 3-19 shows the box-and-whiskers plots of the distributions of F2b. Similar to F2o, 

F2b for the labial case is the lowest among the three cases as predicted. The means of F2b 

for the three places of articulation are slightly higher than the ones for F2o. Compared to 

F2o, the distributions of F2b in all three places of articulation contain larger standard 

deviations. Thus, we expect F2b to be worse than F2o in separating the three places of 

articulation. Nevertheless, the P-value from ANOVA is zero, which means that the mean 

difference is the result of the place effect rather that the error. However, the pair-wise test 

shows that not all of the pair-wise P-values are small enough to be significant. The P-

value between alveolar and velar stop consonants is 0.116 which is larger than 0.01. This 

indicates that the mean values of F2b in the alveolar and the velar cases are not 

significantly different. The difference observed is likely to be due to the error. The 

estimated probability of error based on ML classification is 0.51. 

 

 
 

 number mean SD 
L 1366 1460.9 708.7 
A 1225 1856.7 428.7 
V 1613 1887.7 861.4 

 
F-ratio = 292.2, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 482.7 416.0 
A - 2.47 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0.116 

 
 

 

Figure 3-19 : Box-and-whiskers plot and statistics of F2b values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 1755.6 825.2 1192.9 430.2 0 YES 

Alveolar 1979.0 445.6 1753.7 385.9 0 YES 
Velar 2237.4 570.0 1555.8 948.7 0 YES 

Table 3-13 : Comparison of the means of F2b between the front and back vowel cases 
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Table 3-13 compares the F2b values for the front and back vowel cases. Similar to the 

F2o case, the P-values show that the F2b value distributions are different for both of the 

cases for all three places of articulation. Again, as one should expect, the means of F2b 

value are higher for the front vowel contexts than the back vowel contexts for all three 

places. The means of F2b value for labial stop consonants are still the lowest among the 

three places regardless of the vowel frontness. Velar stop consonants have mean F2o 

values that are higher than for alveolar stop consonants in the front vowel case but lower 

in the back vowel case. Unlike F2o, not all of the standard variations of F2b are reduced 

when the frontness of the vowels are taken into account. The estimated probability of 

error based on ML classification is 0.52 for the front vowel case, which is worse than the 

error in the case where the vowels are mixed. It is 0.42 for the back vowel case, which is 

noticeably better than 0.51 in the cases where the vowels are mixed. 

3.4.1.13 F3o 

Figure 3-20 shows the box-and-whiskers plots of the distributions of F3o. We can 

observe that the F3o values of the three places of articulation do not separate well from 

one another. The mean of F3o for the alveolar case is just slightly higher than the other 

two cases. The distributions of the labial and the velar cases overlap each other and their 

means are close to each other. The means for the three places are 2560 Hz, 2760 Hz, and 

2590 Hz for labial, alveolar and velar stop consonants respectively. The estimated 

probability of error based on ML classification is 0.56. The pair-wise test gives the P-

values that are all less than 0.01. That means that, despite the small magnitude of the 

difference, this different is highly likely to be caused from the place effect. 
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 number mean SD 
L 1659 2555.9 287.9 
A 1718 2762.2 282.1 
V 1758 2592.0 349.4 

 
F-ratio = 224.5, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 462.4 11.32 
A - 252.2 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0.0008 
A - 0 

 
 

 

Figure 3-20 : Box-and-whiskers plot and statistics of F3o values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 2599.5 303.5 2515.6 265.2 4.3x10-10 YES 

Alveolar 2844.5 254.2 2672.2 283.7 0 YES 
Velar 2769.6 333.6 2411.4 258.6 0 YES 

Table 3-14 : Comparison of the means of F3o between the front and back vowel cases 

 

Table 3-14 compares the F3o values for the front and back vowel cases. It shows that the 

mean values of F3o are significantly different between the two cases for all three places 

of articulation. Across all three places, F3o for the front vowel case is generally higher 

than for the back vowel case. Labial and velar stop consonants exhibit more variation in 

the front vowel case than in the back vowel case, while the F3o variation of alveolar stop 

consonants is smaller for both the front vowel case than the back vowel case. The ML 

classification error for both of the cases is 0.54, which is lower than the one when the 

vowels are mixed. 

3.4.1.14 F3b 

Figure 3-21 shows the box-and-whiskers plots of the distributions of F3b. Similar to F3o, 

we can observe that the F3b values of the three places of articulation do not separate well 

from one another. The mean of F3b for the alveolar case is just slightly higher than the 
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other two cases. The value distributions of the labial and the velar cases overlap each 

other a lot and their means are close to each other. The means for the three places are 

2540 Hz, 2830 Hz, and 2630 Hz for labial, alveolar and velar stop consonants 

respectively. The estimated probability of error based on ML classification is 0.56, which 

is the same as the one in the F3o case. The overall F-ratio is slightly lower than the F-

ratio in the F3o case. The pair-wise test gives the P-values that are all less than 0.01. That 

means that, despite its small magnitude, this difference is highly likely to be caused from 

the place effect. 

 

 
 

 number mean SD 
L 1358 2542.7 581.2 
A 1222 2832.8 356.9 
V 1608 2633.7 512.1 

 
F-ratio = 192.4, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 473.3 36.5 
A - 179.2 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 1.7x10-9 
A - 0 

 
 

 

Figure 3-21 : Box-and-whiskers plot and statistics of F3b values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 2572.9 638.7 2512.1 531.0 0.002 YES 

Alveolar 2879.5 399.4 2798.8 315.3 9.33x10-6 YES 
Velar 2840.1 413.6 2437.0 524.8 0 YES 

Table 3-15 : Comparison of the means of F3b between the front and back vowel cases 

 

Table 3-15 compares the F3b values for the front and back vowel cases. It shows that the 

mean values of F3b are significantly different between the two cases for all three places 

of articulation. Across all of the three places, F3b for the front vowel case is generally 

higher than for the back vowel case, just like F3o. Labial and alveolar stop consonants 

F3b 
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exhibit more variation in the front vowel case than in the back vowel case, while the 

opposite is true for the velar stop consonants. The ML classification error for the front 

vowel case is 0.57 and 0.54 for the back vowel case. Only for the latter case is the error 

better than when the vowels are mixed. 

3.4.1.15 dF2 

Figure 3-22 shows the box-and-whiskers plots of the dF2 distributions regardless of the 

frontness of the adjacent vowels. Despite the mixing of front and back vowels, the plots 

show reasonable separability among the three places of articulations. The F-ratio is high 

and the overall P-value, as well as all of the pair-wise P-values, is zero, indicating that the 

mean differences among all groups are due to the place effect rather than the error within 

group. And, as expected, most of the time dF2 values for labial stop consonants are 

negative, which means that the second formant frequency goes up as we move toward the 

middle of the vowel. The means of dF2 value for the three places of articulation are 

significantly different between the front and the back vowel cases as shown in Table 3-16 

and in the box-and-whiskers plots in Figure 3-23 and Figure 3-24. In both the front and 

the back vowel cases, labial stop consonants have dF2 values that are large negative 

numbers. The dF2 mean is more negative for the front vowel case, indicating the larger 

frequency interval that the second formant frequency needs to climb. For alveolar stop 

consonants, dF2 mean is a small negative number for the front vowel case, while it is 

positive for the back vowel case. The second formant frequencies in the velar case tend to 

go down as they move from the stop consonant into the vowel. This is reflected in the 

positive dF2 means for both the front and back vowel cases. The second formant 

frequencies do not move as much for the front vowel case as they do in the back vowel 

case. Despite the higher standard deviations for all three places in front vowel contexts, 

the value distribution of velar stop consonants is well separated from the other two cases 

due to the large mean difference. However, this is not the case for the back vowel 

context, in which the three places do not seem to be separated as well as for the front 

vowel context. The estimated probability of error based on ML classification is 0.35 for 

the front vowel case, which can be considered to be rather good, compared to 0.44 for the 
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mixed vowel case. The probability of error for the back vowel case is 0.45, which is close 

to the mixed vowel case. 

 

 

 

 

 
 

 number mean SD 
L 1664 -149.7 183.1 
A 1718 27.5 135.1 
V 1758 94.6 111.1 

 
F-ratio = 1354.1, P-value = 0 

 

Pair-wise F-ratio 
 

 A V 
L 1096.2 2448.8 
A - 261.5 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

Figure 3-22 : Box-and-whiskers plot and statistics of dF2 values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial -206.4 218.7 -101.0 123.9 0 YES 

Alveolar -47.3 108.6 117.4 102.1 0 YES 
Velar 106.9 113.0 82.8 107.9 3.29x10-6 YES 

Table 3-16 : Comparison of the means of dF2 between the front and back vowel cases 
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 number mean SD 
L 798 -205.4 217.7 
A 896 -44.5 110.0 
V 890 106.2 113.1 

 
F-ratio = 929.2, P-value = 0 

 

Pair-wise F-ratio 
 

 A V 
L 407.44 1489.5 
A - 827.0 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

Figure 3-23 : Box-and-whiskers plot and statistics of dF2 values where the vowels are front vowels 
for the three places of articulation 

 

 
 

 number mean SD 
L 868 -100.9 123.8 
A 821 105.5 115.4 
V 868 82.7 107.7 

 
F-ratio = 842.1, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 1251.6 1134.8 
A - 18.39 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 1.9x10-5 

 
 

 

Figure 3-24 : Box-and-whiskers plot and statistics of dF2 values where the vowels are back vowels for 
the three places of articulation 



 82

3.4.1.16 dF2b 

Figure 3-25 shows the box-and-whiskers plots of the dF2b distributions regardless of the 

frontness of the adjacent vowels. Visually, dF2b does not show as much separability as 

dF2. The means of dF2b are close to the means of dF2 in all of the places of articulation, 

but the standard deviations in dF2b are a lot larger than the ones in dF2. Despite that, the 

overall P-value, as well as all of the pair-wise P-values, is less than 0.01, indicating that 

the mean differences among all groups are due to the place effect rather than the error 

within group, just as in the dF2 case. Also, as expected, most of the time dF2 values for 

labial stop consonants are negative. The means of dF2 for labial and alveolar stop 

consonants are significantly different between the front and the back vowel cases, but not 

for the velar case, as shown in Table 3-17. Although the mean values of dF2b for velar 

stop consonants for the front and the back vowel cases follow the same trend as we 

observed when the vowel with different frontness are separated in the dF2 case, the 

difference between these means are more likely to come from the within group error. For 

labial stop consonants, in both the front and the back vowel cases, the means of dF2b are 

large negative numbers similar to dF2. The dF2b mean is more negative for the front 

vowel case. For alveolar stop consonants, the dF2b mean is a small negative number for 

the front vowel case, while it is positive for the back vowel case. The estimated 

probability of error based on ML classification when the vowels are mixed is 0.53, while 

it is just 0.48 for the front vowel case. Similar to the dF2 case, this is due to the fact that 

dF2b of velars stands out from dF2b of the other two places for front vowel. However, 

the error probability is 0.55 for the back vowel case.  
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 number mean SD 
L 1358 -140.4 368.3 
A 1225 44.3 220.9 
V 1605 91.4 250.1 

 
F-ratio = 486.8, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 444.4 854.3 
A - 43.1 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 6.3x10-11 

 
 

 

Figure 3-25 : Box-and-whiskers plot and statistics of dF2b values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial -207.1 426.1 -82.6 297.0 0 YES 

Alveolar -8.1 217.1 99.2 217.9 0 YES 
Velar 100.1 225.8 85.7 272.1 0.13 NO 

Table 3-17 : Comparison of the means of dF2b between the front and back vowel cases 

 

3.4.1.17 dF3 

Figure 3-26 shows the box-and-whiskers plots of the dF3 distributions. Alveolar stop 

consonants can be separated well from the labial stop consonants for this measure. Their 

box parts of the plots, each of which is corresponding to half of the total samples 

belonging to that place, do not overlap. The majority of dF3 values for labial stop 

consonants are negative, which means that most of the time the third formant frequencies 

increase when they move from labial stop consonants to the adjacent vowels. The dF3 

mean for labial stop consonants is a large negative number. The mean for the velar case is 

slightly more than the labial case. The mean for the alveolar case is the highest, yet still it 

is a negative number. However, from the distribution, the upward and downward 

movements are mixed more equally in the alveolar case, and the corresponding mean 

value is close to zero. The overall P-value and all of the pair-wise P-values are zeros, 

dF2b 
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indicating that the difference in the dF3 means of the three places of articulation is due to 

the place effect. The estimated probability of error based on ML classification is 0.52. 

 

 
 

 number mean SD 
L 1663 -145.0 149.1 
A 1718 -4.9 111.9 
V 1757 -71.1 129.8 

 
F-ratio = 495.2, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 975.2 247.2 
A - 263.9 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-26 : Box-and-whiskers plot and statistics of dF3 values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial -182.0 165.4 -111.1 123.4 0 YES 

Alveolar -27.9 110.1 21.5 108.4 0 YES 
Velar -40.6 130.7 -102.4 121.2 0 YES 

Table 3-18 : Comparison of the means of dF3 between the front and back vowel cases 

 

Table 3-18 shows the comparison between dF3 values in the front and the back vowel 

cases. All of the P-values are zeros, indicating that the frontness of the vowels affects the 

dF3 value distribution for all three places of articulation. Regardless of the vowels, labial 

stop consonants show large negative means. The dF3 mean in the front vowel case for 

alveolar stop consonant shows a small upward movement into the adjacent vowels, while 

the mean for the back vowel case shows a small downward movement. For velar stop 

consonants, the mean values of dF3 show a larger upward movement into the back 

vowels than the upward movement into the front vowels. The probability of error based 

on ML classification is 0.51 for the front vowel case and 0.52 for the back vowel case.     
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3.4.1.18 dF3b 

Figure 3-27 shows the box-and-whiskers plots of the dF3b distributions. Alveolar stop 

consonants can be separated well from the labial stop consonants, as in the dF3 case. 

Their box parts of the plots, each of which is corresponding to half of the total samples 

belonging to that place, do not overlap. However, the standard deviations of the three 

places of articulation are larger for dF3b than for dF3. We can also observe a large 

number of data points that lie outside the value ranges of their whiskers. The means of 

dF3b are close to the means of dF3 with the corresponding places, except for that the 

mean for alveolar stop consonants show a small downward movement instead of a small 

upward one. The overall P-value and all of the pair-wise P-values are zeros, indicating 

that the difference in the dF3b means of the three places of articulation is due to the place 

effect. The estimated probability of error based on ML classification is 0.52. 

 

 
 

 number mean SD 
L 1359 -140.7 432.7 
A 1222 37.3 195.4 
V 1600 -50.8 280.8 

 
F-ratio = 227.1, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 414.0 114.8 
A - 158.5 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-27: Box-and-whiskers plot and statistics of dF3b values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial -165.6 393.5 -120.2 470.3 0.002 YES 

Alveolar 4.2 212.3 69.6 176.1 1.01x10-10 YES 
Velar -21.9 275.2 -78.3 282.6 7.46x10-9 YES 

Table 3-19 : Comparison of the means of dF3b between the front and back vowel cases 
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Table 3-19 shows the comparison between dF3b values in the front and the back vowel 

cases. All of the P-values are zero, indicating that the frontness of the vowels affects the 

dF3b value distribution for all three places of articulation. Regardless of the vowels, 

labial stop consonants show large negative means, while small positive values are shown 

for the alveolar case. For velar stop consonants, the mean values of dF3b show a larger 

downward movement into the back vowels than the downward movement into the front 

vowels, as in the dF3 case. The probability of error based on ML classification is 0.55 for 

the front vowel case and 0.48 for the back vowel case. The former is worse than the case 

where the vowels are mixed, while the latter is better.    

3.4.1.19 F3o-F2o 

Figure 3-28 shows the box-and-whiskers plots of the F3o-F2o distributions. As expected, 

on average, F3o-F2o is the smallest for the velar case. The average space between the 

second and third formant frequencies at the voicing onset or offset of the adjacent vowels 

is 753 Hz. The mean of F3o-F2o is the largest for the labial case, which is 1110 Hz, while 

it is 980 Hz for the alveolar case. The IQR of F3o-F2o in the alveolar case is in the range 

of the IQR of F3o-F2o in the labial case completely. For the velar case, its IQR overlaps 

partially with the IQR in the labial case. The overall P-value and all of the pair-wise P-

values are zeros, indicating that the difference in the F3o-F2o means of the three places 

of articulation is due to the place effect. The estimated probability of error based on ML 

classification is 0.51. 

 

Table 3-20 shows the comparison between F3o-F2o values in the front and the back 

vowel cases. All of the P-values are zero, indicating that the frontness of the vowels 

affects the F3o-F2o value distribution for all three places of articulation. In general, the 

gap between the second and the third formant frequencies is smaller in the front vowel 

case than in the back vowel case. For both the front vowel and the back vowel cases, the 

standard deviations are smaller than when the vowels are mixed, except for alveolar stop 

consonants in the back vowel case, where the standard deviation is slightly higher. The 

probability of error based on ML classification is 0.49 for the front vowel case, which is 
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better than the one in the case where the vowels are mixed. It is 0.51 for the back vowel 

case, which is similar to the case where the vowels are mixed.   

 

 
 

 Number mean SD 
L 1664 1107.5 393.7 
A 1717 980.3 295.9 
V 1759 752.8 429.0 

 
F-ratio = 391.5, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 114.0 633.1 
A - 332.0 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-28 : Box-and-whiskers plot and statistics of F3o-F2o values for the three places of 
articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 816.9 241.3 1373.6 318.7 0 YES 

Alveolar 885.6 246.7 1076.8 311.0 0 YES 
Velar 506.3 324.2 989.5 393.0 0 YES 

Table 3-20 : Comparison of the means of F3o-F2o between the front and back vowel cases 

 

3.4.1.20 F3b-F2b 

Figure 3-29 shows the box-and-whiskers plots of the F3b-F2b distributions. Again, as 

expected, the mean of F3b-F2b is the smallest for the velar case. However, similar to 

what we have found for the acoustic attributes that are measured at the release burst 

compared to its counterpart at the voicing onset or offset so far, the standard deviations of 

F3b-F2b are larger than the ones of F3o-F2o for all of the places of articulation. The 

means of F3b-F2b are slightly smaller than F3o-F2o. ANOVA shows that the difference 

in means among the three places of articulation is significant. The pair-wise test also 
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gives the significant results for every pair of the places of articulation. The F-ratio for 

F3b-F2b is smaller than F3o-F2o. The estimated probability of error based on ML 

classification is 0.55, which is worse than F3o-F2o. 

 

 
 

 Number mean SD 
L 1358 1092.5 708.3 
A 1225 969.9 454.7 
V 1610 743.3 745.7 

 
F-ratio = 191.11, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 50.7 310.5 
A - 143.8 

 
 

 
Pair-wise P-value 

 
 A V 
L 1.4x10-12 0 
A - 0 

 
 

 

Figure 3-29 : Box-and-whiskers plot and statistics of F3b-F2b values for the three places of 
articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 827.0 675.9 1335.0 645 0 YES 

Alveolar 887.9 458.7 1044.0 448.5 4.08x10-13 YES 
Velar 595.8 507.2 893.4 894.1 0 YES 

Table 3-21 : Comparison of the means of F3b-F2b between the front and back vowel cases 

 

Table 3-21 shows the comparison between F3b-F2b values in the front and the back 

vowel cases. ANOVA shows that, for all of the places of articulation, the means of F3b-

F2b are significantly different between the front and the back vowel cases. Similar to 

F3o-F2o, the gap between the second and the third formant frequencies at the release 

burst is generally smaller in the front vowel case than in the back vowel case. For labial 

stop consonants, the standard deviations in both the front and the back vowel cases are 

smaller than the ones in the case where the vowels are mixed. For alveolar stop 

consonants, the standard deviations for both the front and the back vowel cases are rather 
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similar and they are also rather similar to the ones in the case where the vowels are 

mixed. For velar stop consonants, the front vowel case shows a smaller standard 

deviation than the one in the case where the vowels are mixed, while it is larger for the 

back vowel case. The probability of error based on ML classification is 0.56 for the front 

vowel case, which is slightly worse than the one in the case where the vowels are mixed. 

And, it is 0.52 for the back vowel case, which is better.  

3.4.1.21 cgF10a 

The box-and-whiskers plots of the values of cgF10a are shown in Figure 3-30. As 

predicted, the mean value for cgF10a is the highest for alveolar stops at 2700Hz, 

followed by the mean value of velar stops at 1730Hz. Labial stops have the lowest mean 

for cgF10a at 665Hz. From the box-and-whiskers plots, we can observe that cgF10a for 

the labial case is well separated from the other two cases and the labial case also shows a 

smaller standard deviation. Although there are some overlaps between the IQRs of the 

alveolar and the velar cases, the means for the two cases are rather far apart. This 

attribute should be able to perform well in classifying the place of articulation. From 

ANOVA, the overall P-value obtained is 0 as well as all of the pair-wise P-values. This 

indicates that the differences in means of cgF10a for the three places of articulation are 

statistically significant. The estimated probability of error based on ML classification is 

0.30. 

 

Table 3-22 compares the means of cgF10a for each place of articulation between the front 

and the back vowel cases. The result shows that the frontness of the adjacent vowel does 

not statistically affect the value of cgF10a for the alveolar case while it does in the other 

two places of articulation. The difference between the means of cgF10a for velar stops in 

the front and the back vowel cases are quite large. From this finding, one could expect 

that the estimate of a probability of error would be different if we know the information 

of the frontness of the vowel. In the front vowel case, the means of cgF10a for the velar 

and alveolar stops lie closer to each other than when the vowels are mixed, while the 

cgF10a values for labials does not overlap with the other two types of stop significantly 

regardless of frontness information. This results in the larger degree of overlapping 
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among the distributions of the three places. On the contrary, the degree of overlapping is 

smaller in the back vowel case where the mean of cgF10a for alveolars moves up and the 

one for the velar case moves down. The standard deviations in the front vowel case are 

bigger than when we do not use the frontness information, while in the back vowel case, 

it is smaller. This leads to the increase in the estimated probability of error based on ML 

classification for the front vowel case, which is 0.39, and the reduction to 0.22 in the back 

vowel case, which is the smallest estimated probability of error among the attributes 

studied so far. 

 

 
 

 number mean SD 
L 946 665.1 372.4 
A 775 2704.8 1345.4 
V 901 1726.1 711.0 

 
F-ratio = 1188.3, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 2015.9 1695.2 
A - 360.0 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-30: Box-and-whiskers plot and statistics of cgF10a values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 737.1 429.7 604.8 290.9 6.9x10-9 YES 

Alveolar 2571.8 1469.0 2800.0 1242.5 0.02 NO 
Velar 2099.3 761.0 1371.1 428.9 0 YES 

Table 3-22: Comparison of the means of cgF10a between the front and back vowel cases 

 

3.4.1.22 cgF20a 

The box-and-whiskers plots of the values of cgF20a are shown in Figure 3-31. The 

distribution of cgF20a for the three places of articulation looks similar to the one of 
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cgF10a. The differences among the means of cgF20a for the three places are statistically 

significant. Compared to cgF10a, cgF20a contains more variation in its values, as 

observed from the larger standard deviations, resulting in a larger overlapping among the 

values of the three places. The estimated probability of error based on ML classification 

is 0.31. 

 

 
 

 number mean SD 
L 949 765.1 451.0 
A 775 2986.0 1444.3 
V 901 1643.4 749.7 

 
F-ratio = 1200.7, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 2011.8 951.5 
A - 593.0 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

Figure 3-31: Box-and-whiskers plot and statistics of cgF20a values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 879.7 524.4 660.0 333.4 2.6x10-14 YES 

Alveolar 2932.6 1602.5 3024.2 1320.3 0.38 NO 
Velar 2085.0 790.1 1229.2 386.9 0 YES 

Table 3-23: Comparison of the means of cgF20a between the front and back vowel cases 

 

Table 3-23 compares the means of cgF20a for each place of articulation between the front 

and the back vowel cases. The result shows that the frontness of the adjacent vowel does 

not statistically affect the value of cgF20a for the alveolar case while it does for the other 

two places of articulation. The finding is similar to cgF10a. The standard deviations in 

the front vowel case are larger than when we do not use the frontness information while 

in the back vowel case, it is smaller. The means of the alveolar stops and the velar stops 

are closer to each other in the front vowel context than in the case the vowels are mixed, 

while for the back vowel context, the means are further apart. This results in the 
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estimated probability of error of 0.33 for the front vowel case and 0.22 for the back vowel 

case. 

3.4.1.23 cgFa 

The box-and-whiskers plots of the values of cgFa are shown in Figure 3-32. The 

distribution of cgFa for the three places of articulation looks similar to the ones of cgF10a 

and cgF20a. The differences among the means of cgFa of the three places are statistically 

significant and the pair-wise P-values are all zero. The F-ratio of cgFa is 891.7, which is 

smaller than for cgF10a and cgF20a. The estimated probability of error based on ML 

classification is 0.36, which is worse than for cgF10a and cgF20a. The two separability 

quantifiers show that cgFa should not be as good as cgF10a and cgF20a in separating the 

three places of articulation. 

 

 
 

 Number mean SD 
L 947 765.2 484.8 
A 775 2422.0 1187.3 
V 901 1765.4 740.1 

 
F-ratio = 891.7, P-value = 0 

Pair-wise F-ratio 
 

 A V 
L 1569.5 1246.8 
A - 189.8 

 
 

 
Pair-wise P-value 

 
 A V 
L 0 0 
A - 0 

 
 

 

Figure 3-32: Box-and-whiskers plot and statistics of cgFa values for the three places of articulation 

 
Front Vowel Back Vowel  

Mean SD Mean SD 
P Significant 

Mean Diff. 
Labial 821.1 543.8 711.7 411.0 0.0002 YES 

Alveolar 2301.4 1267.7 2508.3 1119.9 0.02 NO 
Velar 2134.6 790.6 1412.8 477.9 0 YES 

Table 3-24: Comparison of the means of cgFa between the front and back vowel cases 
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Table 3-24 compares the means of cgFa for each place of articulation for the front and the 

back vowel cases. The result shows that the frontness of the adjacent vowel does not 

statistically affect the value of cgFa for alveolars while it does for the other two places of 

articulation. The finding is similar to that for cgF10a and cgF20a. The standard 

deviations for the front vowel case are bigger than when we do not use the frontness 

information, while for back vowel context, it is smaller, especially for velars. The means 

of the alveolar stops and the velar stops are closer to each other in the front vowel case 

than in the case where the vowels are mixed, while for back vowels, the means are further 

apart. The labial stop consonants are well separated from the other two, as they are in the 

cgF10a and cgF20a cases. This results in the estimated probability of error of 0.39 for 

front vowel context and 0.29 for the back vowel context. 

3.4.2 Comparison of Each Acoustic Attribute’s Discriminating 

Property  

Although it has been shown by the significance test of the mean difference that all of the 

acoustic attributes introduced in this chapter contain some level of ability to separate the 

three places of articulation, we would like to evaluate the relative ability of each of the 

acoustic attributes to separate the three places. As mentioned, the F-ratio for each of the 

acoustic attributes is the ratio between the amount of the variation that appear in the 

values of that acoustic attribute that is caused by the place effect to the amount of the 

variation caused by the within-place error. Therefore, an acoustic attribute that can be 

used to separate among the three places of articulation well should have a high F-ratio, 

which means that the place effect is much larger than the within-place error, while an 

acoustic attribute with a small F-ratio should not be able to do well. Thus, F-ratio is used 

here as one measure to compare the discriminating property of each acoustic attribute. 

Another quantity that is used for such a comparison is the estimated maximum likelihood 

classification error probability. Obviously, a small error probability shows good 

separability, while a big one shows poor separability. 

 

Table 3-25 and Table 3-26 summarize the F-ratios, normalized by the number of data 

points used for each acoustic attribute, as mentioned in section 3.4, and the maximum 



 94

likelihood classification error probabilities of every acoustic attribute. The normalized F-

ratios in Table 3-25 are sorted in descending order, while the error probabilities in Table 

3-26 are sorted in ascending order. Both quantifiers agree on the acoustic attributes that 

do not separate the three places of articulation well. The bottom six acoustic attributes in 

both tables include cls_dur, VOT, F1o, F3b-F2b, F3o, and F3b. In general, the acoustic 

attributes that are used for capturing the spectral shape of the release burst are closer to 

the top of both tables than the acoustic attributes that are used to capture the formant 

structure around the stop consonants and the temporal acoustic attributes. The bottom six 

acoustic attributes consist of only the formant-related acoustic attributes and both of the 

temporal cues. In both tables, dF2 is the only formant-related acoustic attribute that has a 

high normalized F-ratio and a low error probability. The acoustic attributes that show 

good separability in both tables include cgF10a, cgF20a, cgFa, Av-Ahi, Ahi-A23, Av-

Amax23, and dF2. These acoustic attributes include all of the ones that describe the 

energy distribution in the time interval between the release burst and the voicing onset of 

the following vowel, as well as all of the ones that describe the spectral shape of the 

release burst in relation to the vowel amplitude at the first formant frequency. The 

acoustic attributes that describe the spectral amplitude in certain frequency ranges 

relative to the vowel amplitude in the same frequency ranges, which are Avhi-Ahi, Av3-

A3, and Av2-A2, do not provide as good discriminating property as the other burst-

related acoustic attributes. 

 

However, in order for the F-ratio to represent the separability among the three groups 

well, the standard deviations of the three groups should be rather similar. Although, it 

was shown in [Lindman, 1974] that the F-ratio was quite robust to the difference of the 

group standard deviations, it is worth noting that some of the acoustic attributes have 

large differences in the standard deviations among the three places, as shown in the 

associated results in section 3.4.1. These acoustic attributes include cgF10a, cgF20a, 

cgFa, and Ehi-E23. For these acoustic attributes, it might be more appropriate to 

determine their abilities to separate the three places by the ML classification error 

probabilities. Although for the first three attributes, the trends of both the F-ratios and the 

ML classification errors are consistent, Ehi-E23 shows a very low classification error 
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probability while it does not contain a very high F-ratio in comparison to other acoustic 

attributes that also show low classification error probabilities. 

 
Acoustic Attribute Name Normalized F-ratio 

cgF20a 0.46 
cgF10a 0.45 
CgFa 0.34 
Av-Ahi 0.32 

Av-Amax23 0.27 
dF2 0.24 

Ahi-A23 0.23 
Ehi-E23 0.21 
Av2-A2 0.12 
Av3-A3 0.12 
dF2b 0.12 

Avhi_Ahi 0.12 
dF3 0.10 

F3o-F2o 0.08 
F2o 0.07 
F2b 0.07 

dF3b 0.05 
F3b 0.05 

F3b-F2b 0.05 
F3o 0.04 
vot 0.03 
F1o 0.01 

Cls_dur 0.00 

Table 3-25: normalized F-ratios of every acoustic attribute, sorted in descending order 

 
Acoustic Attribute Name ML Classification Error 

cgF10a 0.30 
cgF20a 0.31 
Ehi-E23 0.34 

cgFa 0.36 
Av-Ahi 0.44 

Ahi-A23 0.44 
dF2 0.44 

Av-Amax23 0.45 
Avhi_Ahi 0.51 

F2o 0.51 
F2b 0.51 

F3o_F2o 0.51 
dF3 0.52 

dF3b 0.52 
Av3-A3 0.53 
Av2-A2 0.53 
dF2b 0.53 

F3b-F2b 0.55 
F3o 0.56 
F3b 0.56 
vot 0.59 

Cls_dur 0.59 
F1o 0.62 

Table 3-26: Maximum likelihood classification error of every acoustic attribute, sorted in ascending 
order 
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Figure 3-33: Comparison between the F-ratios and the ML classification error probabilities, P(err), 
of all of the acoustic attributes. Note that, the ML classification error probabilities are plotted in the 
form of 1-P(err).  Both are scaled so that the maximal values are at 100%, while the minimal values 

are at 0%. 

 

Figure 3-33 compares the ability to separate the three places of articulation of all of the 

acoustic attributes determined by both quantifiers. It can be observed from the figure that 

both the normalized F-ratio and the ML classification error probability generally agree, 

except for Ehi-E23, as mentioned earlier. 

3.4.3 Correlation Analysis 

Redundancy in the information contained in all of the acoustic attributes could hurt the 

classification performance, cause unnecessary computational cost, and undermine some 

statistical analyses to be performed such as the discriminant analysis. Therefore, we wish 

to identify the acoustic attributes that are highly correlated with other acoustic attributes 

and use the findings to guide the selection of acoustic attribute subsets. These attributes 

will then be used for further classification experiments and their corresponding analyses. 

Two acoustic attributes are considered to be perfectly correlated with each other when, 

for every token, one can predict the value of one acoustic attribute accurately knowing 

the value of the other acoustic attribute of the same token. They are uncorrelated when 

the value of one acoustic attribute does not yield any information in predicting the value 

of the other attribute. We wish to determine where the correlation between each of the 

possible pairs of acoustic attributes lies in between these two extreme cases. A quantity 
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commonly used for this purpose is the square of the correlation coefficient (ρ2). The 

values of ρ2 between pairs of acoustic attributes were calculated from the tokens for 

which both acoustic attributes are applicable. Any values of the acoustic attributes that lie 

farther than five times the standard deviation from their means were considered outliers 

and removed prior to calculating the corresponding correlation coefficients. 

 

The acoustic attribute pairs whose ρ2 are higher than 0.80 across different contexts for 

both CV and VC tokens are listed in Table 3-27 and Table 3-28.  

 
Context Highly Correlated Attribute Pairs (�2 > 0.80) 

All (Av3-A3 & Av2-A2), (cgF10a & cgF20a) 
Voiced Stop (Av3-A3 & Av2-A2), (F2o & F2b), (F3o & F3b), (cgF10a & cgF20a) 

Voiceless Stop (Av3-A3 & Av2-A2), (cgF10a & cgF20a) 
Front Vowel (Av3-A3 & Av2-A2) 
Back Vowel (Av3-A3 & Av2-A2), (cgF10a & cgF20a), (cgF10a & cgFa) 

Voiced Stop + Front Vowel (Av3-A3 & Av2-A2), (F2o & F2b), (F3o & F3b) 
Voiced Stop + Back Vowel (Av3-A3 & Av2-A2), (F2o & F2b), (F3o & F3b), (cgF10a & cgF20a), (cgF10a & 

cgFa), (cgF20a & cgFa) 
Voiceless Stop + Front Vowel (Av3-A3 & Av2-A2) 
Voiceless Stop + Back Vowel (Av3-A3 & Av2-A2), (cgF10a & cgF20a) 

Table 3-27: Highly correlated attribute pairs (�2 > 0.80) across different CV contexts 

 
Context Highly Correlated Attribute Pairs (�2 > 0.80) 

All (Av3-A3 & Av2-A2) 
Voiced Stop (Av3-A3 & Av2-A2) 

Voiceless Stop (Av3-A3 & Av2-A2) 
Front Vowel (Av3-A3 & Av2-A2) 
Back Vowel (Av3-A3 & Av2-A2) 

Front Vowel + Voiced Stop (Av3-A3 & Av2-A2) 
Back Vowel + Voiced Stop (Av3-A3 & Av2-A2) 

Front Vowel + Voiceless Stop (Av3-A3 & Av2-A2) 
Back Vowel + Voiceless Stop (Av3-A3 & Av2-A2) 

Table 3-28: Highly correlated attribute pairs (�2 > 0.80) across different VC contexts 

 

In every case, the attributes Av3-A3 and Av2-A2 are highly correlated. Their �2 are 

always higher than 0.90, which are always the highest among any pairs of attributes. 

Most of the time the values of Av3-A3 and Av2-A2 vary in a similar fashion among all 

of the tokens.  Both Av3-A3 and Av2-A2 are intended to capture a similar type of 

information, which is the amplitude of the release burst relative to the amplitude of the 

adjacent vowel in the same frequency region. However, the frequency ranges used in the 

two attributes are different. The correlation result indicates that the difference in the 

frequency ranges for the two attributes does not add much additional information. 
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Therefore, using only one of them in the classification should suffice. It is left to 

determine which one of them should be selected to achieve better classification results. In 

the VC case, only this pair of attributes is strongly correlated. 

 

The second and third formant frequencies measured at the voicing onset of the vowels are 

highly correlated with their counterparts measured at the release burst in almost every 

case that the attribute values obtained from voiced stops are analyzed separately from the 

ones from voiceless stops in CV tokens. However, they are not strongly correlated in the 

voiceless cases. This is not surprising since it has been shown earlier that the VOTs of 

voiced stops are significantly shorter than the ones of voiceless stops. So, the time points 

where the voicings of the vowels start are closer to the release burst and this results in 

more similar formant frequencies between the two time points. However, the correlations 

are not as strong as the ones between Av3-A3 and Av2-A2. 

 

In some cases, cgF10a, cgF20a and cgFa are highly correlated with one another, although 

the correlations are not as strong as the two cases mentioned above. These correlations 

are expected since in some of the CV tokens whose VOT’s are short, the portion of the 

speech signal used for calculating these three acoustic attributes are the same due to the 

reason mentioned earlier in this chapter. 

 

As mentioned, the attributes investigated in this thesis are placed into four categories 

depending on whether the attributes are intended to capture the spectral shape of the 

release burst, the formant frequency structure, the energy concentration of the signal 

between the burst and the voicing onset of the vowel, or the timing of the signal. From 

the correlation analysis, we have found that there are no cross-category highly correlated 

acoustic attributes. 

 

3.5 Chapter Summary 

In this chapter, the acoustic attributes used in this thesis were introduced along with their 

descriptions and related measurement techniques. The time points at the release burst and 
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at the voicing onset or offset of the adjacent vowel were marked manually prior to the 

measurement of the acoustic attributes. For consistency across the manually time marking 

process, the time points marked as the voicing onset and offset were refined by picking 

the places where the rate of change of the low-frequency energy around the originally 

marked points was maximal. The distributions of the values of each acoustic attribute 

were shown for all three places of articulation. Box-and-whiskers plots were used to 

provide visual indication of how well each acoustic attribute can separate the three places 

of articulation. The significance of the mean differences among the three places of 

articulation was tested. The results showed that all of the acoustic attributes introduced 

here had significant mean difference among the three places of articulation. The 

information about vowel frontness altered the separabilities among the three places of 

articulation of the acoustic attributes. Some acoustic attributes could separate the three 

places better if the frontness of the vowels were known. The ability to separate the three 

places of articulation of the acoustic attributes were compared by means of their F-ratios 

and maximum likelihood classification error probabilities. It was shown that both 

temporal attributes along with some of the formant-related attributes were poor in 

separating the three places of articulation, while all of the acoustic attributes that capture 

the spectral energy concentration after the release burst and some of the burst-related 

attributes were among the best acoustic attributes for discriminating among the three 

places. In general, the acoustic attributes that capture the spectral shape of the release 

burst did better than the acoustic attributes that capture the formant structure. Finally, a 

correlation analysis was performed in order to uncover possible redundant information 

among the acoustic attributes. Some highly correlated acoustic attributes were identified 

within various frontness and voicing contexts. However, there was no evidence of highly 

correlated acoustic attributes cross categories.     
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Chapter 4  

Classification Experiments 

In the last chapter, the acoustic attributes involved in this research were introduced. Their 

discriminating properties were investigated by observing the statistics obtained from the 

distribution of each attribute. The estimated ML classification errors and the F-ratios 

show how well each individual attribute can distinguish among the three places of 

articulation. In this chapter, we will perform classification experiments based on subsets 

of attributes introduced in the last chapter. The purpose of these classification 

experiments is to evaluate the classification performance when subsets of these acoustic 

attributes are used as “feature vectors” input to a simple statistical classifier. Positive 

results will show that the acoustic attributes introduced in this study are appropriate for 

determining the place of articulation features in the feature bundle for a stop consonant 

segment, while negative results will provide more insight to the approach as well as 

information useful for future improvement.     

 

The chapter starts with the details on how subsets of the acoustic attributes, to be used as 

feature vectors for the classifier, are selected, how the classification decisions are made in 

these experiments, and the contexts we are particularly interested in. 

 

The next section describes a classification experiment where only the tokens for which all 

of the acoustic attributes are valid are included. Specifically, tokens without release 

bursts are omitted. The section after that describes the classification experiment where we 

assume that, for each token, the only information available is in the formant structure of 

the adjacent vowel. We also investigate the advantage gained in the classification results 

if we know the voicing of the stop consonants and the frontness of the corresponding 

vowels. 

 

We next examine stop consonants that are located between two vowels, and we study 

how we can make use of the information in the vowels on both sides. Finally, the overall 
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classification accuracy of the qualified tokens in the entire SP database is reported, along 

with the analysis of the posterior probabilities of the proposed places of articulation that 

result from the classification.  

 

4.1 Classification Experiment Framework 

4.1.1 Acoustic Attribute Selection 

Ideally, in order to find subsets of our acoustic attributes that give the best classification 

accuracies in certain contexts, every combination of those acoustic attributes should be 

used in the classification experiments. However, doing so is not possible due to the 

number of our acoustic attributes, which can be as large as 20 for CV tokens and 17 for 

VC tokens. Thus, restrictions should be imposed on constructing the acoustic attribute 

combinations. Here, we make an assumption that uncorrelated attributes compliment one 

another in the classification and, consequently, the inclusion of all of the uncorrelated 

acoustic attributes provides better classification result than leaving some of them out of 

the combination. On the contrary, the inclusion of highly correlated attributes increases 

noisy information and hurts the classification performance. These restrictions in 

constructing the acoustic attribute combinations can be devised based on the results of the 

correlation analysis among all of the acoustic attributes. 

 

The result of such a correlation analysis has been shown in section 3.4.3. The following 

are some useful observations from the analysis. 

 

- The most correlated attributes across all contexts were Av3-A3 and Av2-A2. This 

indicates that only one of them should be included in the attribute subsets to be used 

in any classifications. 

- For some contexts, the attributes cgF10a, cgF20a, and cgFa were correlated fairly 

highly. However, the corresponding correlation coefficients were not as high as the 

ones between Av3-A3 and Av2-A2. Thus, it should be reasonable to allow the 

inclusion of every combination of these three attributes. 
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- Similar to the above observations, the formant frequencies measured at the voicing 

onset of the vowels and at the release burst were fairly highly correlated in some 

contexts. We will allow the inclusion of every combination of these attributes. 

- Apart from the three observations listed above, the rest of the acoustic attributes did 

not show any high correlations among themselves. Thus, all of them should be used. 

 

Apart from the redundancies between each pair of the acoustic attributes indicated in the 

correlation analysis, there are also redundancies due to the fact that some acoustic 

attributes are actually linear combinations of other acoustic attributes. These cases 

include F3b-F2b and F3o-F2o. Thus, these redundancies should not be allowed in any 

acoustic attribute subsets. 

 

To further reduce the number of acoustic attribute combinations, we will only allow the 

information about F2o, F3o, F2b, and F3b once. For example, if either F2o or F3o is 

already included in the subset, F3o-F2o cannot be included. 

 

These restrictions lead to the list of acoustic attribute subsets shown in Figure 4-1. The 

total number of possible subsets is 56 ( 1 x 2 x 7 x 4 ). 

 
    

{Common subset}* {Av3-A3} or 
{Av2-A2} 

{CgF10a}** or 
{CgF20a}** or 
{CgFa}** or 
{CgF10a, cgF10a}** or 
{CgF10a, cgFa}** or 
{CgF20a, cgFa}** or 
{CgF10a, cgF20a, cgFa}** 

{F2o, F3o, F3b-F2b} or 
{F2b, F3b, F3o-F2o} or 
{F2o, F2b, F3o, F3b} or 
{F3o-F2o, F3b-F2b} 

 
* The {Common subset} is {Av_Ahi, Ahi_A23, Av_Amax23, Avhi_Ahi, Ehi_E23, F1o, dF2, dF3, dF2b, dF3b, time***} 
** These attributes applied to CV tokens only. 
*** ‘time’ is VOT for CV tokens and CLS_DUR for VC tokens. 

Figure 4-1: Valid acoustic attribute subsets. Valid subsets are constructed from combining four 
smaller subsets, one from each group (column). {Common subset} is always used as the subset from 
the first column. Either {Av3-A3} or {Av2-A2} must be picked from the second column due to their 
high correlation. The subsets listed in the third column are all of the possible combinations among 
cgFa, cgF10a, and cgF20a. In the last column, the listed subsets are all of the possible combinations 

among F2o, F2b, F3o, F3b, F3o-F2o, and  F3b-F2b in which none of the acoustic attributes are linear 
combinations of any other acoustic attributes in the same subset and the information about a 

formant frequency at a certain time point is used once.   
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However, if tokens do not contain release bursts, the acoustic attributes whose 

measurements require the release bursts cannot be measured. In this case, the only 

possible attribute subsets are {F1o, F2o, F3o, dF2, dF3} and {F1o, F3o-F2o, dF2, dF3}. 

4.1.2 Classification Result Evaluation 

Normally, in order to see how well a classification with specific parameters performs, the 

classification experiment with that set of parameters should be performed on data that has 

never been involved in the training process of the classifier. Data points, i.e. CV and VC 

tokens in this case, are usually grouped into the training set and the test set where the data 

in the first set are used as examples for training the classifier’s corresponding statistical 

model and the latter are used for classifier evaluation. The bigger the training set, the 

more variations covered by the data in such a set, and, consequently, the more likely that 

the trained statistical model fits the model of the whole population better. Also, the size 

of the test set should be large enough that the classification result obtained based on that 

set is reliable. 

 

However, in this study we had a very limited number of tokens. Dividing them into the 

training set and the test set might cause a lack of examples used for the training process 

and a small number of test data whose corresponding classification result might not 

reasonably reflect the classification result obtained on future unseen data. So, each 

classification experiment was evaluated by using Leave-One-Out Cross Validation 

(LOOCV) technique. In such a technique, when classifying a token, that token is left out 

from the rest of the tokens for the training process of the model that is used for 

classifying that token. Thus, every token is never used in the training of the model that is 

used for classifying that token. 

 

Classification accuracy is calculated by dividing the number of tokens correctly classified 

by the total number of tokens being classified.   
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4.1.3 Statistical Classifier 

The classifiers used in all of the classification experiments in this study were 

Mahalanobis distance classifiers. In each classification, a subset of acoustic attributes 

chosen for that classification forms a multidimensional space. Specifically in this study, 

for the case where k acoustic attributes were used, three groups of training tokens were 

formed in the k-dimensional space according to their places of articulation, i.e. labial, 

alveolar or velar. The location of each token in a particular dimension in the space was 

determined by the value of that token’s acoustic attribute corresponding to that 

dimension. To assign the most likely place of articulation to a test token, Mahalanobis 

distances from that test token to the centroids of the three groups of training tokens were 

calculated. The closer the test token was to the centroid of one group, the more likely that 

it belonged to the group.  

 

The posterior probabilities of a token belonging to each place of articulation can be 

calculated from the Mahalanobis distance (d). The posterior probability for a place of 

articulation given the acoustic attributes is proportioned to e-d/2. So, in this case, the 

posterior probabilities of the three places of articulation can be calculated from:  
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where: 

- )|( XPlaceP i  is the probability that the place of articulation of the stop consonant is 

labial (i=1), alveolar (i=2), or velar (i=3), based on the observation X , the acoustic 

attribute vector. 

- di is the mahalanobis distance from the test token to the centroid of the ith group   
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4.1.4 Classification Context 

We restricted our study only to the classification of the stop consonants that had at least 

an adjacent vowel. So, this resulted in each qualified stop forming either a CV or VC 

token. CV and VC tokens were classified and analyzed separately. Furthermore, since the 

values of some acoustic attributes for a stop consonant are sensitive to the context 

surrounding the consonant, we wished to evaluate how well the classification performs 

under different contexts. The contexts that we were interested in are the frontness of the 

vowels adjacent to the consonant and the voicing of the stop consonant to be classified. In 

the majority of the classification experiments, 9 datasets were constructed according to 

their vowel and voicing contexts. These datasets were: 

 

1) ALL: This dataset included all of the tokens (either CV or VC) regardless of their 

voicing and vowel context.  

2) V: This dataset is a subset of the ALL dataset. The tokens included in this dataset 

must have an underlying voiced stop consonant. 

3) U: This dataset is a subset of the ALL dataset. The tokens included in this dataset 

must have an underlying voiceless stop consonant. V and U are mutually 

exclusive and collectively exhaustive. The tokens in both datasets add up to the 

ALL dataset.  

4) F: This dataset is a subset of the ALL dataset. The vowel parts of the tokens that 

belong to this dataset must be underlying front vowels. 

5) B: This dataset is a subset of the ALL dataset. The vowel parts of the tokens that 

belong to this dataset must be underlying back vowels. F and B are mutually 

exclusive and collectively exhaustive. The tokens in both datasets add up to the 

ALL dataset. 

6) VF: This dataset is a subset of the ALL, V and F datasets. The tokens included in 

this dataset must have an underlying voiced stop consonant and an underlying 

front vowel. 

7) VB: This dataset is a subset of the ALL, V and B datasets. The tokens included in 

this dataset must have an underlying voiced stop consonant and an underlying 

back vowel. VF and VB are mutually exclusive and they add up to the V dataset. 
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8) UF: This dataset is a subset of the ALL, U and F datasets. The tokens included in 

this dataset must have an underlying voiceless stop consonant and an underlying 

front vowel. 

9) UB: This dataset is a subset of the ALL, U and B datasets. The tokens included in 

this dataset must have an underlying voiceless stop consonant and an underlying 

back vowel. UF and UB are mutually exclusive and they add up to the U dataset. 

 

For each classification, only the tokens in the relevant dataset that had all of the values of 

the acoustic attributes selected in that classification were used in the classification. 

 

In section 4.2 where the classification concerned stop consonants containing release 

bursts, the acoustic attributes obtained from the release burst were used. Thus, tokens 

whose stops did not contain the release bursts were omitted from the classification. 

However, in section 4.3 where the classification did not use the acoustic attributes 

obtained from the release burst, stops both with and without the release bursts were 

included.  

 

4.2 LOOCV Classification Results for Stops Containing Release 

Burst 

In this experiment, we wanted to evaluate the performance of our acoustic attributes in 

classifying the place of articulation of stop consonants when we assumed that all of the 

acoustic attributes introduced in section 3.3 could be measured. Specifically, we would 

like to evaluate how well we can do if the stop in a CV or VC token to be classified 

contains the release burst, which is not always the case. As mentioned, only the tokens in 

the dataset that had all of the values of the acoustic attributes selected in that 

classification were used. CV or VC tokens whose stops did not contain the burst releases 

were omitted in this experiment. 

 

The LOOCV technique was used to evaluate the classification accuracies in the 9 

context-specific datasets. The attribute subsets that resulted in the highest CV 
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classification accuracies among the combination generated according to the criterion in 

section 4.1.1 are shown in Table 4-1. The corresponding confusion matrices for every 

context are shown in Table 4-2.  For VC tokens, the best attribute subsets and their 

corresponding confusion matrices are shown in Table 4-3 and Table 4-4 respectively. 

 
Context Best Attribute Subset 

All Common subset, F2b, F3b, F3o-F2o, Av3-A3, cgF20a 
Voiced Stop (V) Common subset, F2o, F3o, F3b-F2b, Av3-A3, cgF20a 

Voiceless Stop (U) Common subset, F2o, F3o, F2b, F3b, Av3-A3, cgF20a 
Front Vowel (F) Common subset, F2o, F3o, F2b, F3b, Av3-A3, cgF20a 
Back Vowel (B) Common subset, F2b, F3b, F3o-F2o, Av2-A2, cgF20a 

Voiced Stop + Front Vowel (VF) Common subset, F2o, F3o, F3b-F2b, Av3-A3, cgF10a, cgF20a 
Voiced Stop + Back Vowel (VB) Common subset, F2o, F3o, F2b, F3b, Av3-A3, cgF20a 

Voiceless Stop + Front Vowel (UF) Common subset, F2o, F3o, F2b, F3b, Av3-A3, cgF20a 
Voiceless Stop + Back Vowel (UB) Common subset, F2b, F3b, F3o-F2o, Av2-A2, cgFa, cgF20a  

Table 4-1: Attribute subsets yielding the best CV token classification results in their corresponding 
vowel and voicing contexts. Common attribute subset consists of Av-Ahi, Ahi-A23, Av-Amax23, 

Avhi-Ahi, Ehi-E23, vot, F1o, dF2, dF3, dF2b, dF3b 

 
Front Vowel Back Vowel Mixed Vowel R\H 

L A V # L A V # L A V # 
L 89.5% 9.6% 0.9% 229 91.8% 0.0% 0.0% 268 89.7% 1.8% 0.0% 494 
A 5.2% 89.6% 5.2% 135 0.7% 96.0% 0.7% 151 9.1% 89.5% 0.7% 285 
V 0.0% 2.0% 98.0% 153 9.4% 2.7% 99.6% 223 6.7% 5.6% 99.5% 375 V

 

 92.1% 517 95.5% 517 92.8% 1154 
L 95.0% 1.8% 1.8% 221 95.5% 1.0% 3.5% 198 94.0% 2.4% 1.7% 419 
A 1.2% 91.3% 1.7% 172 0.4% 99.6% 0.0% 275 0.4% 95.3% 3.8% 446 
V 3.3% 4.1% 97.4% 270 1.3% 3.0% 95.7% 232 4.6% 2.2% 95.2% 505 U

 

 95.0% 663 97.2% 705 94.9% 1370 
L 88.4% 2.9% 1.3% 447 94.4% 0.2% 0.4% 465 90.9% 1.9% 0.4% 909 
A 7.8% 89.9% 1.3% 307 1.9% 99.1% 1.7% 424 4.0% 94.1% 3.3% 731 
V 6.6% 4.3% 97.6% 422 4.0% 0.7% 98.0% 455 6.1% 3.0% 96.8% 881 M

ix
ed

 

 92.1% 1176 97.1% 1344 93.9% 2521 

Table 4-2: Confusion matrices for the best CV token classification in different vowel and voicing 
contexts. The attribute subset used in each context is shown in the above table. 

 

The classification accuracy in the CV case when all of the stop consonants were mixed 

together regardless of their voicing and frontness context, i.e. the ALL dataset, was 

93.9%. The classification accuracy of each place of articulation in this case was beyond 

90%. The highest belonged to the velar case with an accuracy of 96.8%. When the 

voicing information was known but the frontness information was not, i.e. the V and U 

datasets, the classification accuracies were 92.8% and 94.9% for the voiced and voiceless 

cases respectively. The classification accuracies of velar stop consonants were still the 

highest among the three places of articulation for the voiced case, while the classification 

accuracies of alveolar and velar stop consonants were close to each other for the voiceless 
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case. When the information about the voicing was not used but the one about frontness of 

the adjacent vowels was used, i.e. the F and B datasets, the classification accuracies were 

92.1% and 97.1% for the front vowel and the back vowel contexts respectively. In the 

datasets where both of the voicing information and the frontness information were 

known, i.e. the VF dataset, VB dataset, UF dataset, and UB dataset, the classification 

accuracies were 92.1%, 95.5%, 95.0%, and 97.2%, respectively.  In general, our acoustic 

attributes can classify voiceless CV tokens better than voiced tokens, and can classify CV 

tokens with front vowels better than the ones with back vowels. The classification 

accuracies of velar stop consonants across all of the datasets were beyond 95%, while the 

classification accuracies of the other two types of stop consonants were also always high 

for the back vowel case and the voiceless case.  

 
Context Best Attribute Subset 

All Common subset, F2o, F3o, F3b-F2b, Av2-A2 
Voiced Stop (V) Common subset, F2o, F3o, F3b-F2b, Av3-A3 

Voiceless Stop (U) Common subset, F2o, F3o, F3b-F2b, Av2-A2 
Front Vowel (F) Common subset, F2o, F3o, F2b, F3b, Av2-A2 
Back Vowel (B) Common subset, F2o, F3o, F3b-F2b, Av3-A3 

Voiced Stop + Front Vowel (VF) Common subset, F2b, F3b, F3o-F2o, Av2-A2 
Voiced Stop + Back Vowel (VB) Common subset, F2o, F3o, F3b-F2b, Av3-A3 

Voiceless Stop + Front Vowel (UF) Common subset, F2o, F3o, F3b-F2b, Av3-A3 
Voiceless Stop + Back Vowel (UB) Common subset, F2o, F3o, F3b-F2b, Av3-A3 

Table 4-3: Attribute subsets yielding the best VC token classification results in their corresponding 
vowel and voicing contexts. Common attribute subset consists of Av-Ahi, Ahi-A23, Av-Amax23, 

Avhi-Ahi, Ehi-E23, cls_dur, F1o, dF2, dF3, dF2b, dF3b 

 
Front Vowel Back Vowel Mixed Vowel R\H 

L A V # L A V # L A V # 
L 96.4% 9.6% 4.8% 83 90.4% 0.7% 0.0% 135 92.6% 3.3% 1.4% 215 
A 3.2% 84.9% 1.1% 93 0.0% 70.8% 7.7% 65 5.0% 79.4% 5.6% 160 
V 0.0% 4.9% 95.9% 123 8.9% 12.3% 96.6% 146 3.0% 9.7% 95.5% 268 V

 

 92.6% 299 89.3% 346 90.5% 643 
L 93.5% 8.7% 3.3% 92 98.6% 0.0% 1.4% 74 87.0% 4.9% 7.1% 184 
A 2.3% 89.0% 5.8% 172 5.4% 83.8% 10.8% 111 4.6% 89.7% 7.8% 282 
V 0.9% 4.9% 94.2% 225 6.4% 8.3% 85.3% 218 2.6% 4.8% 91.7% 421 U

 

 92.2% 489 87.3% 403 90.1% 887 
L 94.8% 9.2% 5.7% 174 78.5% 0.0% 1.1% 93 90.3% 2.3% 5.3% 400 
A 1.9% 88.7% 4.5% 265 5.4% 83.8% 10.8% 111 3.7% 86.3% 6.2% 437 
V 1.2% 4.0% 93.7% 347 7.0% 9.0% 93.5% 199 3.3% 7.4% 93.0% 689 M

ix
ed

 

 92.2% 786 88.8% 750 90.4% 1526 

Table 4-4: Confusion matrices for the best VC token classification in different vowel and voicing 
contexts. The attribute subset used in each context is shown in the above table. 
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In the VC case, the classification accuracy when all of the stop consonants were mixed 

together was 90.4%, which was 3.7% lower than the CV case. In this ALL dataset, as in 

the CV case, velar stop consonants had the highest classification accuracy among the 

three places of articulation. For the V and U datasets, the classification accuracies were 

90.5% and 90.1% respectively. For the F and B datasets, the classification accuracies 

were 92.2% and 88.8% respectively. And for the VF, VB, UF, and UB datasets, the 

classification accuracies were 92.6%, 89.3%, 92.2%, and 87.3%. The dataset with the 

highest classification accuracies for the VC case was the VF dataset. Unlike the CV case, 

our acoustic attributes seemed to classify VC tokens with front vowels better than the 

ones with back vowels. The classification accuracies were rather similar for the voiced 

and voiceless case. In general, velar stop consonants were classified rather well in all of 

the datasets, except for just the UB dataset, in which the classification accuracy of the 

labial stop consonants was very high, i.e. 98.6% out of 74 labial stops. 

 

4.3 LOOCV Classification Using Only Formant Information 

As we can see in the last section, stop consonant places of articulation can be classified 

quite well when we can obtain information from the release bursts as well as the formant 

structures in the adjacent vowels. However, the presence of the release burst might be 

absent. There are many cases where stop consonants are produced without the release 

burst, especially in the VC tokens. 

 

In this experiment, similar to the last experiment, LOOCV was used to evaluate the 

classification accuracies in the 9 context-specific datasets. However, regardless of the 

presence of the release burst, any tokens in each dataset that had all of the acoustic 

attributes in the chosen acoustic attribute subset for each classification were included in 

the classification. The acoustic attribute subset that yielded the best classification 

accuracies for all contexts was {F1o, F2o, F3o, dF2, dF3} for both the CV and VC cases. 

The confusion matrices are shown in Table 4-5 and Table 4-6 below. 
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Front Vowel Back Vowel Mixed Vowel R\H 
L A V # L A V # L A V # 

L 86.7% 12.7% 0.7% 300 90.7% 0.3% 9.0% 311 89.2% 7.2% 3.6% 611 
A 7.6% 81.3% 11.1% 144 0.0% 84.5% 15.5% 155 8.7% 69.2% 22.1% 299 
V 0.0% 5.5% 94.5% 164 4.8% 6.1% 89.2% 231 5.3% 6.1% 88.6% 395 V

 

 87.5% 608 88.8% 697 84.4% 1305 
L 74.7% 10.0% 15.3% 229 89.4% 5.3% 5.3% 207 82.3% 5.7% 11.9% 436 
A 42.3% 41.3% 16.4% 189 13.0% 76.4% 10.6% 292 37.6% 43.9% 18.5% 481 
V 22.5% 8.4% 69.1% 275 24.9% 26.2% 48.9% 237 27.1% 12.3% 60.6% 513 U

 

 63.3% 693 71.2% 736 61.6% 1430 
L 81.7% 9.6% 8.7% 529 87.3% 4.8% 7.9% 518 86.7% 5.1% 8.2% 1046 
A 25.2% 56.8% 18.0% 333 5.4% 81.0% 13.6% 447 20.9% 53.3% 25.8% 780 
V 8.2% 8.9% 82.9% 438 12.0% 18.2% 69.9% 468 12.7% 12.7% 74.7% 908 M

ix
ed

 

 75.7% 1300 79.6% 1433 73.2% 2734 

Table 4-5: Confusion matrices for the best CV token classification in different vowel and voicing 
contexts where the attributes used are obtained from the information on formants only. The attribute 

subset used is ‘F1o’, ‘F2o’, ‘F3o’, ‘dF2’, and ‘dF3’.  

 
Front Vowel Back Vowel Mixed Vowel R\H 

L A V # L A V # L A V # 
L 96.7% 3.3% 0.0% 121 87.9% 1.0% 11.1% 199 91.5% 3.5% 5.1% 316 
A 15.4% 82.2% 2.4% 169 5.0% 68.3% 26.7% 120 7.0% 73.5% 19.5% 287 
V 2.9% 2.9% 94.2% 172 19.3% 6.8% 73.9% 161 13.2% 2.7% 84.1% 334 V

 

 90.5% 462 78.3% 480 83.4% 937 
L 93.4% 3.7% 2.9% 136 85.4% 3.1% 11.5% 130 94.3% 3.0% 2.7% 264 
A 11.8% 73.6% 14.6% 364 3.8% 76.3% 19.9% 211 8.5% 73.5% 17.9% 574 
V 7.1% 4.1% 88.7% 266 12.0% 14.1% 73.9% 234 11.7% 7.9% 80.4% 496 U

 

 82.4% 766 77.4% 575 80.2% 1334 
L 94.6% 3.5% 1.9% 257 84.2% 0.9% 14.9% 329 91.6% 3.8% 4.7% 580 
A 11.6% 76.0% 12.4% 534 4.5% 72.9% 22.6% 332 8.5% 73.0% 18.5% 863 
V 5.4% 2.7% 91.9% 442 14.0% 10.2% 75.9% 394 12.0% 5.8% 82.2% 828 M

ix
ed

 

 85.6% 1233 77.5% 1055 81.1% 2271 

Table 4-6: Confusion matrices for the best VC token classification in different vowel and voicing 
contexts where the attributes used are obtained from the information on formants only. The attribute 

subset used is ‘F1o’, ‘F2o’, ‘F3o’, ‘dF2’, and ‘dF3’. 

 

In every dataset, the classification accuracies, as expected, were lower when the burst 

information was not used than when it was used. However, this experiment gave an 

estimate of the classification accuracies of stop consonants that did not have the release 

burst, using applicable subsets of our acoustic attributes. Considering the small 

dimension of the acoustic attribute vector used, the classification accuracies obtained 

were reasonable. For the ALL dataset, the classification accuracy was 73.2% for the CV 

tokens and it was as high as 81.1% for the VC tokens. Voiced stop consonants were 

classified rather well in the CV case, in which the classification accuracies were above 

80%. There was not much difference in the classification accuracies in the front and back 

vowel cases. On average, VC tokens seemed to be better classified than the CV tokens. 

The classification accuracies in the VC case were higher than the CV case in every 
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dataset. The front vowel case seemed to be better classified than the back vowel case, 

regardless of the voicing, and voiced stops had a little higher classification accuracies 

than the voiceless ones. Although the classification accuracies were lower due to the 

absence of the release burst, our formant-related attributes were still performing well in 

some datasets. Despite the small dimension of the acoustic attribute vector, the 

classification accuracy was as high as 90.5% for the 462 stop consonants in the VC 

dataset in the VC case.  

 

4.4 Effect of Context Information 

From the knowledge of the stop consonant production, we can conclude that the values of 

some acoustic attributes distribute differently depending on the voicing of the stop and 

the frontness of the adjacent vowel. The difference in the distributions of the values of the 

attributes can be either dramatic or insignificant. If the former is the case, mixing 

attribute values of the tokens with different contexts will increase the within-group 

variability and result in a worse classification performance. In other words, if the value 

distributions of some acoustic attributes depend dramatically on the contexts, taking those 

contexts into account in doing the classification should improve the classification 

accuracy. Specifically, if the classifier is trained on only the samples that belong to the 

same context category as the test tokens, those test tokens should be better classified than 

when the classifier is trained on tokens with mixed-context samples. 

 

Note that the classification results in different contexts shown in section 4.2 and section 

4.3 should not be compared to uncover the effect of context information since all of the 

classification accuracies shown in those tables were obtained from different datasets, i.e. 

the classification accuracies were evaluated on different sets of tokens. Therefore, not 

only that the context information used is different but also that the classifications were 

done on different sets of tokens contribute to the difference in the resulting classification 

accuracies. Thus, we need to compare the classification results that were evaluated on the 

same test tokens but the classifiers were trained on different fix-sized context-dependent 

training sets. 
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Let the set of tokens with the context of interest be X and let its size be n. Also, let the set 

of the rest of the tokens be Y and its size be m. Then, the tokens in X are the tokens for 

which we would like to evaluate the classification accuracy. For the context-specific 

training case, LOOCV is used on the set X to obtain the classification accuracy. For the 

context-free training, we still want to evaluate the classification accuracy based on the 

same set X. However, the cross validation method is different from LOOCV. In this case, 

at the time when a token in X is to be classified, a training set is constructed by randomly 

picking n-1 tokens from the combination of the set Y and the set X after the current test 

token is left out. The classification accuracy is calculated by dividing the number of the 

tokens in X that are correctly classified by n, the total number of tokens in X.  

 

In order to be more confident about the classification accuracies resulting from randomly 

picking the training tokens, the context-free classifications were done five times for each 

test dataset. The average classification accuracy among the five iterations was calculated 

and then compared with its context-specific counterpart. The results are shown in Table 

4-7 to Table 4-10 below. 

 

Training Samples 
Randomly Picked 

Test Sample Context 
  

Context 
Specific Average 1st  2nd  3rd  4th  5th 

Voiced (V) 92.8% 94.7% 95.1% 94.6% 94.7% 94.5% 94.5% 
Voiceless (U) 94.7 92.1% 92.2% 91.9% 92.5% 92.1% 91.6% 

Front Vowel (F) 92.1% 90.3% 90.5% 90.4% 89.6% 90.9% 90.1% 
Back Vowel (B) 97.1% 95.9% 95.6% 95.9% 96.2% 95.8% 95.9% 

Voiced+Front (VF) 92.1% 91.2% 90.9% 90.5% 91.5% 91.3% 91.8% 
Voiced+Back (VB) 95.5% 96.6% 96.6% 96.4% 96.6% 96.6% 96.6% 

Voiceless+Front (UF) 95.2% 88.2% 88.6% 88.0% 87.8% 89.3% 87.5% 
Voiceless+Back (UB) 97.2% 93.9% 93.9% 94.5% 93.5% 93.6% 94.1% 

Table 4-7: Classification accuracies in the context-specific training case and the context-free training 
case for CV tokens across all voicing and frontness contexts. 

 
% Classification Accuracies Known Context 

Randomly picked 
training tokens 

Context-specific 
training tokens 

% Improvement P-value from 
McNemar’s 

significance test 
Voicing 93.3% 93.8% 0.6% 0.52 

Frontness 93.3% 94.8% 1.6% 0.00 
Voicing & Frontness 92.5% 95.2% 2.9% 0.00 

Table 4-8: Comparison between the classification accuracies of CV tokens when some contexts are 
known and when they are not known. 
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Table 4-7 shows that there was no large variation among the classification accuracies of 

the same test dataset using the five randomly picked training sets. Thus the average 

classification accuracies should represent the classification performances reasonably well 

when the trainings were context-free. Comparing them with the classification accuracies 

of the context-specific cases, we can see that most of the time classifiers that were trained 

only on the tokens that had the same voicing and frontness contexts as the test tokens 

gave better classification accuracies than the ones trained on the tokens with mixed 

contexts. The only two datasets for which this was not the case are the V and VB 

datasets.  

 

However, Table 4-8 shows that when we knew either the voicing of the stop consonant, 

the frontness of the adjacent vowel, or both, and used the right context-specific classifiers 

to classify them, the classification accuracies were better. Also, we can see that knowing 

the frontness of the adjacent vowel helped the place of articulation classification more 

than knowing the voicing of the stop, and it was best to know both. The improvement 

percentages were 0.6% when we knew only the voicing, 1.6% when we knew only the 

frontness of the adjacent vowel and 2.9% when we knew the information on both of the 

contexts. However, McNemar’s statistical significance test showed that, with a 

confidence level of 99%, the improvements in the classification accuracy were 

statistically significant only when we knew the frontness and both the frontness and the 

voicing. The P-values of the significance test are also shown in Table 4-8. 

 

Training Samples 
Randomly Picked 

Test Sample Context 
  

Context 
Specific Average 1st  2nd  3rd  4th  5th 

Voiced 90.5% 88.7% 88.0% 89.0% 88.3% 89.1% 89.3% 
Voiceless 89.9% 89.6% 89.6% 89.1% 89.8% 90.0% 89.5% 

Front Vowel 91.8% 89.7% 89.8% 89.6% 89.8% 89.8% 89.5% 
Back Vowel 88.8% 88.3% 88.7% 88.8% 88.0% 87.8% 88.4% 

Voiced+Front 92.3% 87.2% 86.8% 87.4% 87.7% 86.8% 87.4% 
Voiced+Back 89.3% 87.2% 87.9% 87.3% 86.1% 86.7% 88.2% 

Voiceless+Front 91.9% 90.8% 91.0% 91.2% 90.2% 91.2% 90.6% 
Voiceless+Back 86.9% 85.8% 86.4% 85.6% 85.9% 85.4% 85.6% 

Table 4-9: Classification accuracies in the context-specific training case and the context-free training 
case for VC tokens across all voicing and frontness contexts. 
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% Classification Accuracies Known Context 
Randomly picked 

training tokens 
Context-specific 
training tokens 

% Improvement P-value from 
McNemar’s 

significance test 
Voicing 89.2% 90.2% 1.0% 0.18 

Frontness 89.0% 90.3% 1.5% 0.29 
Voicing & Frontness 88.0% 90.1% 2.4% 0.02 

Table 4-10: Comparison between the classification accuracies of VC tokens when some contexts are 
known and when they are not known. 

 

Similar to the CV case, Table 4-9 shows that there was also no large variation among the 

classification accuracies of the same test dataset using the five randomly picked training 

sets in the VC case. Thus the average classification accuracies of the VC tokens should 

represent the classification performances when the trainings are context-free reasonably 

well. Here, we can see classifiers that were trained only on the tokens that had the same 

voicing and frontness contexts as the test tokens gave better classification accuracies than 

the ones trained on the tokens with mixed contexts in every dataset. 

 

Table 4-10 shows that when we know either the voicing of the stop consonant, the 

frontness of the adjacent vowel, or both, and used the right context-specific classifiers to 

classify them, the classification accuracies were better. The improvement percentages 

were 1.0% when we knew only the voicing, 1.5% when we knew only the frontness of 

the adjacent vowel and 2.4% if we knew the information on both of the contexts. 

However, despite the improvements shown, the result of the statistical significance test, 

with the confidence level of 99%, showed that none of them showed statistical 

significance, unlike the CV case. 

 

4.5 Classification of Stops that have Vowels on Both Sides 

Up to this point, we implemented the place of articulation classification of CV and VC 

tokens separately. Along with the information about the burst release, if applicable, we 

made use of the information about the vowel on the right of the stop consonant in a CV 

token, while the information of the vowel on the left was used for a VC token. However, 

stop consonants in some of the CV and VC tokens were located between two vowels 

(regardless of any word or syllable boundaries), and then there were CV and VC tokens 

that shared these stop consonants. In predicting the place of articulation of these stop 
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consonants, it should intuitively be better to take the information on the vowels on both 

sides of each stop consonant into account than to use only the information on the vowel 

on either side of the stop consonant. 

 

In this section, we will investigate the performances of different methods for combining 

the information on the vowels on both sides of stop consonants in order to determine their 

place of articulation. In this study, we proposed the combination of the information at two 

levels: 1) the attribute-level combination, and 2) the classifier level combination. 

 

In the attribute-level combination, one classification was performed for each of the stop 

consonants that had a vowel on each side. The acoustic attribute that was used as the 

classification feature vector of the classifier was constructed from the acoustic attributes 

related to both of the vowels and the burst release of that stop, if these attributes existed. 

This resulted in a classification feature vector that had more dimensions than the vectors 

for the classification of its corresponding CV and VC tokens. 

 

In the classifier-level combination, the information obtained from the vowels on both 

sides of a stop consonant was not used together at first. The corresponding CV and VC 

tokens were classified separately using their own set of acoustic attributes. However, the 

decisions, from the CV and VC classifiers, about the place of articulation of the stop they 

share were combined together in order to come up with only one final decision. 

4.5.1 Attribute-level Combination 

In this method of combining the related information on the vowel on both sides, we first 

picked the acoustic attributes that would be used on each side as well as the acoustic 

attributes that were presented in between, i.e. the burst-related acoustic attributes. These 

acoustic attributes were picked based on the acoustic attribute subsets that gave the best 

classification accuracies on the CV and VC tokens in the ALL dataset, as shown in 

section 4.2 and section 4.3. If the selection of acoustic attributes related to the burst of the 

CV and VC cases did not agree, the acoustic attributes used in the CV case were picked. 
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With burst release, the selected acoustic attributes related to the vowels on the right side 

of the stops were VOT, F1o, dF2, dF3, dF2b, dF3b, F2b, F3b, and F3o-F2o. The acoustic 

attributes related to the vowels on the left were CLS_DUR, F1o, dF2, dF3, dF2b, dF3b, 

F2o, F3o, and F3b-F2b. The acoustic attributes related to the release burst were Av3-A3, 

Av-Ahi, Ahi-A23, Av-Amax23, Avhi-Ahi, Ehi-E23, and cgF20a. The three sets of 

acoustic attributes were concatenated. Therefore, this resulted in an acoustic attribute 

vector whose dimension was 25.  

 

Without using the burst information, the selected acoustic attributes related to the vowels 

on the right side of the stops were F1o, F2o, F3o, dF2 and dF3. The same set of acoustic 

attributes was used for the information on the left side. The dimension of the resulting 

acoustic attribute vector in this case was 10. 

 

Table 4-11 to Table 4-14 show the confusion matrices when stop consonants that had 

vowels on both sides were classified based on their CV and VC tokens respectively. The 

classifications here did not make use of the voicing and the frontness contexts. The 

acoustic attributes used for the CV token classifications included the acoustic attributes 

related to the vowel on the right side and the acoustic attributes that described the release 

burst, if applicable, while the ones used for the VC token classification included the 

acoustic attributes related to the vowel on the left side and the ones describing the release 

burst, if applicable.  

 

Table 4-11 and Table 4-13 show the confusion matrices of the place of articulation 

classifications of the CV tokens whose stop consonants also had their adjacent vowels on 

the left, i.e. there were VC tokens that shared these stop consonants. The classification in 

the former one made use of the acoustic attributes that required the presence of the 

release bursts, while the latter one used only the information on the formant structures. 

Table 4-12 and Table 4-14 show the confusion matrices of the place of articulation 

classifications of the VC tokens whose stop consonants also had their adjacent vowels on 

the right. Again, the classification in the former one made used of the acoustic attributes 

that required the presence of the release bursts, while the latter one used only the 
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information on the formant structures. These confusion matrices will be used for the 

comparisons with the confusion matrices obtained by combining the information on both 

sides of the stop consonants under different methods, either with the presence of burst 

releases or without such burst release information. 

 

 

 
Hypothesized place True place 
L A V 

# 

L 90.9% 3.5% 5.6% 285 
A 3.3% 91.2% 5.5% 181 
V 0.0% 3.5% 96.5% 341 

Total 93.3% 807 

 

Table 4-11: Confusion matrix of the place of articulation classification of CV tokens whose stop 
consonants also have adjacent vowels on the left side.  The information about the release bursts is 

used. 

 

 
Hypothesized place True place 
L A V 

# 

L 89.5% 3.2% 7.4% 285 
A 4.4% 77.3% 18.2% 181 
V 1.8% 3.8% 94.4% 341 

Total 88.8% 807 

 

Table 4-12: Confusion matrix of the place of articulation classification of VC tokens whose stop 
consonants also have adjacent vowels on the right side.  The information about the release bursts is 

used. 

 
Hypothesized place True place 
L A V 

# 

L 89.5% 4.5% 5.9% 353 
A 20.8% 53.8% 25.5% 212 
V 10.9% 9.5% 79.6% 368 

Total 77.5% 933 

 

Table 4-13: Confusion matrix of the place of articulation classification of CV tokens whose stop 
consonants also have adjacent vowels on the left side.  Only the information about the formant 

structure of the vowels is used. 
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Hypothesized place True place 
L A V 

# 

L 90.7% 4.0% 5.4% 353 
A 8.0% 68.9% 23.1% 212 
V 13.0% 4.6% 82.3% 368 

Total 82.4% 933 

 

Table 4-14: Confusion matrix of the place of articulation classification of VC tokens whose stop 
consonants also have adjacent vowels on the right side.  Only the information about the formant 

structure of the vowels is used. 

 

Table 4-15 and Table 4-16 show the confusion matrices when the place of articulation 

classifications were done by combining the acoustic attributes on both sides of the stops 

together. In the former table, only the tokens whose stops contained release bursts were 

considered, while in the latter table, the information on the release bursts were not used. 

Thus, the tokens included in the dataset did not have to contain the release bursts. 

 

The classifications here did not use the information on the voicing of the stops and the 

frontness of the vowels. Table 4-15 shows, for the case with release bursts, that among all 

of the 807 stops with release bursts that had vowels on both sides, the overall 

classification accuracy was 94.3%, which was 1.1% and 6.2% better than the cases where 

the place of articulation decisions were made from the information on CV tokens and VC 

tokens alone respectively. 94.7% of 285 labial stop consonants were correctly classified 

with the information on both sides. This was, respectively, 4.2% and 5.8% better than the 

labial classification accuracies based on the CV and VC information alone. For the 181 

alveolar stop consonants, the classification accuracy was 87.3%, which was, however, 

4.3% worse than the classification accuracies based on the CV information alone. Still, it 

was 12.9% better than the classification accuracies based on the VC information alone. 

The classification accuracy of alveolar stops using the VC information alone was much 

lower than when the CV information was used. And, when the two sources of 

information were combined, the VC information somehow confused the classifier. 

Instead of complimenting each other, the combined information led to the lower 

classification accuracy than when the CV information was used alone. For the 341 velar 

stop consonants, the classification accuracy based on the combined information was 

97.7%, which was, respectively, 1.2% and 3.5% better than its CV and VC counterparts.  
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Similar to the case where the burst information was used, the case where it was not used 

also yielded improvement in classification accuracies when the information was 

combined. Table 4-16 shows that among all of the 933 stops that had vowels on both 

sides regardless of the presence of the release burst, the overall classification accuracy 

across all places of articulation was 87.1%, which was 10.8% and 5.2% better than the 

cases where the place of articulation decisions were made from the information on CV 

tokens alone and VC tokens alone respectively. 92.4% of 353 labial stop consonants were 

correctly classified with the information on both sides. This was, respectively, 3.2% and 

1.9% better than the labial classification accuracies based on the CV and VC information 

alone. For 212 alveolar stop consonants, it was 71.7% classification accuracy, which was, 

respectively, 33.3% and 4.1% better than the classification accuracies based on the CV 

and VC information alone. And for the 368 velar stop consonants, the classification 

accuracy based on the combined information was 91.0%, which was, respectively, 14.3% 

and 10.6% better than its CV and VC counterparts. 

 
Hypothesized place True place 
L A V 

# 

L 94.7% 0.7% 4.6% 285 
A 2.8% 87.3% 9.9% 181 
V 0.0% 2.3% 97.7% 341 

Total 94.3% 807 

 

Table 4-15: Confusion matrix from place of articulation classification of stops with release bursts 
that have vowels on both sides. The acoustic attributes on both sides of the stops, as well as the burst 

information, are used together in a single classification. 

 
Hypothesized place True place 
L A V 

# 

L 92.4% 1.4% 6.2% 353 
A 5.2% 71.7% 23.1% 212 
V 6.5% 2.4% 91.0% 368 

Total 87.1% 933 

 

Table 4-16: Confusion matrix from place of articulation classification of stops that have vowels on 
both sides, where the burst information is not used. The acoustic attributes on both sides of the stops 

are used together in a single classification. 
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The consistent improvements shown in every case indicate that, in classifying the place 

of articulation of a stop consonant, the information on the vowels on both sides of that 

stop should be gathered and used, along with the information on its release burst, 

whenever this is available. 

 

Next, we will investigate the performance of another way to combine the information on 

both sides of a stop consonant. 

 

4.5.2 Classifier-level Combination 

Here, instead of combining the acoustic attributes from both sides of the stop consonants 

into longer acoustic attribute vectors and performing one classification for each stop 

consonant, we used two classifiers for each stop consonant. One of them was responsible 

for classifying the place of articulation of that stop based on its corresponding CV token 

while the other one used the information in the stop’s corresponding VC tokens. Each 

classifier made the decision about the place of articulation of that stop consonant 

separately based on its corresponding set of acoustic attributes. Then, the posterior 

probabilities for each place of articulation of that stop proposed from the two classifiers 

were combined and the most likely place of articulation resulting from the combination 

of the probabilities was chosen as the final decision for that stop consonant. The acoustic 

attributes used for the CV and VC token classifiers were the acoustic attributes that gave 

the best classification performance in the corresponding experiments in this chapter. 

These choices of acoustic attributes were similar to the ones in the attribute-level 

combination case. 

 

We proposed two ways of combining the posterior probabilities from the CV and VC 

classifiers. The first one was called the sum rule and the other one was called the product 

rule.     
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The combined posterior probability, )|( XPlaceP i , from the sum rule was obtained from: 

 

 �
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where: 

- )|( ji XPlaceP  is the probability that the place of articulation of the stop consonant is 

labial (i=1), alveolar (i=2), or velar (i=3), based on the observation jX , the acoustic 

attributes used by the jth classifier. (j=1,…,N) 

- jγ is the weight of the probability obtained from the jth classifier.  

- N is the number of the classifiers used. 

 

The combined posterior probability, )|( XPlaceP i , from the product rule was obtained 

from: 
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where: 

- )|( ji XPlaceP  is the probability that the place of articulation of the stop consonant is 

labial (i=1), alveolar (i=2), or velar (i=3), based on the observation jX , the acoustic 

attributes used by the jth classifier. (j=1,…,N) 

- jγ is the weight of the probability obtained from the jth classifier.  

- N is the number of the classifiers used. 

 

In both combination rules, we had the flexibility to weigh the decision made by the N 

classifiers differently. In this case, N is equal to two. The first classifier proposed how 

likely that the place of articulation of a given stop consonant was labial, alveolar, or velar 
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by using the information from the CV token formed by that stop, and the other classifier 

did so by using the information from the VC token formed by that stop. By adjusting the 

weights for the probabilities of each place of articulation from the two classifiers, we 

adjusted the level of confidence in the classification performances of the two classifiers.  

In the sum rule, the two weights must sum to one for the resulting posterior probability to 

be valid. Also, the same weight restriction was applied to the product rule, although it 

was not necessary. 

 

Figure 4-2 shows the classification accuracies when the places of articulation of stop 

consonants with release bursts were classified using the classifier-level combination 

under the sum rule and the product rule. The weight given to the posterior probability 

obtained from the VC classifier was varied from 0 to 1. When the weight for the VC 

classifier was 0 and the weight for the CV classifier was 1, or vice versa, we used the 

decision from only one of the two classifiers. Thus, the classification accuracies at these 

weights were the same as the ones obtained by using one of the classifiers only. Under 

both rules, the classification accuracies were greater when both classifiers contribute to 

the combined decision. The classification accuracies under both rules seemed to be 

maximized when the importance of both classifiers was rather equal or, in other words, 

the difference between the two weights was not extreme. Under the sum rule, the 

classification accuracy was maximized when equal weights were given to the two 

classifiers. Under the product rule, the optimal weights were 0.400 for the VC classifier 

and 0.600 for the CV classifier. The maximum classification accuracies under the sum 

and the product rules were 94.9% and 95.5% respectively. Their respective corresponding 

confusion matrices are shown in Table 4-19 and Table 4-20. In order to explore the 

improvement in classification accuracy when the information in both CV and VC tokens 

were combined, the confusion matrices obtained from classifying the same set of stop 

consonants by using the CV token classifier and the VC token classifier separately are 

shown in Table 4-17 and Table 4-18. 
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Figure 4-2: Classification accuracy percentage of the place of articulation of stop consonants with 
release bursts using the combined classifiers under the product rule and the sum rule, when the 

weight used for the posterior probability obtained from the VC classifier varies from 0 to 1 

 
Hypothesized place True place 
L A V 

# 

L 89.5% 3.8% 6.6% 286 
A 3.4% 90.4% 6.2% 178 
V 0.3% 3.3% 96.4% 336 

Total 92.6% 800 

 

Table 4-17: Confusion matrix of the place of articulation classification of the same set of stop 
consonants used in the classifier-level combination experiment based on the information from the CV 

tokens.  The information about the release bursts is used. 

 
Hypothesized place True place 
L A V 

# 

L 90.2% 3.5% 6.3% 286 
A 3.4% 80.9% 15.7% 178 
V 3.6% 6.3% 90.2% 336 

Total 88.1% 800 

 

Table 4-18: Confusion matrix of the place of articulation classification of the same set of stop 
consonants used in the classifier-level combination experiment based on the information from the VC 

tokens.  The information about the release bursts is used. 
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Hypothesized place True place 
L A V 

# 

L 94.8% 1.0% 4.2% 286 
A 4.5% 89.3% 6.2% 178 
V 0.9% 1.2% 97.9% 336 

Total 94.9% 800 

 

Table 4-19: Confusion matrix of the place of articulation classification using the classifier-level 
combination under the sum rule with the VC weight equals to 0.5 and the CV weight equals to 0.5. 

The information about the release bursts is used. 

 
Hypothesized place True place 
L A V 

# 

L 94.8% 1.0% 4.2% 286 
A 2.8% 92.1% 5.1% 178 
V 0.6% 1.5% 97.9% 336 

Total 95.5% 800 

 

Table 4-20: Confusion matrix of the place of articulation classification using the classifier-level 
combination under the product rule with the VC weight equals to 0.4 and the CV weight equals to 

0.6. The information about the release bursts is used. 

 

Table 4-19 and Table 4-20 suggest that the combination using the product rule achieved 

the higher maximum accuracy than using the sum rule. However, under any choice of 

weights used, except zero weights, both combination rules produced higher classification 

accuracies than the classification that used only either the CV or VC information. The 

maximum classification accuracy of the combination under the sum rule was 94.9%, 

which was 2.5% and 7.7% higher than its CV and VC counterparts respectively. Among 

the 286 labial stop consonants, 94.8% were classified correctly. This percentage was 

5.9% higher than its CV counterpart and 5.1% higher than its VC counterpart. Among the 

178 alveolar stop consonants, 89.3% were classified correctly. This was 1.2% worse than 

the classification accuracy of the CV token classifier. However, it was 10.4% higher than 

the one obtained from the VC token classifier. The degradation from the CV case in the 

alveolar classification accuracy is similar to what was found in the attribute-level 

combination, and it can be explained in the same fashion ( i.e. due to the fact that the VC 

classifier gave a much lower alveolar classification accuracy than its CV counterpart). 

97.9% of 336 velar stop consonants were classified correctly. This was 1.6% and 8.5% 

better than its CV and VC counterparts. 
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Under the better rule, which is the product rule, the maximum classification accuracy was 

95.5%, which was 3.1% and 8.4% higher than its CV and VC counterparts respectively. 

Among the 286 labial stop consonants, 94.8% were classified correctly. This percentage 

was 5.9% higher than its CV counterpart and 5.1% higher than its VC counterpart. 

Among the 178 alveolar stop consonants, 92.1% were classified correctly. This 

percentage was 1.9% and 13.8% higher than its CV and VC counterparts respectively. It 

is worth noting that, under this combination method, the combined information led to a 

better classification accuracy than either one of the CV and VC classifiers, even though 

the classification accuracy of the VC classifier was much lower than its CV counterpart. 

97.9% of 336 alveolar stop consonants were classified correctly. This was 1.6% and 8.5% 

better than its CV and VC counterparts. 

 

Figure 4-3 shows the classification accuracies when the place of articulation of stop 

consonants were classified using the classifier-level combination under the sum rule and 

the product rule regardless of the presence of the release bursts. In the fashion similar to 

Figure 4-2, the weight given to the posterior probability obtained from the VC classifier 

was varied from 0 to 1. Under both rules, the classification accuracies were greater when 

both classifiers contribute to the combined decision. The classification accuracies under 

both rules seemed to be maximized when the difference between the two weights was not 

too extreme. Under the sum rule, the optimal weights were 0.475 for the VC classifier 

and 0.525 for the CV classifier. Under the product rule, the optimal weights were 0.375 

for the VC classifier and 0.625 for the CV classifier. The maximum classification 

accuracies under the sum and the product rules were 86.7% and 87.5% respectively. 

Their corresponding confusion matrices are shown in Table 4-23 and Table 4-24 

respectively. The confusion matrices obtained from classifying the same set of stop 

consonants by using the CV token classifier and the VC token classifier separately are 

shown in Table 4-21 and Table 4-22. 
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Figure 4-3: Classification accuracy percentage of the place of articulation of stop consonants using 
the combined classifiers under the product rule and the sum rule, when the weight used for the 
posterior probability obtained from the VC classifier varies from 0 to 1. The information about 

release bursts is not used. 

 

 
Hypothesized place True place 
L A V 

# 

L 89.5% 4.5% 6.0% 352 
A 20.8% 53.8% 25.5% 212 
V 10.9% 9.6% 79.5% 366 

Total 77.4% 930 

 

Table 4-21: Confusion matrix of the place of articulation classification of the same set of stop 
consonants used in the classifier-level combination experiment based on the information from the CV 

tokens.  The information about the release bursts is not used. 

 
Hypothesized place True place 
L A V 

# 

L 89.8% 4.5% 5.7% 352 
A 5.2% 73.6% 21.2% 212 
V 12.8% 6.3% 80.9% 366 

Total 82.6% 930 

 

Table 4-22: Confusion matrix of the place of articulation classification of the same set of stop 
consonants used in the classifier-level combination experiment based on the information from the VC 

tokens.  The information about the release bursts is not used. 
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Hypothesized place True place 
L A V 

# 

L 94.6% 1.1% 4.3% 352 
A 9.0% 70.3% 20.8% 212 
V 9.6% 1.9% 88.5% 366 

Total 86.7% 930 

 

Table 4-23: Confusion matrix of the place of articulation classification using the classifier-level 
combination under the sum rule with the VC weight equals to 0.475 and the CV weight equals to 

0.525. The information about the release bursts is not used. 

 
Hypothesized place True place 
L A V 

# 

L 94.6% 1.1% 4.3% 352 
A 9.0% 71.7% 19.3% 212 
V 8.2% 1.9% 89.9% 366 

Total 87.5% 930 

 

Table 4-24: Confusion matrix of the place of articulation classification using the classifier-level 
combination under the product rule with the VC weight equals to 0.375 and the CV weight equals to 

0.625. The information about the release bursts is not used. 

 

Similar to the results obtained in the stop consonants with release burst case, Table 4-23 

and Table 4-24 show that the combination using the product rule achieved the higher 

maximum accuracy than using the sum rule. Also, under any choices of weights used, 

except zero weights, both combination rules produced higher classification accuracies 

than the classification that used only either the CV or VC information. The maximum 

classification accuracy of the combination under the sum rule was 86.7%, which was 

11.9% and 4.9% higher than its CV and VC counterparts respectively. Among the 352 

labial stop consonants, 94.6% were classified correctly. This percentage was 5.7% higher 

than its CV counterpart and 5.3% higher than its VC counterpart. Among the 212 alveolar 

stop consonants, 70.3% were classified correctly. This was 30.7% better than the 

classification accuracy of the CV token classifier. However, it was 4.5% worse than the 

one obtained from the VC token classifier. Again, this degradation can be explained by 

the fact that the classification accuracy obtained from the CV information is much lower 

than the one obtained from the VC information. 88.5% of 366 velar stop consonants were 

classified correctly. This was 11.3% and 9.4% better than its CV and VC counterparts. 
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Under the product rule, the maximum classification accuracy was 87.5%, which was 

13.0% and 6.0% higher than its CV and VC counterparts respectively. Among the 352 

labial stop consonants, 94.6% were classified correctly. This percentage was 5.7% higher 

than its CV counterpart and 5.3% higher than its VC counterpart. Among the 212 alveolar 

stop consonants, 71.7% were classified correctly. This was 33.3% better than the 

classification accuracy of the CV token classifier. However, it was 2.6% worse than the 

one obtained from the VC token classifier. The degradation can be explained similarly to 

what happened in the sum rule. 89.9% of 366 alveolar stop consonants were classified 

correctly. This was 13.1% and 6.0% better than its CV and VC counterparts. 

 

Note that there were some slight differences in the set of tokens used in the attribute-level 

combination experiment and the classifier-level combination experiment. These 

differences were due to the removal of the outliers. In the attribute-level combination 

experiment, outliers were identified based on the values of only the tokens that had 

vowels on both sides and had all of the acoustic attributes chosen to be used for the 

corresponding classifications. However, in the classification-level combination 

experiment, since, in the first stage, classifiers were used on the CV and VC tokens 

separately, outliers were then identified based on the values of all of the CV or VC tokens 

that had all of the required acoustic attributes, regardless of the presence of their CV or 

VC token counterparts. Despite the differences, the majority of the tokens were the same. 

In both the case in which the burst information was used and the case in which it was not, 

the differences between the tokens in the attribute-level combination experiment and the 

classifier-level combination experiment were less than 1% of the total number of the 

tokens in both experiments. Thus, roughly, it was reasonable to compare the 

classification results obtained under the two combination strategies, if the classification 

accuracies from the two experiments were different more than 1%. 

 

Table 4-25 summarizes the classification accuracy percentages of the VC classifier, the 

CV classifier, the attribute-level combination classification, and the classifier-level 

combination classification under the sum rule and the product rule. As mentioned, the 

classification accuracies were higher whenever the information on both sides of the stop 



 130

consonants was used. The combining method that yielded the highest classification 

accuracy for the dataset used here was the classifier-level combination under the product 

rule regardless of the presence of the release burst. McNemar’s statistical significance 

test showed that the improvement gained in the classification accuracy by using the 

combined information using either level of the two combinations was statistically 

significant with a confidence level of 99%. However, the classification accuracies 

obtained from different methods of combining were not significantly different with the 

same confidence level. 

 
Classifier % Accuracy using burst info. % Accuracy not using burst info. 

VC ~88% ~82% 
CV ~93% ~77% 

Attribute-level 94.3% 87.1% 
Sum Rule 94.9% 86.7% 

Product Rule 95.5% 87.5% 

Table 4-25: % Classification accuracy comparison among different classification approaches 

 

4.6 Evaluation on the SP Database 

At this point, we wished to evaluate our classification scheme on all of the qualified 

tokens in the SP database. Note that the tokens used in each of the classification 

experiments reported earlier in this chapter were a subset of all of the tokens in the SP 

database, which had the contexts of interest for their associated experiments. Also, the 

tokens used for the calculation of the classification accuracies in different experiments 

were not mutually exclusive. Consequently, the overall classification accuracy based on 

all of the tokens in the SP database cannot be calculated from the classification results of 

those experiments. Here, each of the tokens in the SP database was classified by using the 

method tailored to its contexts. Specifically, tokens were classified by the classifiers that 

were trained on the test tokens that had similar contexts. The contexts that were taken 

into account included the frontness of the adjacent vowels, the voicing of the stop 

consonants, the presence of the release bursts, and the location of the adjacent vowels, i.e. 

VC, CV, or VCV. The decision about the place of each stop consonant was made 

according to the process shown in the diagram in Figure 4-4. 
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Figure 4-4: Place of articulation classification process for the qualified tokens in the SP database 
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For each stop consonant, if the segment located immediately to its left was a vowel, i.e. 

that stop consonant belonged to a VC token, it was classified based on the sample dataset 

constructed from other VC tokens with the same voicing and frontness contexts. If that 

stop consonant contained a release burst, the information of that release burst was used.  

Only the VC tokens whose stop consonants contained release bursts were included in the 

training set, and the acoustic attributes used were the ones listed in Table 4-3. If there was 

no release burst, the acoustic attributes used were F1o, F2o, F3o, dF2, and dF3, and the 

training data of these acoustic attributes were obtained from all of the VC tokens with 

similar voicing and frontness contexts, regardless of the presence of the release burst. The 

hypothesized place of articulation and the posterior probabilities of the three places of 

articulation were then stored. 

 

If the segment located immediately to the right of a stop consonant was a vowel, i.e. that 

stop consonant belonged to a CV token, the process similar to the VC case was conducted 

with the training set constructed from CV tokens instead. The information about the 

voicing of the stop consonant, the presence of the release burst, and the frontness of the 

adjacent vowel was used in the same way as the VC case. Under the presence of the 

release burst, the acoustic attributes in Table 4-1 were used; otherwise F1o, F2o, F3o, 

dF2, and dF3 were used. Then, the decision about the place of articulation along with the 

posterior probabilities of the three places of articulation from the CV classifier were 

stored. 

 

If both the CV and VC tokens corresponding to the current stop consonant existed, the 

decisions made by the CV and VC classifiers were combined. The final posterior 

probabilities for the three places of articulation were calculated using the product rule, 

mentioned in the earlier section. In the case where the release burst information was used 

in the CV and VC classifier, the weights given to the posterior probabilities from the VC 

classifier and the CV classifier were 0.400 and 0.600, respectively. They were 0.375 and 

0.625 for the case when the burst release did not exist. The final hypothesis about the 

place of articulation was the one that has the maximum posterior probability resulting 

from the combination of the two classifiers. However, if the stop consonant did not have 
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vowels on both side of it, the final hypothesis about the place of articulation was the 

place hypothesized by either the CV or VC classifier, whichever applied. 

 

The classification result obtained from the process described above can be broken down 

to confusion matrices shown in Table 4-26 to Table 4-29. The matrices show the 

classification results on stop consonants with vowels on both sides, stop consonants with 

vowels only to the left, stop consonants with vowels only to the right, and the overall 

classification result. The stop consonants with and without burst were also separated. The 

classification accuracy in each confusion matrix was calculated by dividing the number 

of correctly classified stop consonants that belonged to that matrix by the total number of 

stop consonant that belonged to that matrix. Note that the stop consonants that were parts 

of the same confusion matrix were not necessary classified based on the same training 

set. 

 

 
VCV with burst 

 
Hypothesized place True place 
L A V 

# 

L 95.8% 1.4% 2.8% 285 
A 1.1% 94.4% 4.5% 178 
V 0.9% 0.6% 98.5% 336 

Total 96.6% 799 
(a) 

VCV with no burst 
 

Hypothesized place True place 
L A V 

# 

L 100.0% 0.0% 0.0% 60 
A 18.5% 70.4% 11.1% 27 
V 5.9% 0.0% 94.1% 17 

Total 91.3% 104 
(b) 

 
All VCV 

 
Hypothesized place True place 
L A V 

# 

L 96.5% 1.2% 2.3% 345 
A 3.4% 91.2% 5.4% 205 
V 1.1% 0.6% 98.3% 353 

Total 96.0% 903 
(c) 

 

Table 4-26: Confusion matrices from the place of articulation classification of the stop consonants in 
the SP database that have vowels on both sides. The stop consonants in (a) contain the release burst, 

while in (b) they do not. The confusion matrix in (c) is the combination of the results from (a) and (b). 
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CV with burst 
 

Hypothesized place True place 
L A V 

# 

L 92.3% 3.0% 4.6% 624 
A 1.5% 96.0% 2.6% 548 
V 0.8% 1.9% 97.3% 528 

Total 95.1% 1700 
(a) 

CV with no burst 
 

Hypothesized place True place 
L A V 

# 

L 89.8% 5.1% 5.1% 59 
A 13.3% 80.0% 6.7% 15 
V 0.0% 100.0% 0.0% 1 

Total 86.7% 75 
(b) 

 
All CV 

 
Hypothesized place True place 
L A V 

# 

L 92.1% 3.2% 4.7% 683 
A 1.8% 95.6% 2.7% 563 
V 0.8% 2.1% 97.2% 529 

Total 94.7% 1775 
(c) 

 

Table 4-27: Confusion matrices from the place of articulation classification of the stop consonants in 
the SP database that have vowels on their right sides only. The stop consonants in (a) contain the 

release burst, while in (b) they do not. The confusion matrix in (c) is the combination of the results 
from (a) and (b). 

 
VC with burst 

 
Hypothesized place True place 
L A V 

# 

L 87.6% 3.5% 8.8% 113 
A 4.3% 85.3% 10.5% 258 
V 1.1% 2.9% 96.0% 349 

Total 90.8% 720 
(a) 

VC with no burst 
 

Hypothesized place True place 
L A V 

# 

L 88.4% 3.6% 8.0% 112 
A 11.6% 74.2% 14.2% 388 
V 5.5% 1.8% 92.7% 109 

Total 80.1% 609 
(b) 

 
All VC 

 
Hypothesized place True place 
L A V 

# 

L 88.0% 3.6% 8.4% 225 
A 8.7% 78.6% 12.7% 646 
V 2.2% 2.6% 95.2% 458 

Total 85.9% 1329 
(c) 

 

Table 4-28: Confusion matrices from the place of articulation classification of the stop consonants in 
the SP database that have vowels on their left sides only. The stop consonants in (a) contain the 

release burst, while in (b) they do not. The confusion matrix in (c) is the combination of the results 
from (a) and (b). 
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Stop consonants with burst 
 

Hypothesized place True place 
L A V 

# 

L 92.8% 2.6% 4.6% 1022 
A 2.1% 92.9% 5.0% 984 
V 0.9% 1.8% 97.3% 1213 

Total 94.5% 3219 
(a) 

Stop consonant with no burst 
 

Hypothesized place True place 
L A V 

# 

L 91.8% 3.0% 5.2% 231 
A 12.1% 74.2% 13.7% 430 
V 5.5% 2.4% 92.1% 127 

Total 82.2% 788 
(b) 

 
All stop consonant 

 
Hypothesized place True place 
L A V 

# 

L 92.6% 2.7% 4.7% 1253 
A 5.2% 87.2% 7.6% 1414 
V 1.3% 1.9% 96.8% 1340 

Total 92.1% 4007 
(c) 

 

Table 4-29: Confusion matrices from the place of articulation classification of the stop consonants in 
the SP database. The stop consonants in (a) contain the release burst, while in (b) they do not. The 

confusion matrix in (c) is the combination of the results from (a) and (b). 

 

The overall classification accuracy of the 4007 stop consonants was 92.1%. The largest 

portion of the error came from alveolar stops. Among the three types of stop consonants, 

alveolar stop consonants were the ones that are misclassified the most. 12.8% of the 1414 

alveolar stop consonants were incorrectly classified, while they were 7.4% and 3.2% for 

the 1253 labial and 1340 velar stop consonants. The classification accuracies were always 

lower for the stop consonants that did not contain the release bursts than the ones that had 

them. This is reasonable since the former case had a smaller amount of information to be 

used in classification. The dimensions of the acoustic attribute vectors used in the 

classifications were much smaller when there were no release bursts. The classification 

accuracies were quite high when stop consonants were adjacent to vowels on both sides, 

even in the case where the release bursts did not exist. The overall classification accuracy 

for this group of stop consonants was 96.0%, regardless of the release bursts. It was 

96.6% when the bursts existed and 91.3% when they were not. The classification of stop 

consonants that had vowels only to the right (CV) seemed to do better than the 

classification of stop consonants that had vowels only to the left (VC). The corresponding 

classification accuracies were 94.7% and 85.9% for the CV and VC cases respectively.  
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Figure 4-5: Distribution of the classification error 

 

The 4007 stop consonants classified here can be categorized into the following 6 non-

overlapping groups: VCV with burst, VCV without burst, CV with burst, CV without 

burst, VC with burst, and VC without burst. The distribution of the classification errors is 

shown in Figure 4-5. The biggest slice in the chart was from the VC without burst group, 

which was responsible for 38.2% of the total classification error. From the confusion 

matrices, we can see that this group also yielded the lowest classification accuracy 

percentage among the 6 groups; the number of the stop consonants belonging to this 

group was 609, or 15.2% of the total number of stop consonants classified here. The next 

two biggest slices were from the CV with burst and VC with burst groups. However, 

these groups had rather high classification accuracy percentages. This indicates that one 

possibility in improving the classification accuracy is to try to reduce the classification 

error of VC tokens with no burst. 

 

The top pane of Figure 4-6 shows the number of the correctly classified stops in the 

probability ranges according to their posterior probabilities of the hypothesized places. 

The bottom pane shows the number of the incorrectly classified stops in the same 

posterior probability ranges. From the top histogram, we can see that the majority of the 
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correctly classified places of articulation had high posterior probabilities, which was 

encouraging. More than 90% of the correctly classified places of articulation had the 

posterior probabilities of more than 0.8. However, the bottom histogram suggests that 

there were also many stop consonants whose places of articulation were incorrectly 

classified that have the posterior probabilities of more than 0.8. Still, the number of such 

stop consonants was far less than in the correctly classified case. 

 

Figure 4-7 shows the relationship between the percentages of stop consonants whose 

places of articulation are correctly classified in various posterior probability ranges and 

the corresponding posterior probability range. This plot was constructed from the 

numbers of correctly and incorrectly classified stop consonants in the histograms in 

Figure 4-6. Approximately, the plot is close to a straight line with a slope of 1.0, 

suggesting that if a stop consonant is classified to a particular place of articulation, the 

probability that the hypothesized place of articulation is the true place of articulation is 

similar to the posterior probability of that hypothesized place of articulation, especially 

when the posterior probability of that place of articulation is higher than 0.7. However, 

for the posterior probability of less than 0.7, the probability that the hypothesized place of 

articulation is the same as the true place of articulation might be a little higher than the 

posterior probability. Nevertheless, we should be able to conclude that the posterior 

probability obtained by our classification process in this section is a reasonable measure 

of the probability of the true place of articulation. 
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Figure 4-6: Histogram of the posterior probabilities corresponding to the hypothesized place of 
articulation. The top histogram shows the number of the correctly classified stop consonants in 

different probability ranges. The bottom histogram shows the number of the incorrectly classified 
stop consonants in different probability ranges. 

 

 

Figure 4-7: Percentage of the correctly classified stop consonants in different probability ranges 
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4.7 Chapter Summary 

In this chapter, we described various experiments which were conducted in order for us 

to evaluate how well the acoustic attributes described in this thesis can be used in a 

simple statistical classifier to classify among the three places of articulation of stop 

consonants. Due to some redundancies among the acoustic attributes, we developed a set 

of rules for constructing possible subsets of the acoustic attributes in which those 

redundancies were avoided. In the first experiment, all of those possible subsets of the 

acoustic attributes were tested in the classifications of the CV and VC tokens in various 

voicing and frontness contexts. The acoustic attribute subsets that provided the highest 

classification accuracies in each context were retained in order to be used in other 

experiments that followed. When stop consonants contained the release bursts, we can 

use the information about release bursts along with other information in the classification, 

and that gave us the classification accuracies that were better than 90%. When stop 

consonants did not contain the release bursts, the classification had to rely only on the 

information of the formant structure of the adjacent vowels. The classification accuracies 

in this case were not as high as the case where the release bursts were available. 

However, there were some datasets that show rather good classification accuracies 

despite the lack of burst information. It was also shown in the chapter that training the 

CV classifier on the CV tokens that had the same voicing and frontness contexts as the 

test tokens led to a better classification accuracy than training on any general CV tokens 

forming the training set of the same size. However, there was no evidence of significant 

classification accuracy improvement for the VC case when the frontness and voicing 

contexts were used. In the case of stop consonants that were located in between two 

vowels, we had an advantage by being able to use to information on the formant 

structures going into the vowels on both sides. Two methods were used to classify such 

stop consonants separately based in the information on the right side and the left side of 

them. The probabilities of each place of articulation proposed by the two classifiers were 

then combined in order to obtain one final hypothesis about the place of articulation. 

Such combination yielded the best classification accuracy of 95.5%. By using the voicing 

and frontness information, appropriate acoustic attribute subsets, and the combination of 

the information from both CV and VC tokens under the product rule, we achieved the 
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place of articulation classification accuracy of 92.1% upon all of the qualified stop 

consonants in the SP database. It was pointed out that the overall classification accuracy 

could be improved significantly if stop consonants in VC context with no release burst 

were classified more accurately.   
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Chapter 5  

Discriminant Analysis 

In Chapter 3, we investigated the distributions of each individual acoustic attribute for the 

three places of articulation. The statistical analysis in that chapter provided us with 

information on the amount of separation of each acoustic attribute across the three places. 

However, one might expect these acoustic attributes to have some interactions with one 

another when they are used together for classifying the place of articulation. An 

individual acoustic attribute that does not show a promising separability among the three 

places of articulation might contribute to the classification significantly when the 

information contained in that acoustic attribute is combined with the information from 

other acoustic attributes. In this chapter, we wish to investigate the contribution of the 

acoustic attributes used in the classification experiments in Chapter 4 to the obtained 

classification results. In order to do this, Linear Discriminant function Analysis (LDA) 

was utilized. 

 

The first section in this chapter provides an overview of LDA. The section focuses on the 

basic idea of LDA and how it can be used for evaluating the contribution of our acoustic 

attributes to the place classification. More details concerning the theory of LDA can be 

found in [Manly, 1986], [Fukunaka, 1990], [Timm, 2002], and [Webb, 2002]. Then, in 

the next sections, LDA is used for analyzing the contribution of the acoustic attributes in 

classifying CV and VC tokens in all of the 9 datasets as described in Chapter 4, using 

their corresponding acoustic attribute subsets.   

 

5.1 LDA Overview 

Linear Discriminant function Analysis (LDA) is an exploratory multivariate procedure 

used for constructing a set of discriminants that may be used to describe or characterize 
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group separation based upon a reduced set of variables, while allowing one to analyze the 

contribution of the original variables to the separation. 

 

Such a technique was originally developed by Fisher [1936] and was originally used by 

him for creating a linear discriminant function that maximally separated among three 

species of iris flowers based upon four variables. LDA was then adopted in many fields 

of research for several purposes. These include, but are not restricted to, classifying data 

points into groups based on some measured variables, reducing the dimension of those 

variables in order to obtain classification results comparable to using the original set of 

variables, and assessing the relative importance of each of the original variables to the 

classification. It was the relative importance assessment that we wished to find out from 

LDA in this study. 

 

LDA constructs a set of discriminants that maximally separate the groups of interest. 

These discriminants are in the form of linear combinations of the original variables. They 

are called canonical discriminant functions or canonical variables (L), which can be 

expressed as: 

 

 yc'...2211 =+++= NN ycycycL  Eq.5-1 

 

where yi is the ith variable in the original set. The coefficients ci are called discriminant 

coefficients. The vector c is selected so that the quantity 
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is maximized. k is the number of groups. ni is the number of data points in the ith group. 

yij is the vector [y1,y2,…,yN] of the jth data point in the ith group. yi. is the mean vector of 

the ith group. And, ..y is the mean vector across all of the data points in the k groups. 

 

The numerator of Eq.5-2 corresponds to the variation caused by the differences in the 

group means of yc' , while its denominator corresponds to the variation caused by the 

with-in group errors. The solution to the eigen-equation 0=− EH λ gives eigenvalues 

λm’s and associated eigenvectors cm’s for m = 1, 2, …, M, where M = min(k-1,N), that 

maximizes Eq.5-2. Since, the eigenvectors cm’s are orthogonal to one another, their 

contributions to the group classification are not redundant. In this fashion, each canonical 

variable yc 'mmL =  is constructed so that the separation of the group means is maximal 

based on the sample data points. 

 

In order to be able to compare the discriminant coefficients ci for the relative contribution 

of the variables to the classification result, the raw values of the original variables cannot 

be used in LDA directly due to the difference in the choice of units used for each 

variable. Instead, each variable needs to be standardized prior to LDA. Generally, the 

standardized z-score is used in place of each original variable. The z-score compensates 

for the difference in units among different variables by representing the original values in 

terms of multiples of their associated standard deviations from the means. The 

coefficients ci obtained in this case are called the standardized discriminant coefficients. 

The ratio between the standardized discriminant coefficients of two particular variables 

shows the relative contribution to the total separation between those two variables. The 

bigger the standardized discriminant coefficient, the more contribution the associated 

variable has. 
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The eigenvalue of each canonical discriminant function reflects the percentage of the 

separation explained by that discriminant function. The separations due to all of the 

eigenvalues add up to 100%. Although an eigenvalue tells how much of the total 

separation is explained by its associated canonical discriminant function, it cannot tell 

which groups are separated apart by the function. In order to find out qualitatively the 

separation made by a particular function, one may plot the values of that canonical 

discriminant function evaluated at y’s in different groups and observe the value 

distribution visually. In this study, scatter plots such as the ones in Figure 5-1 and Figure 

5-2 were observed. 

5.2 Contribution Analysis on CV tokens in the ALL dataset  

In this section, the set of acoustic attributes used for classifying CV tokens in the ALL 

dataset, as described in section 4.1.4, are analyzed using LDA, in order to discover the 

contribution of those acoustic attributes to the place classification. Since there were three 

groups, two canonical discriminant functions were found. These two discriminant 

functions map the acoustic attribute values of the CV tokens into a two dimensional 

space, in which the distance in each dimension is equal to the values of each function 

evaluated at those acoustic attribute values, i.e. canonical variables. The scatter plot of 

the two canonical variables is shown in Figure 5-1. The confusion matrix resulting from 

the LOOCV based on these two canonical variables is shown in Table 5-1. The 

corresponding classification accuracy was 92.2%. By observing the scatter plot of the two 

canonical variables in Figure 5-1, we can see that the first canonical variable is mostly 

responsible for separating labial stop consonants from the other two types of stop 

consonants. And then, the two other types, which are alveolar and velar stop consonants, 

are separated by the second canonical variable. 

Table 5-2 lists the standardized coefficients for the first and the second canonical 

discriminant function for discriminating the CV tokens in the ALL dataset. The larger the 

magnitudes of the standardized canonical coefficients in each column, the greater 

contribution of their corresponding acoustic attributes to the canonical discriminant 

function corresponding to that column. We can see that Av-Amax23 contributed the most 

to the first canonical discriminant function, which separates labial stop consonants from 
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the other two places. The second greatest contribution to the first function comes from 

Ahi-A23, while the least came from VOT. For the second canonical discriminant 

function, the contribution of cgF20a is the biggest, followed by the contribution of F3o-

F2o, which did not contribute much to the first one. The least contribution to the second 

canonical discriminant function comes from F2b. 

 

The eigenvalues corresponding to the two canonical discriminant functions are shown in 

Table 5-3. The eigenvalue for the first canonical discriminant function, which is the 

largest, equals 3.0, while the one for the second function equals 1.5. From the values of 

the two eigenvalues, we can say that the first canonical discriminant function is 

responsible for 66.7% of the total separation, while the other 33.3% is due to the second 

function. The percentages of the total separation explained by both canonical 

discriminant functions, along with the standardized canonical coefficients, are used in 

calculating the overall contribution of each acoustic attribute to the total separation. By 

doing this, it is assumed that the amount of contribution is linearly proportioned to the 

magnitude of the standardized coefficient. So, the overall contribution is quantified by the 

following equation: 
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where: 

- Ck is the overall contribution of the kth acoustic attribute. 

- pi is the separation percentage explained by the ith canonical discriminant function. 

- cij  is the standardized coefficient corresponding to the jth acoustic attribute for the ith 

canonical discriminant function. 

- N is the total number of the acoustic attribute used. 

 

The overall contribution to the separation of all of the acoustic attributes for the CV 

tokens from the ALL database is listed in Table 5-4. The acoustic attributes in the table 

are sorted so that the acoustic attributes with the greater contribution are higher in the 
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table. From the table, we can see that Av-Amax23 contributes the most to the overall 

separation, closely followed by Ahi-A23. Both acoustic attributes together were 

responsible for over one-fourth of the separation of the 16 acoustic attributes used. Of the 

total separation, 9.8% is due to cgF20a, which has shown a good discriminating property 

individually as indicated by the F-ratios and the ML classification error probability 

shown in Chapter 3. Some of the formant-related acoustic attributes provides a 

respectable contribution despite poor individual ability to separate the three places of 

articulation. These acoustic attributes include F2b, dF3b, dF2b, and F3b. The movements 

of the second and the third formant frequencies at the release bursts contribute more than 

their counterparts at the voicing onset of the following vowels. The least contribution 

comes from dF3, which is 1.2%. However, this smallest amount of contribution can still 

be considered reasonably significant compared the contribution of the other acoustic 

attributes.  

 

Figure 5-1: Scatter plot of the two canonical variables for CV tokens from the ALL dataset 
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Hypothesized place True place 
L A V 

# 

L 94.8% 2.6% 2.6% 909 
A 4.4% 89.8% 5.9% 731 
V 2.4% 5.9% 91.7% 881 

Total 92.2% 2521 

Table 5-1: Confusion matrix based on using the two canonical variables obtained from LDA to 
classify the place of articulation of CV tokens from the ALL dataset 

 

 
Attribute name Standardized coefficient for the 1st 

discriminant function 
Standardized coefficient for the 2nd 

discriminant function 
Av-Ahi 0.33 -0.75 

Ahi-A23 0.88 -0.38 
Av-Amax23 -0.94 0.56 

Avhi-Ahi -0.05 -0.15 
Ehi-E23 -0.42 0.29 

VOT 0.01 -0.48 
F1o -0.23 -0.05 
dF2 0.28 -0.08 
dF3 -0.04 0.13 

dF2b 0.38 -0.50 
dF3b 0.37 0.57 

Av3-A3 0.11 0.53 
CgF20a 0.41 0.94 

F2b 0.80 0.03 
F3b -0.39 -0.27 

F3o-F2o 0.04 0.59 

Table 5-2: Standardized coefficients for the 1st and the 2nd discriminant functions with respect the 
acoustic attributes used for classifying CV tokens in the ALL dataset 

 

 
 1st discriminant function 2nd discriminant function 

Eigenvalue 3.0 1.5 
%Dispersion explained 66.7% 33.3% 
Cumulative dispersion 66.7% 100% 

Table 5-3: Eigenvalues and dispersion percentages explained by the two discriminant functions for 
the CV tokens in the ALL dataset 
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Attribute name Contribution to 1st discriminant 
function 

Contribution to 2nd discriminant 
function Overall Contribution 

Av-Amax23 16.5% 8.8% 14.0% 
Ahi-A23 15.5% 6.0% 12.4% 
CgF20a 7.2% 14.9% 9.8% 

F2b 14.0% 0.4% 9.5% 
Av-Ahi 5.8% 11.9% 7.8% 
dF3b 6.6% 9.1% 7.4% 
dF2b 6.6% 7.9% 7.1% 

Ehi-E23 7.4% 4.7% 6.5% 
F3b 6.8% 4.2% 6.0% 

Av3-A3 2.0% 8.4% 4.1% 
dF2 4.9% 1.2% 3.7% 

F3o-F2o 0.7% 9.3% 3.6% 
F1o 4.0% 0.9% 2.9% 
VOT 0.3% 7.6% 2.7% 

Avhi-Ahi 0.9% 2.4% 1.4% 
dF3 0.8% 2.1% 1.2% 
Total 100.0% 100.0% 100.0% 

Table 5-4: Contributions to the 1st, the 2nd discriminant function, and the overall discrimination 
among the three places of articulation of the acoustic attributes used for the CV tokens in the ALL 

dataset 

 

5.3 Contribution Analysis on VC tokens in the ALL dataset 

The same analyses that were done in section 5.2 were repeated for the VC tokens in the 

ALL dataset. The scatter plot of the two canonical variables is shown in Figure 5-2. The 

confusion matrix resulting from the LOOCV based on these two canonical variables is 

shown in Table 5-5. The corresponding classification accuracy is 88.6%. From the plot, 

we can see that the first canonical variable separates labial stop consonants and velar stop 

consonants apart. In this dimension, alveolar stop consonants are mixed with the other 

two types of stop consonants. In the dimension corresponding to the second canonical 

variable, alveolar stop consonants are then separated from the other two types of stop 

consonants. The standardized canonical coefficients associated with the two canonical 

discriminant functions for all of the acoustic attributes are shown in Table 5-6. The 

largest contribution to the first canonical discriminant function is due to Av-Amax23. 

Some of the acoustic attributes that also have large standardized canonical coefficients 

for the first discriminant function include Ahi-A23, dF2, and Av-Ahi. For the second 

canonical discriminant function, the biggest contribution comes from Av-Ahi. Av-

Amax23, which is the biggest contributor to the first discriminant function, also 

contributes a lot to the second discriminant function. These two acoustic attributes are 
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responsible for more than half of the separation due to the second discriminant function. 

There were no other acoustic attributes that contribute to the second discriminant function 

at any level close to these two. 

 

The eigenvalue is 2.2 for the first canonical discriminant function and 0.9 for the second 

function. This 71.6% of the total separation is due to the first discriminant function, while 

the second function is responsible for the rest, which is 28.4%. 

 

The overall contributions to the place classification of VC tokens in the ALL dataset due 

to all of the acoustic attributes are ranked in Table 5-8. Of the total separation achieved 

by the two canonical variables, 25.4% comes from Av-Amax23. Av-Ahi and Ahi-A23 

are the second and third biggest contributors, respectively. The three acoustic attributes 

are used for describing the shape of the release bursts, and they contribute to more than 

half of the separation from the 15 acoustic attributes used here. The acoustic attributes 

that contribute the least are dF2b and F3b-F2b. Each of them contributes less than 1% of 

the total separation. Unlike the CV case, the contributions of these two acoustic attributes 

might not be very significant compared to the contribution of other acoustic attributes. 

Also, the movement of the second and the third formant frequencies at the voicing offset 

of the preceding vowels contributes more to the total separation than their counterparts 

measured at the release bursts, which was opposite to the CV case.  



 150

 

 

 

 

 
Figure 5-2: Scatter plot of the two canonical variables for VC tokens from the ALL dataset 

 
 

Hypothesized place True place 
L A V 

# 

L 94.3% 2.6% 2.5% 400 
A 5.0% 86.1% 8.9% 437 
V 3.8% 9.3% 87.0% 689 

Total 88.6% 1526 

Table 5-5: Confusion matrix based on using the two canonical variables obtained from LDA to 
classify the place of articulation of VC tokens from the ALL dataset 
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Attribute name Standardized coefficient for the 1st 

discriminant function 
Standardized coefficient for the 2nd 

discriminant function 
Av-Ahi 0.69 -1.06 

Ahi-A23 0.93 -0.08 
Av-Amax23 -1.44 1.01 

Avhi-Ahi 0.15 -0.21 
Ehi-E23 -0.32 0.22 

CLS_DUR -0.11 0.00 
F1o -0.21 -0.01 
dF2 0.93 0.00 
dF3 0.22 0.30 

dF2b 0.04 -0.03 
dF3b 0.06 0.04 

Av2-A2 -0.03 0.28 
F2o 0.48 -0.06 
F3o -0.19 0.44 

F3b-F2b -0.02 0.05 

Table 5-6: Standardized coefficients for the 1st and the 2nd discriminant functions with respect the 
acoustic attributes used for classifying VC tokens in the ALL dataset 

 
 1st discriminant function 2nd discriminant function 

Eigenvalue 2.2 0.9 
%Dispersion explained 71.6% 28.4% 
Cumulative dispersion 71.6% 100% 

Table 5-7: Eigenvalues and dispersion percentages explained by the two discriminant functions for 
the VC tokens in the ALL dataset 

 

Attribute name Contribution to 1st discriminant 
function 

Contribution to 2nd discriminant 
function Overall Contribution 

Av-Amax23 24.9% 26.6% 25.4% 
Av-Ahi 11.8% 27.9% 16.4% 

Ahi-A23 16.0% 2.2% 12.1% 
dF2 16.0% 0.1% 11.5% 
F2o 8.3% 1.5% 6.4% 
F3o 3.2% 11.7% 5.6% 

Ehi-E23 5.5% 5.9% 5.6% 
dF3 3.7% 8.0% 4.9% 

Avhi-Ahi 2.6% 5.5% 3.4% 
F1o 3.6% 0.3% 2.7% 

Av2-A2 0.5% 7.3% 2.4% 
CLS_DUR 1.9% 0.1% 1.4% 

dF3b 1.0% 1.1% 1.1% 
dF2b 0.6% 0.7% 0.6% 

F3b-F2b 0.3% 1.2% 0.6% 
Total 100.0% 100.0% 100.0% 

Table 5-8: Contributions to the 1st, the 2nd discriminant function, and the overall discrimination 
among the three places of articulation of the acoustic attributes used for the VC tokens in the ALL 

dataset 
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Generally in both the CV and the VC cases, if we look at the contribution of all of the 

acoustic attributes in their corresponding acoustic attribute subsets, we can notice that the 

acoustic attributes that are used for describing the spectral shape of the release burst 

contribute to the classification more than the ones describing the formant structures into 

and out of adjacent vowels. This trend is still consistent with what we have observed in 

the discriminating properties of the acoustic attributes individually, despite the interaction 

among the acoustic attributes. In both the CV and VC cases, Av-Amax23 is indicated to 

be the acoustic attribute that contributes the most to the total separation for this specific 

dataset. Furthermore, Ahi-A23 and Av-Ahi also have rather large contributions in both 

cases. 

 

5.4 Contribution Analysis on CV tokens with known voicing 

contexts 

Table 5-9 (a) and (b) shows the overall contribution of the acoustic attributes used for 

classifying CV tokens in the V and U dataset respectively. For the V dataset, which 

contained CV tokens with voiced stop consonants, Ahi-A23 is the biggest contributor, 

followed by Av-Amax23. The acoustic attribute with the biggest contribution to the 

separation for the U dataset, in which CV tokens contained voiceless stop consonants, is 

cgF20a, followed by Av-Amax23. While cgF20a topped the contribution ranking for the 

voiceless case, it is second to the bottom in the voiced case. This indicates that the 

information about the spectral energy concentration between the release bursts and the 

voicing onsets of the following vowels is very useful in classifying the place of 

articulation of the voiceless stop consonant, while it is not that crucial for the voiced case. 

This might be explained by that there is usually more aspiration after the release bursts of 

voiceless stop consonants, apart from the ones of some unaspirated voiceless stops, than 

after the release bursts of voiced stop consonants. Thus, the information about the 

aspiration, which contributes partly to the value of cgF20a, helps the place classification 

of the voiceless CV tokens more than the voiced ones. 
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Another interesting acoustic attribute is VOT. As we have seen in the result for the ALL 

dataset, VOT does not contribute much to the place classification when we do not have 

the information on the voicing. Here, we can see that VOT is more useful when the 

voicing of the stop consonants is known. In both the V and U cases, VOT moves upward 

in ranking compared to the result from the ALL dataset. It contributes around 4% as 

opposed to around 2% in the ALL case. This is not surprising, as we have pointed out the 

significant difference in the values of VOT for the voiced and voiceless stop consonants. 

So, the variation caused by the with-in group error should be reduced when stop 

consonants with different voicing are separated. For the voiceless case, it seems that the 

information on the movement of the second formant frequency does not provide as much 

contribution to the place classification as in the voiced case. dF2 and dF2b rank among 

the acoustic attributes with the lowest contribution in the voiceless case, while both 

acoustic attributes together yield almost 20% contribution to the place classification in 

the voiced case. dF3 is still the acoustic attribute that contributes the least to the place 

classification. 

 
V  U 

Attribute name Overall Contribution  Attribute name Overall Contribution 
Ahi-A23 13.0%  CgF20a 14.3% 

Av-Amax23 11.9%  Av-Amax23 10.3% 
dF2b 10.9%  dF3b 9.2% 
F2o 10.0%  F2b 9.1% 

Av-Ahi 7.5%  Ahi-A23 8.3% 
Ehi-E23 6.9%  F3b 7.3% 

dF2 6.1%  F3o 6.7% 
dF3b 5.3%  F2o 5.4% 

F3b-F2b 5.0%  Av3-A3 5.1% 
Av3-A3 4.9%  Ehi-E23 4.8% 

VOT 4.8%  Avhi-Ahi 4.2% 
F3o 4.4%  Av-Ahi 4.1% 
F1o 3.3%  VOT 4.0% 

Avhi-Ahi 2.3%  dF2b 2.5% 
CgF20a 2.1%  F1o 2.2% 

dF3 1.8%  dF2 1.6% 
   dF3 0.9% 

(a)  (b) 

Table 5-9: The overall contribution to the total separation of the acoustic attributes used for CV 
tokens in (a) the V dataset and (b) the U dataset 
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5.5 Contribution Analysis on CV tokens with known vowel 

frontness contexts 

Table 5-10 (a) and (b) shows the overall contribution of the acoustic attributes used for 

classifying CV tokens in the F and B dataset respectively. F2b is the biggest contributor 

to the separation in the front vowel case, while it does not contribute much in the back 

vowel case. However, it is F2o that yields a large contribution in the back vowel case. 

The biggest contributor in the back vowel case is Av-Amax23. However, in the front 

vowel case, Av-Amax23 which contributes a lot in the dataset we have seen so far does 

not give much contribution when the CV tokens with front vowel are classified separately 

from the back vowels. Despite the information about the frontness of the adjacent vowels, 

the movement of the second formant frequency does not yield a level of contribution that 

is different from the case where such information is unavailable. 

 
F  B 

Attribute name Overall Contribution  Attribute name Overall Contribution 
F2b 14.8%  Av-Amax23 16.9% 

Av-Ahi 12.1%  F2o 13.9% 
Ehi-E23 9.7%  Ahi-A23 13.1% 

dF2b 8.0%  CgF20a 12.3% 
Ahi-A23 7.3%  Av-Ahi 9.3% 

F3o 6.8%  dF3b 6.3% 
dF2 6.3%  dF2 5.7% 

CgF20a 5.8%  F3o 5.1% 
Av3-A3 5.6%  F2b 3.0% 

F1o 5.6%  VOT 2.7% 
dF3b 4.1%  Ehi-E23 2.6% 
F3b 3.5%  dF3 2.5% 

Av-Amax23 3.2%  dF2b 2.0% 
VOT 3.0%  F1o 1.8% 
F2o 2.4%  Av3-A3 1.5% 

Avhi-Ahi 1.2%  Avhi-Ahi 1.2% 
dF3 0.8%    

(a)  (b) 

Table 5-10: The overall contribution to the total separation of the acoustic attributes used for CV 
tokens in (a) the F dataset and (b) the B dataset 

 

5.6 Contribution Analysis on VC tokens with known voicing 

contexts 

Table 5-11 (a) and (b) shows the overall contribution of the acoustic attributes used for 

classifying VC tokens in the V and U dataset respectively. By observing the rankings and 

contribution percentages in these two tables as well as Table 5-8 (i.e. the case where the 
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VC tokens of both voicings are mixed together), we can see that the relative contributions 

of the acoustic attributes in each table are quite similar. Av-Amax23 contributes the most 

to the total separation regardless of the voicing context. Also, regardless of the voicing 

context, it is followed by Av-Ahi. Ahi-A23 and dF2 also contribute much in every 

voicing context. And finally, the acoustic attributes at the bottom of these tables are 

similar. They are CLS_DUR, dF2b, and dF3b. It is also interesting to see that, although 

the contribution percentages are not too different, the contribution of Ahi-A23 is less in 

the voiceless case than in the voiced case and the mixed voicing case. This observation is 

also true for the results obtained in the CV case. 

 
V  U 

Attribute name Overall Contribution  Attribute name Overall Contribution 
Av-Amax23 21.1%  Av-Amax23 23.1% 

Av-Ahi 15.3%  Av-Ahi 14.7% 
Ahi-A23 14.9%  dF2 11.1% 

dF2 10.5%  Ahi-A23 9.0% 
F2o 9.8%  F3o 7.4% 

Ehi-E23 5.3%  dF3 5.6% 
F3o 4.8%  F2b 5.2% 
dF3 4.6%  Ehi-E23 4.4% 

Av3-A3 3.6%  Avhi-Ahi 4.1% 
F1o 2.7%  F2o 3.6% 

Avhi-Ahi 2.0%  F1o 3.1% 
F3b-F2b 1.7%  F3b 2.2% 

dF3b 1.3%  Av2-A2 2.1% 
CLS_DUR 1.2%  dF2b 2.1% 

dF2b 1.1%  dF3b 1.3% 
   CLS_DUR 0.9% 
     

(a)  (b) 

Table 5-11: The overall contribution to the total separation of the acoustic attributes used for VC 
tokens in (a) the V dataset and (b) the U dataset 

 

5.7 Contribution Analysis on VC tokens with known vowel 

frontness contexts 

Table 5-12 (a) and (b) shows the overall contribution of the acoustic attributes used for 

classifying VC tokens in the F and B dataset respectively. Again, Av-Amax23 is the 

biggest contributor regardless of the frontness of the vowels. For the front vowel case, 

there are no drastic changes in the ranking when compared to the mixed vowel case, 

except that the contribution of Ahi-A23 in the front vowel case is not as great as its 

contribution in the mixed vowel case. It reduces from around 12% to around 7%. The 
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same thing is also true for the CV cases. For the back vowel case, the ranking looks 

similar to the one in the mixed vowel case, except for the contribution of F2o. The 

contribution of F2o is much smaller in the back vowel case than the mixed vowel case. 

 
F  B 

Attribute name Overall Contribution  Attribute name Overall Contribution 
Av-Amax23 20.0%  Av-Amax23 27.3% 

dF2 13.9%  Av-Ahi 15.6% 
Av-Ahi 10.8%  Ahi-A23 13.8% 

F2o 10.0%  dF2 13.7% 
F3o 7.9%  dF3 5.2% 
dF3 7.6%  Av3-A3 4.7% 

Ahi-A23 7.4%  Ehi-E23 4.4% 
Ehi-E23 4.8%  F1o 3.5% 

F1o 3.6%  F3o 2.3% 
Av2-A2 2.4%  Avhi-Ahi 2.3% 

CLS_DUR 2.3%  F3b-F2b 1.8% 
F2b 2.3%  dF2b 1.7% 

Avhi-Ahi 2.2%  CLS_DUR 1.3% 
dF3b 2.1%  F2o 1.3% 
F3b 1.9%  dF3b 1.2% 
dF2b 1.0%    

     
(a)  (b) 

Table 5-12: The overall contribution to the total separation of the acoustic attributes used for VC 
tokens in (a) the F dataset and (b) the B dataset 

 

5.8 Summary on the Contribution to the Place Classification of 

the Acoustic Attributes in Different Contexts 

In the above sections, the contributions to the place of articulation classification of the 

acoustic attributes used in different voicing and vowel frontness contexts were ranked. It 

was clear to see that the acoustic attributes that contribution the most to the place 

classification in most of the contexts was Av-Amax23. The contexts in which this was 

not true were CV tokens with unvoiced stop consonants and CV tokens with front 

vowels. In the former case, Av-Amax23 still contributed a lot to the classification but its 

contribution was overshadowed by that of cgF20a, which was the acoustic attribute that 

did very well for the place classification of unvoiced stop consonants. The latter case was 

the only one where Av-Amax23 did not contribute much to the place classification. 

While cgF20a, as just mentioned, was the biggest contributor to the place classification of 

unvoiced stop consonants, it did not contribute much to the place classification of voiced 

stop consonants. VOT, which did not seem to contribute significantly when voiced and 
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voiceless stop consonants were analyzed together, yielded a greater contribution when the 

two types of stop consonants were classified separately. This was due to the difference in 

the distributions of VOT of stop consonants with different voicing. Ahi-A23 always 

contributed significantly regardless of the contexts, but its contribution was less in the 

unvoiced and the front vowel cases for both CV and VC tokens. 

 

In general, the effects of information about the voicing and the vowel frontness on the 

contribution percentages and their ranking were smaller for the VC case than the CV 

case. In the former case, the contribution percentages and the rankings did not change 

much when the voiced and voiceless stop consonants were analyzed separately or when 

the tokens with front vowels and back vowels were analyzed separately. What caused the 

contribution percentages and ranking in the CV case to be affected by such information 

more than the VC case was the presence of certain acoustic attributes whose value 

distributions were expected to change significantly across different voicing and frontness 

contexts. As mentioned, these acoustic attributes were VOT and cgF20a. 

 

5.9 Chapter Summary 

The main purpose of this chapter was to evaluate the relative importance of each of the 

acoustic attributes for classification of the place of articulation of the CV and VC tokens 

in nine datasets. Linear Discriminant function Analysis (LDA) was used. It reflected the 

contribution of the acoustic attributes to the place classification in terms of the 

standardized discriminant coefficients. We found slightly different levels of contributions 

of the acoustic attributes used for the CV and the VC cases. In general, we found that in 

the CV case, all of the acoustic attributes used were significant to the classification. In the 

VC case, there were a couple of acoustic attributes that did not contribute much to the 

classification relative to the amount of contribution of other acoustic attributes, and they 

may be considered insignificant. For both cases, the acoustic attribute that contributes the 

most was Av-Amax23. Also, the burst-related acoustic attributes showed more 

contribution to the place of articulation classification than the formant-related ones. Some 

of the acoustic attributes that did not separate the three places of articulation well 



 158

individually did contribute to the overall classification at some significant level. Also, the 

contribution percentages of the acoustic attributes used in different voicing and vowel 

frontness contexts and their rankings were listed. When the information about the voicing 

of the stop consonant and the frontness of the vowel in each token was provided, the 

contribution percentages and their ranking changed depending on the context. Some of 

the changes were expected, while some were not obvious. The findings about the 

contribution to the place classification of the acoustic attributes found in this chapter 

should be useful in future attempts to customize the acoustic attribute subset to be used in 

different contexts.  
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Chapter 6  

Conclusion 

6.1 Summary and Discussion 

The main focus of this thesis is the study of the classification of stop consonant place of 

articulation, which is performed in a knowledge-based fashion. The success in such a 

knowledge-based classification will undoubtedly strengthen the idea of a knowledge-

based speech recognition system, which is believed by many researchers to be more 

robust with regard to variations in its operating environment and which resembles human 

speech recognition more than the traditional spectral-based and data-driven approach. 

 

Acoustic attributes that have potential for discriminating stop consonant place of 

articulation were chosen based on the simple tube model of stop consonant production, 

described in Chapter 2. These acoustic attributes capture the information believed to be 

relevant to the discrimination of the three places of articulation for English stop 

consonants, i.e. labial, alveolar, and velar. This information includes the spectrum shape 

of the release burst along with its amplitude relative to the adjacent vowels, the 

movement of the formant frequency structure of the adjacent vowels, the frequency 

concentration of the noise produced after the release of the stop closure, and some 

temporal cues. These acoustic attributes were introduced along with their descriptions 

and related measurement techniques in Chapter 3. Many of these acoustic attributes have 

been used by different researchers for discriminating the place of articulation for stop 

consonants with varied levels of success. Many of the earlier works in the literature 

studied a limit number of acoustic attributes, while some of the more recent research tried 

to utilize combinations of a larger number of acoustic attributes. While some of these 

works reported the potential of using these acoustic attributes to classify stop consonants, 

there is no extensive work on finding out the relative contribution of these acoustic 

attributes to the separation of the three places of articulation. 
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In this thesis, the discriminating ability of each of the acoustic attributes in the selected 

set was evaluated by observing the distributions of the values of each acoustic attribute 

for the three places of articulation. Visually inspecting the box-and-whiskers plots 

representing these distributions, which are shown in Chapter 3, one can qualitatively 

assess how well each individual acoustic attribute separates the three places. The 

significance of the differences among the distributions for the three places of articulation 

was tested using ANOVA. The results showed that the differences in the distributions for 

the three places in all of the acoustic attributes used in this study were statistically 

significant. This indicates that the difference in the place of articulation is actually 

reflected on how the value of each acoustic attribute is distributed. The relative values 

among the three places of each acoustic attribute observed from the box-and-whiskers 

plot was also compared with the relative values expected by the simple tube model. All of 

the trends expected from each of the acoustic attributes for the three places were found to 

be consistent with the observations from the box-and-whiskers plots. Still, there are some 

findings related to the distributions of values of some acoustic attributes that have not 

been fully explained in this thesis. Such findings should be investigated more extensively, 

if one would like to learn more about their relations with the theory. Studies of this kind 

should expand our state of understanding in human speech production. However, for the 

purpose of this thesis, the observation of the distribution of values of each acoustic 

attribute done in Chapter 3 has somewhat assured us that the measurements done in order 

to obtain these acoustic attributes gave us what we expected from the theory. 

  

The information about vowel frontness was found to alter the separabilities among the 

three places of articulation of the acoustic attributes. Some acoustic attributes could 

separate the three places better if the frontness of the vowels was known. This 

encouraged us to take the vowel frontness context, along with the voicing context, into 

account when the classification experiments were conducted in Chapter 4.   

 

The degree of separation among the three places for each acoustic attribute was examined 

using two quantifiers. The first one is the maximum likelihood classification error 

probability based on the probability distributions of the values of each acoustic attribute 
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for the three places of articulation. These distributions were constructed by assuming 

normal probability density functions, whose parameters were the associated sample 

means and sample variances. The other quantifier is based on the F-ratio, which 

represents the ratio between the amount of variation in the values of a particular acoustic 

attribute that is caused by the place effect to the amount of variation caused by the 

within-place error. These two quantifiers generally agree, i.e. an attribute that has a low 

classification error probability usually has a high F-ratio, and vice versa. The abilities of 

all of the acoustic attributes to separate the three places when each of the acoustic 

attributes is used individually are ranked in Chapter 3 according to the associated 

quantifiers. It was shown that both of the temporal attributes along with some of the 

formant-related attributes were poor in separating the three places of articulation, while 

all of the acoustic attributes that capture the spectral energy concentration after the 

release burst and some of the burst-related attributes were among the best acoustic 

attributes in discriminating among the three places. In general, the acoustic attributes that 

capture the spectral shape of the release burst did better than the acoustic attributes that 

capture the formant structure. Although many works in the literature, such as [Delattre, 

Liberman, and Cooper, 1955], [Alwan, 1992], and [Foote, Mashoa, and Silverman, 

1993], have emphasized the importance of formant movement, especially the second 

formant, to the place classification of stop consonants, our results support the findings in 

[Nossiar and Zahorian, 1991] and [Chen and Alwan, 2000], which state that the shape of 

the burst spectrum is a more superior cue than the formant movement for classifying stop 

consonants.  A similar conclusion was stated by Ali [2001], who used combinations of 

acoustic attributes to classify stop consonant and suggested that the role of formant 

transitions is secondary to the burst spectrum. Despite this mentioned consistency with 

other results in the literature, it is also possible that the inferiority of the formant-related 

acoustic attributes might be the result of our choice of acoustic measurements used to 

capture the formant information. Further studies could be done by introducing different 

methods for capturing the formant movement, such as parametric representations of the 

formant tracks.  However, with the set of acoustic attributes used in this study, the 

formant-related attributes, as well as the temporal cues, are clearly secondary to the burst-

related attributes.  
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In order to prevent redundant information contained among our acoustic attributes from 

corrupting our further analyses and classification experiments, a correlation analysis was 

performed in order to uncover possible redundant information. Some highly correlated 

acoustic attributes were identified within various frontness and voicing contexts. 

However, there was no evidence of cross-category highly correlated acoustic attributes. 

Across all of the contexts, Av3-A3 and Av2-A2 were found to be highly correlated to 

each other. This is not surprising due to the fact that both were calculated based on the 

amplitudes of the biggest peaks in two overlapping arbitrary frequency regions. Given a 

more accurate formant tracker, one could have chosen to use different acoustic attributes 

that measure spectral amplitude directly at the second and third formant frequencies of 

the release burst and the adjacent vowels. Specifically, Av3 and Av2 would be the 

spectral amplitudes of the second and the third formant frequencies of the adjacent 

vowels. And, similarly, A3 and A2 would be the spectral amplitudes of the two formant 

frequencies of the release burst. However, despite the need for a good formant tracker to 

measure these attributes automatically, the second and third formant frequencies could be 

located manually just for the purpose of investigating their disciminating abilities. This 

could be done in the future by using the same analysis techniques used in this thesis. 

Another set of highly correlated acoustic attributes includes the formant-related attributes 

that were measured at the voicing onset/offset of the adjacent vowels and at the release 

burst where the stop consonants are voiced. This high correlation is due to the usually 

short VOT of voiced stops. The fact that we have not found any evidence for cross-

category highly correlated acoustic attributes supports the common belief that robust 

recognition can be achieved by combining cues from various sources, such as bursts and 

formant transitions. 

 

The result from the correlation analysis served as a tool to aid in the selection of subsets 

of the acoustic attributes used for the classification experiments in Chapter 4. A set of 

rules, based on the correlation coefficients of the acoustic attributes, was used to restrict 

the number of all possible acoustic attribute combinations. Stop consonants with different 

voicing and vowel frontness contexts were classified using all possible acoustic attribute 
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combinations, in order to find the highest classification accuracies. This acoustic attribute 

selection is a ‘filter’ method performed on the same data that was used to obtain the 

classification accuracy. Although it is not a fair way to evaluate the best attribute 

combination for classifying unseen data, it allows us to evaluate the best classification 

accuracies our acoustic attributes can achieve. Leave-One-Out Cross Validation 

(LOOCV) technique was used to estimate the classification accuracies in all of the 

classification experiments. 

 

When stop consonants contained the release bursts, we could use the information about 

release bursts along with other information in the classification, and that gave us the 

classification accuracies that were mostly better than 90%. When stop consonants did not 

contain the release bursts, the classification had to rely only on the information of the 

formant structure of the adjacent vowels. The classification accuracies in this case were 

not as high as the case where the release bursts were available. However, there were 

some datasets that show rather good classification accuracies despite the lack of burst 

information. It was also shown in Chapter 4 that training the CV classifier on the CV 

tokens that had the same voicing and frontness contexts as the test tokens led to a better 

classification accuracy than training on any general CV tokens forming the training set of 

the same size. However, there was no evidence of significant classification accuracy 

improvement for the VC case when the frontness and voicing contexts were used. This 

implies that the place cues contained in the VC part are not as dependent on the frontness 

and the voicing contexts as the cues in the CV part. There are more factors on which 

some of our acoustic attributes are theoretically dependent. The classification accuracy 

might be, and is likely to be, improved, if these factors are taken into consideration in 

selecting the training data. An example of such factors is the [high] quality of the 

adjacent vowel. This factor is directly relevant to the attribute F1o. Therefore, one would 

expect the value distribution of F1o measured from tokens that are adjacent to high 

vowels to be different from the one measured from tokens with non-high vowels. 

Consequently, training the classifier on the data with the same [high] context as the test 

tokens will possibly improve the classification result due to less variation in the F1o 

dimension.  
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In the case of stop consonants that were located in between two vowels, we had the 

advantage by being able to use information on the formant structures going into the 

vowels on both sides. Two methods were used to classify such stop consonants separately 

based on the information on their right side and left side. The probabilities of each place 

of articulation proposed by the two classifiers were then combined in order to obtain one 

final hypothesis about the place of articulation. Such a combination yielded the best 

classification accuracy of 95.5%. 

 

Apart from the classification accuracy from the combined classifiers, this experiment also 

provided us with the classification accuracies obtained from using the information from 

the VC part and the one obtained from using the information from the CV part evaluated 

on the same dataset, i.e. stops that have vowels on both sides. When all of the cues, both 

burst-related and formant-related, were used, we found that using the CV information 

yielded a better classification accuracy than using the VC information, and the difference 

is statistically significant. This shows that the information generated during the process of 

moving into the following vowel is more reliable than the one out of the preceding vowel, 

given that burst information is included in both cases. And when the VC and CV 

classifiers disagree on the place of articulation of a stop consonant, most of the time our 

combined decision favors the CV decision. This behavior is consistent with the findings 

in many of the studies of place assimilation in stop consonant clusters [Fujimura, Macchi, 

and Streeter, 1978][Dorman, Raphael, and Liberman, 1979][Streeter, and Nigro, 

1979][Ohala, 1990]. These studies have found that human listeners generally hear the 

consonant of the CV part when the place cues for VC and CV are in conflict. Such a 

scenario is similar to when we have disagreement on the decisions from the VC and CV 

classifiers.    

 

The notion of combining scores obtained from two classifiers, each using information on 

a different side of the stop consonant, can be extended to multiple classifiers, taking in 

different types of information. Multiple sources of information could be experimented 

with. For example, one might be interested to see the combined classification result of 
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stops in VCV contexts, if we have several classifiers, one of which uses only the release 

burst information, another uses the formant transition information on the right, and a third 

one uses the formants on the left. This way, we have the flexibility in adjusting the 

weights applied to the scores from individual classifiers. However, the performance of 

each classifier might not be as good due to the reduction in the amount of information 

provided to each classifier. This would also allow us to combine the scores from a 

spectral-based classifier and a knowledge-based classifier together.  

 

At the end of Chapter 4, we evaluated the classification accuracy on all of the qualified 

stop consonants in the database. When a particular stop consonant was to be classified, its 

associated contexts were taken into consideration. These contexts include the voicing of 

that stop consonant, the frontness of the adjacent vowel, and the presence of the release 

burst, as well as the presence of vowels preceding and following the stop. The acoustic 

attribute subset and the training data used in the classification of each stop consonant 

were selected based on these contexts. Stops that had vowels on both sides were 

classified using the combined scores obtained from information on both sides. The place 

of articulation classification accuracy of 92.1% was achieved. It was pointed out that the 

overall classification accuracy could be improved significantly if stop consonants in VC 

context with no release burst were classified more accurately. Although the stop 

consonants involved in this classification are somewhat restricted, e.g. only the stop 

consonant that has at least a vowel segment adjacent to it is included in this study, and 

there are stop consonants that were intentionally left out due to significant gestural 

overlapping, the achieved classification accuracy of 92.1% is still encouraging, given that 

additional processing could be developed in the future to handle the left out cases. For 

example, a flap detector could be developed in order to identify all of the flaps before 

trying to determine the place of articulation. 

 

Compared to the place classification accuracy of 85% for syllable-initial stops obtained in 

[Stevens, Manuel, and Matthies, 1999], we achieve an approximately 8% higher 

classification accuracy for stops regardless of syllable structure. In [Stevens, Manuel and 

Matthies, 1999], six acoustic attributes, describing the spectral shape of the release burst 
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along with some formant transitions, were used with a statistical classification method 

similar to the one used in this study to classify syllable-initial stops. In this study, we 

used approximately seventeen acoustic attributes, including the six attributes used in  

[Stevens, Manuel and Matthies, 1999], to classify stop consonants in broader contexts. 

The frontness information was used in [Stevens, Manuel and Matthies, 1999], while, in 

this study, we also used the voicing information. The improvement gained was mainly 

due to the introduction of additional acoustic attributes, which allowed more of the 

relevant information to be captured. 

 

Hasegawa-Johnson [1996] used 10 acoustic attributes in context-dependent place 

classification, which resulted in 84% classification accuracy. Direct comparison should 

not be made on the classification accuracies due to the difference in the database used. 

Still, it is worth noting the difference in utilizing context information. Hasegawa-Johnson 

used 36 different context classes, including all possible combination of 2 genders and 18 

right contexts, while we used contexts in a broader sense, i.e. voicing of the stops and 

vowel frontness. The fact that Hasegawa-Johnson used a large number of context classes 

leads to a lack of generalization of the training data, and the need for considerably more 

training materials hampers the classification accuracy. Also, both in [Hasegawa-Johnson, 

1996] and in [Stevens, Manuel, and Matthies, 1999], the acoustic attributes used for each 

context class were fixed, while in our study here, we have found in the attribute subset 

selection in section 4.1.1 that using different acoustic attribute subsets led to different 

accuracies, although not all of the acoustic attribute combinations gave significantly 

different classification accuracies.   

 

In [Ali, 2001], the place classification accuracy obtained is 90%. There are both different 

and similar aspects between [Ali, 2001] and our work. Although the exact measurements 

from the speech signal are different, both studies generally used rather similar 

information on the spectral shape of the release burst, formant transitions, and some 

temporal cues, as well as the frequency of the noise in the release burst region. In this 

study, this information is contained in the acoustic attributes that were used as the 

classification vector of a statistical classifier, while in [Ali, 2001], the information is used 
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for making decisions in a decision tree with hard thresholds, also learned from the 

training data. Despite the difference, both methods of classification can be considered 

knowledge-based methods and the resulting parameters in both classifier models, i.e. the 

thresholds and the positions of decision nodes in the decision tree, and the canonical 

weights used in the corresponding analyses in our study, should help improve our 

understanding of the acoustic-phonetic characteristics of the stop consonants. Such a 

benefit is hard to obtain, if at all possible, from a spectral-based data-driven approach. 

 

Some of the stop consonants found in the transcription of the utterances in the SP 

database were left out of the classification in this study, according to the restriction 

described in section 3.1. The number of these excluded stops is around 35% of the total 

number of stops in the database. As mentioned, for the qualified stops, which are around 

65% of the total, the classification accuracy obtained is 92.1%. Therefore, if the 

classification accuracy of the excluded set can be obtained, the overall classification 

accuracy for all of the stops in the SP database can be calculated. Figure 6-1 shows the 

total classification accuracy as a function of the accuracy obtained from classification of 

the excluded stops. If we can perfectly identify the place of all of the excluded stops, the 

total classification accuracy of 94.8% will be obtained. It is reasonable to say that this is 

hardly possible. The reason is that the place classification of some of the excluded stops 

should be more problematic than the qualified stops due to high level of gestural overlap 

and the lacking of formant structure information. Although it is relatively easy to detect 

flaps [Ali, 2001], whose associated places are alveolar, flaps constitute only a small 

fraction of the excluded set compared to stops that do not have any adjacent vowels. 

Therefore, obtaining perfect classification on the excluded set should not be a reasonable 

expectation. On the other hand, if we misidentify all of the places for the excluded stops, 

the total classification accuracy will be as low as 60.1%. In order to obtain the total 

classification accuracy of 93.3%, which was reported by Halberstadt [1998] as human 

performance in place classification of stop consonants, we should expect a classification 

accuracy of 96.3% for the excluded set, which is again higher than what we have 

achieved for the qualified stops. This implies that there is still some room for 
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improvement on our classification method in order for the classification accuracy to meet 

the human level.  

 

 

 
 

Figure 6-1: Relationship between the classification accuracy of stops in the entire SP database and 
the classification accuracy of the excluded stops 

 

Finally, in Chapter 5, the relative importance of each of the acoustic attributes used the 

place of articulation classification of the CV and VC tokens, when combinations of these 

acoustic attributes were used, was evaluated by means of Linear Discriminant function 

Analysis (LDA). The voicing and vowel frontness contexts were taken into consideration 

in the analyses. Standardized discriminant coefficients reflected the contribution of the 

acoustic attributes to the place classification. We have found that in the CV case, all of 

the acoustic attributes used were significant to the classification. However, in the VC 

case, there were some acoustic attributes that did not contribute much to the classification 

relative to the amount of contribution of other acoustic attributes. These acoustic 



 169

attributes may be considered insignificant and can be omitted without sacrificing a great 

deal of classification accuracy.  

 

For both cases, the acoustic attribute that contributes the most was Av-Amax23. Also, the 

burst-related acoustic attributes showed more contribution to the place of articulation 

classification, using these specific acoustic attribute subsets, than the formant-related 

ones. This is consistent with discriminating ability of each individual burst-related and 

formant-related attribute, which has been mentioned earlier. Some of the acoustic 

attributes that did not separate the three places of articulation well individually did 

contribute to the overall classification at some significant levels. The contribution 

rankings varied by the voicing and vowel frontness contexts, and some of the ranking 

discrepancies in different contexts can be simply explained by acoustic-phonetic 

knowledge. Therefore, this shows that, given certain contexts, one can use acoustic-

phonetic knowledge to identify the relative importance of the acoustic attributes a priori. 

The relative importance should serve as a guideline for choosing the appropriate sets of 

acoustic attributes for the place classification of stops in those contexts.   

 

6.2 Contributions 

 

Experimental data of the acoustic attributes 

This study provides experimental data on the distributions of the acoustic attributes for 

the three places of articulation. The distributions among the three places of articulation 

show consistency with the expectations formulated from the simple tube theory. One can 

also observe these acoustic measurements more extensively to gain more understanding 

about human speech production process. Furthermore, labeled with their corresponding 

segments, the associated time points in their corresponding utterances, as well as some of 

the contexts, these acoustic measurements can be used in studying other aspects of stop 

consonants, such as voicing and some characteristic of flaps. 
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Quantitative measurements of the discriminating abilities of the acoustic attributes 

Two quantifiers used in this study show that the center of gravity of the power spectrum 

of the noise after the release burst shows the greatest degree of separability among the 

three places of articulation in both CV and VC contexts. Also, acoustic attributes that 

carry information about the release burst can separate the three places more than the ones 

that carry the formant structure information. This finding agrees with some of the studies 

in the literature, (at least in the absence of noise). 

 

Stop consonant place of articulation classification results 

This study provides experimental results on various classification of stop consonant place 

of articulation using combinations of acoustic attributes. We estimate the classification 

accuracies that can be achieved by using a knowledge-based method. The finding is 

encouraging in terms of the achieved accuracies, although stops in broader contexts 

should be studied and handled in the future. It also shows the importance of the voicing 

and vowel contexts to the classification accuracy. Furthermore, this study also underlines 

the possible improvement in classification accuracy when classifiers are aware of various 

contexts of each stop consonant.  

 

Results on the contributions of different acoustic attributes to the separation of the three 

places of articulation 

When combinations of acoustic attributes are used for the classification, Av-Amax23 is 

among the biggest contributors to the classification results across almost all of the 

voicing and vowel frontness contexts. And the fact that the burst-related acoustic 

attributes show more contribution to the place of articulation classification than the 

formant-related ones strengthens the claim that release bursts are more crucial to the 

identification of stop place than formant transitions. The discrepancies in the ranking of 

different contexts emphasized the need for taking contexts into consideration in choosing 

appropriate acoustic attributes. 
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Exploratory framework for determining the value of distinctive features 

The series of statistical analyses performed in this study can be applied to the study of 

other classes of sounds, or stops in different noise conditions.  For example, if one wishes 

to study different sets of acoustic attributes for determining place of articulation for 

fricatives, or for detecting nasals from other classes of sounds, it could be a good practice 

to observe the value of each acoustic attribute and evaluate its ability to do the desired 

task. Then, one might want to learn about redundant information and avoid highly 

redundant attributes before performing classification experiments using appropriate 

combination of acoustic attributes. Finally, to gain more insights about the contribution of 

each acoustic attribute, LDA could be used. Other techniques might be applied to study 

the role of each acoustic attribute further. Some of the techniques that should give extra 

insights about this include Principle Component Analysis (PCA), and Artificial Neural 

Networks (ANN). 

 

6.3 Future Work 

The utterances in the database used for this study were recorded in a quiet room. The 

discriminating ability of each acoustic attribute, the classification accuracies, and the 

contribution of each acoustic attribute to the classification accuracy were determined 

under a clean speech condition. It is of interest to see how these change in the presence of 

noise, since one of the benefits of the knowledge-based approach to automatic speech 

recognition is that the attributes used for determining the underlying sounds are 

meaningful, and one could use the knowledge to manipulate these attributes according to 

the operating environment. For example, the burst-related attributes, which were shown 

to separate the three places of articulation better than the formant-related ones in the 

clean speech condition, might not be as useful for the classification if some of the 

features in the burst spectrum that are important in determining the burst-related 

attributes are overwhelmed or masked by noise. Figure 6-2 shows two spectrograms of 

the same utterance with two different noise conditions. The top spectrogram is obtained 

without added noise, while the bottom one is obtained from the signal that is mixed with 
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white noise at 28dB Signal-to-Noise Ratio (SNR)3. The movement of the first three 

formants can mostly still be determined even in the presence of this noise. However, most 

of the high frequency region of the release bursts is masked by the noise, at least for the 

simple spectral analysis used for making the spectrogram. Therefore, in this particular 

noise condition, one would expect the burst-related attributes that require measurements 

in the high frequency region to lose some of their discriminating ability, unlike the 

formant-related attributes that seem to be unaffected by the noise in this particular case. 

Figure 6-3 is a plot of some preliminary data showing the degradations of the 

discriminating ability of two burst-related acoustic attributes, which are Av-Ahi and Av-

Amax23, in white noise at different SNR levels. Both attributes show rather similar 

discriminating abilities in clean speech. However, Av-Amax23 does not degrade much in 

the noisy condition of up to 25dB SNR, but Av-Ahi shows a greater level of degradation 

in the same noisy condition due to the corrupted Ahi. This data shows that the relative 

importance of each acoustic attribute in classifying place of articulation changes with 

noise condition. Thus, applying a methodology similar to that presented in this study to 

speech in different types of degradation, e.g. speech different types of noise, speech in 

reverberation, and more casual speech, should be useful in both the development of a 

better stop place classification module and the understanding of human perception of stop 

consonant place of articulation. 

                                                 
3 Here, the Signal-to-Noise Ratio is the ratio between the RMS peak of the signal of interest and the 

standard deviation of the white noise.  
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Figure 6-2: Spectrograms of an utterance transcribed as ‘Go get it at the bookstore-’ with no added 
noise (Top), and with 28dB Signal-to-Noise Ratio white noise (Bottom). 
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Figure 6-3: A scatter plot comparing the ML classification error probabilities based on Av-Ahi and 
Av-Amax23 for clean speech and for speech in different levels of white noise   
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Appendix A 

Sentences in the SP database 

Pat ate it all up 
To cope with the pain, Garcia dopes with a whole pack of painkillers 
Bob should buy the two big books 
A bug sped across the table and ended up in the jug 
Look at the cute boy with a bag 
That spiky head geek likes to put beads around his right leg 
Pete and Abe had a bad day today 
Copy cats cause the state cops a lot of headache 
A big dog bit a dead duck at the gate 
The logo was put on all of Bob’s company's mugs, cups and bowls 
A guard at the gate is going to get all the baggage 
Peggy has a piece of cake with a bottle of coke 
Dobbie caught a lot of bees and bugs but not any doves 
Kate hit a gecko by the pool with her bag 
Peggy and Rebecca go gambling with Pat in Vegas  
Do not let the bed bugs bite the boys 
Go put on gold lipstick, get a hip skirt, and dye your hair pink  
A gold beetle bug logo is too good for Peggy 
Becky took her puppy to Malibu two days ago 
The red dot on that map locates where Dudley station is 
Taking a cab to Pawtucket could cost eighty bucks 
Dobbie beats that poor boy for stepping on her toe 
Bo bought a lot of goodies, but Gary bought only a geeky looking mug 
Could Ted have a pack of Thai tea? 
Despite its appearance, you need some guts to get this job done 
Put a black dot and a red tick on the tea-pot at the gate  
The jug is made of stone but the mug is a skull 
Todd did not take the key but he took the kite 
A bunch of bugs in Garcia's code could kill the whole system 
Stop digging. It's too deep already 
The kids are looking at a couple of beautiful kites in the sky 
Koby adds some peas and an egg into the stone pot 
Could we book tickets to Cuba, Ghana and Tibet? 
Bob and Bo go to beg Gary to give them the gold bug 
You can take the cookies and the cake but do not eat the pie  
The tool kit keeps beeping due to the coke stain 
The kids hit that duck with their boots 
Garcia is recording beautiful pop music played by a big band 
Where did you go with Kate last autumn? Malibu, Pawtucket or Cape Cod? 
The blood from the goose's leg is dripping into the test tube 
Dick wishes he could step into the cockpit of his toy robot  
Do Bob and Dobbie take that cop to the dock? 
Katie poked a poor gibbon with a pike 
This kind of cake is too tough for Koby to bake 
Instead of that Prada golden bag, Garcia gave a Gucci bag to Goldie 
Dad does not eat an egg pie because it gives him a stomach ache 
Dobbie and Debbie have gone to Cuba and have not come back 
A cop came and towed away Beck's white truck 
A toy toad was tied to a test tube in Debbie's lab 
Kitty the cat put her paw into the bowl of cookie dough  
That guy looked a bit odd, and so did his kid 
God likes a guy who does good deeds 
Popular types of toys have been out of stock for a couple of weeks 
Dye that egg pink and put it in the kettle on that teak table  
That little puppy eats like a big pig 
Bo goes to Ghana to catch a gold bug 
Pat's daughters bike all day and jog all night 
A goose takes a pack of peanuts out of Beck's pocket 
Bob should look up how to cook the potpie in his cookbook 
A cop caught Ted stealing a box of doughnuts from the store  
Go grab some goodies from the Gucci store, and do not forget the bag 
Peggy pays for the pigs and the goats with the beads 
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Tapping on the side of that cube will open up a big gap on its top  
While the gibbon was smoking his pipe on the dock, the gecko took the stolen boat  
Did you go to Cape Cod by car, bike or boat? 
The hawk put its beak into the bucket 
Eighty two ducks are resting on that muddy bank 
Goldie got two good mugs as a gift from Peggy 
Ducks and geese could be pets but pigs should not 
Peggy bought her kids a bucket of cookies and two bottles of coke  
Robots and cars are popular toys among little boys 
Any good cops can cope with the case that happened at the top of the hub  
Pat's cooking is so bad that her food makes Pete puke 
A speed boat hit a rock and sank into the bottom of the bay  
An ape picked up a dead bat by the pool 
Kids cannot stay in bed all day long 
Koby put a big logo on the podium in his pub 
Debbie's kid hides his muddy boots in his backpack 
A Thai guy got into that big store a while ago  
Two tired goats were found in the cockpit  
Today is a bad day to go apple picking 
Todd has gone to Malibu since the last October 
Do not forget the code for the front door when you come back 
Let's go to the pub in the odd side of the town 
Go and pick some peaches by the pool for the fruit pie 
Greg caught a full bucket of cod by using an odd type of bait 
Beck tightens the band around the big toy box 
A stupid guy said that a cock could lay eggs 
The boat was stored in the cabin by the dock 
Gibbs and Gary beg Peggy to find bugs in their code  
Take two buckets to the tap in front of the gate 
Why did Abe put that cap in the cubic package?  
Dick is too uptight to let himself be happy 
Is Sapporo popular for its hot tubs?  
Beck taught his daughter how to play with a kite 
Katie puts the tips into the big cup on that oak table 
Bandit robs the cookie store next to the pub 
Becky and the boys have finished packing their bags for the Cape Cod trip 
All of the boats in the bay were brought back to the docks 
A total of sixty goats were on the dock today 
Do not dump the gecko until you get to Ghana 
Todd tips Pete to play pool at the pub and get paid 
Abe acted like a boy when he did a bad deed 
That geek is paid big bucks to build that hi-tech tool 
The dog with a black dot on the tip of its tail is digging a deep hole 
A pack of cokes was put on the podium by some bad kids 
Go get it at the bookstore, not at the pub 
This type of kit is odd and out-of-date 
Bob got Katie a good book about a spooky goat in Tibet 
The code was published in that book a decade ago  

 

 

 


