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ABSTRACT
The primary goal of this research is to develop theoretical tools for analysis,

synthesis, and application of primitive manipulator operations. The primary method
is to extend and apply traditional tools of classical mechanics. The results are of
such a general nature that they address many different aspects of industrial robotics,
including effector and sensor design, planning and programming tools, and design
of auxiliary equipment.

Some of the manipulator operations studied are:

1. Grasping an object. The object will usually slide and rotate during the
period between first contact and prehension.

2. Placing an object. The object may slip slightly in the fingers upon contact
with the table as the base aligns with the table.

3. Pushing. Often the final stage of mating two parts involves pushing one
object into the other.

In each of these operations the motion of the object is determined partly by the
manipulator and partly by frictional forces. Hence the theoretical analysis focuses
on the problem of partially constrained motion with friction. When inertial forces
are dominated by frictional forces, we find that the fundamental motion of the
object-whether it will rotate, and if so in what direction-may be determined by
inspection. In many cases the motion may be predicted in detail, and in any case it
is possible to find bounds on the motion. With these analytical tools it is sometimes
possible to predict the outcome of a given manipulator operation, or, on the other
hand, to plan an operation producing a given desired outcome.

Thesis Supervisors: Tomas Lozano-Perez and Berthold K. P. Horn

Titles: Assistant Professor and Associate Professor, respectively, of
Computer Science and Electrical Engineering
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Chapter 1

Introduction

Grasping of an object by a computer-controlled manipulator is an important

but poorly understood operation. It is important because it usually precedes any

attempt by the manipulator to move an object, and because it is the point at

which uncertainty in the position/orientation of an object is first encountered. It

is poorly understood in that we are unable to predict reliably the consequences of

an attempted grasping maneuver, and are also unable to plan reliably a successful

grasping maneuver for a given situation. The purpose of this thesis is to develop

a thorough understanding of grasping, especially including the ability to predict

automatically the outcome of an attempted grasping motion and the ability to plan

automatically a grasp of an object whose position/orientation is only approximately

known. The approach taken is to formulate each stage of a grasping motion

as a problem in mechanics. The problems are complicated due to the largely

unpredictable frictional forces, but nonetheless yield simple, useful results.

Of the many aspects of grasping, we focus on uncertainty in the position and

orientation of the object to be grasped. An important result of the thesis is the

identification of a number of methods for eliminating uncertainty during the task

without sensory feedback; indeed, without adaptive motion of the manipulator.

Most grasping motions deal with uncertainty to a degree, but it is now possible to

apply this idea confidently to situations involving much greater uncertainty, and to

tasks other than grasping, such as placing objects on a table top.

There are a number of manipulator operations, including some stages of a grasp

motion, which are kinematically identical. For example, figure 1 shows an early
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stage of a typical grasp motion. Initial contact has occurred between one of the

fingers and a vertex of the object, but no other contacts have yet occurred. Until at

least one more contact occurs, the object's motion is only partly determined by the

motion of the finger, the remaining degrees of freedom being determined primarily

by frictional forces. The figure could just as well represent a box being pushed into

a desired location on the floor. Other operations in this class include: aligning two

or more objects much as one straightens a pack of cards; placing an object in the

hand onto a table; and of course pushing and grasping. All of these operations

involve planar motion of an object, and occur without having the object rigidly

held in the hand.

The goal of this thesis is to improve our understanding of this class of opera-

tions,.thereby supporting the development of better robotic manipulation systems-

including application programs, general robot planning and programming tools,

auxiliary machinery, and the manipulator itself. We will begin by working through

an example which illustrates the utility of the theory to be developed in chapter

two.

1.1. Analysis of an Example Grasping Motion

To demonstrate the nature and utility of the theory, we begin by proving

a particular grasping operation will succeed if certain initial conditions are met.

This grasping operation exhibits the property of eliminating all uncertainty in the

position of the object as the operation proceeds. It was invented by R. P. Paul and

appears on film [Pingle et. al. 1974]. The motion is illustrated in figure 2. The

object is part of a hinge which is to be assembled. The hand will grasp the hinge-

plate with the leading edge of each finger contacting an inside corner formed by

the hinge-sleeves. The interesting thing about this maneuver is that it is essentially

an open-loop motion. The hand moves at a fixed rate in a straight line while the

fingers close at a fixed rate. The hand deliberately moves past the range of possible

positions of the hinge-plate. At some point in its trajectory it strikes the hinge

and pushes it forward as the fingers close. The motion is constructed so that the

hinge will align itself with the fingers, eliminating uncertainty in orientation. The

remaining uncertainty in position is eliminated by a self-centering action which
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Figure 1. Typical Problem

occurs as the hinge-sleeves are squeezed between the closing fingers.

The progress of the grasping operation through stages is shown in figure 3,

showing the fingers and hinge-plate in cross-section. Beginning with no contact

(stage 0), the fingers proceed in the direction shown. When one of the fingers

strikes the hinge-plate, the hinge-plate will begin to move on the table, rotating

with respect to the fingers (stage 1). Eventually the hinge-plate rotates to contact

the second finger, which initiates stage 2. In stage 2, the hinge-plate translates,

while one or both of the fingers slides towards the sleeves. Stage 3 occurs with one

sleeve in contact with a finger, and complete prehension occurs when the second

finger contacts its sleeve.

That is what is supposed to happen. Our purpose is to find a set of initial

conditions which guarantees that this sequence of events actually takes place. The

first condition is a geometric one: the initial position/orientation of the hinge-plate

7
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Figure 2. Hinge grasping

must ensure that initial contact is between the leading edge of one finger and the

corresponding edge of the hinge-plate. The second condition is that the contact

must occur early enough in the motion that the fingers have not closed too much.

This condition is a complicated one, depending on the initial position of the hinge-

plate, the orientation, the finger closing speed, and on the rate at which the hinge-

plate will rotate as the grasping motion proceeds. Conditions on the initial finger

separation and the finger closing speed are postponed to a more detailed discussion

in section 3.3.

Thus we are assured that the grasping operation successfully reaches stage

one, so that one finger is in contact with the appropriate edge of the hinge-plate.
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We wish to ensure that the hinge-plate will rotate in the proper direction until

contact with the second finger occurs. Without loss of generality, we assume the

initial contact is between the hinge-plate and the finger on the right. For this step,

a simple construction is sufficient (figure 4). From the contact we construct the

normal to the hinge-plate edge, and also lines at an angle from the normal equal

to the arc-tangent of the coefficient of friction. The area between these two lines

is the cone of friction. We also indicate the center of gravity of the hinge. It

will be proven in the next chapter (theorem 11) that the hinge must rotate counter-

clockwise if the friction cone passes entirely to the right of the center of gravity.

With the center of gravity as shown, the friction cone will pass to the right of the

center of gravity no matter where on the edge the finger is. Hence the hinge-plate

must rotate to contact with the second finger.

Theorem 11, and most of the other results of chapter two, make two assump-

tions which must be included in this verification. First, it is assumed that the

frictional forces obey Coulomb's law. Second, it is assumed that frictional forces

dominate the inertial forces arising from acceleration of the hinge-plate. In typical

manipulator grasping motions*these assumptions are valid, provided the velocity of

the fingers is not excessive. In section 2.5 a simulation shows the theory is very

accurate at a finger speed of 20 cm/sec or less.

Stage two commences when the second. finger makes contact with the hinge-

plate (figure 5). We can guarantee that stage three will be reached if we can show

that the orientation of the hinge-plate is stable during stage two. Again using the

cone of friction argument, it is clear that the hinge-plate cannot rotate. If a rotation

about one of the finger commences, the deviation is immediately corrected by a

rotation in the opposite direction. Since the fingers are coming together, eventually

one of them will contact its hinge-sleeve. This signals the commencement of stage

three.

It may appear that the analysis of stage two also applies to stage three, but

the friction cone at the contact with the left finger is no longer applicable because

the finger can no longer slide along the edge of the hinge-plate. Instead of using

the friction cone, we must use the line of pushing, that is, the line parallel to the
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Figure 4. Analysis of stage one. a is the angle of friction: tan 1 Y

Figure 5. Analysis of stage 2.
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Figure 6. Analysis of stage 3.

motion of the finger, drawn through the contact point. In figure 6 we have shown

the left finger in contact with the left sleeve. We wish to show that the hinge-plate

orientation is stable, so that it will be preserved until the right finger contacts its

sleeve. A small counter-clockwise perturbation will be corrected, as before, because

the line of pushing passes to the left of the center of gravity, causing a clockwise

rotation. Hence the other finger will contact its sleeve and prehension will be

obtained, with the object in a completely determined position and orientation.

But what if the first finger slides into contact with its hinge-sleeve before the

second finger contacts the hinge-plate? The situation is illustrated in figure 7. With

the finger in the corner formed by the sleeve and the other edge, the condition for

proper rotation is that the line of pushing pass to the right of the center of gravity.

If this condition is satisfied stage three will be reached, and the rest of the analysis

proceeds as before.

To summarize, the initial conditions for this operation are:

1. The initial position/orientation must ensure initial contact between one

12



Figure 7. Analysis of stage 2a.

finger and the corresponding hinge-plate edge.

2. Conditions on the initial.finger separation and the finger closing speed

must be satisfied (postponed to section 3.3.)

3. The friction cone, drawn from any point on the hinge-plate edge, must

not include the center of gravity of the hinge-plate. This condition is

independent of the hinge-plate orientation.

4. The line of pushing, drawn from the junction of the hinge-sleeve and the

hinge-plate edge, must pass outside the center of gravity of the hinge-

plate. This constraint is dependent on the details of the hinge's motion,

since the condition is only active when the finger hits the junction of the

hinge-sleeve and the edge of the hinge-plate. However, it is sufficient that

it hold in the initial orientation of the hinge-plate.

This verification demonstrates a deep understanding of the hinge grasp program.

We know why it works, and can find conditions which guarantee success of the

program. We can also construct similar grasping maneuvers for other objects.

Figure 8 shows three different "grippers", and the associated grasp motions, which
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will grasp a block and at the same time completely constrain its position and

orientation. Figure 8a is analogous to the hinge grasp example analyzed above,

except that initial contact is between an object vertex and a finger edge rather than

between a finger vertex and an object edge. It is interesting that all of the orienting

and positioning of the block may be accomplished with one finger, given the proper

finger trajectory (figure 8b). The other finger is only necessary for prehension.

Figure 8c is similar except that instead of a single specially-shaped finger we use

three fingers from a general-purpose dexterous gripper, with one additional finger

required for prehension.

1.2. Discussion

The long-range goal of our work is to develop a deep understanding of manipula-

tion. The structure of such an understanding should comprise:

o A comprehensive set of manipulation operations. This set of operations

should provide a language capable of describing any desired manipulator ac-

tion. There should be at least a few levels of operations, each level composed

of operations at lower levels.

* The ability to predict the outcoime of a given operation in a given situation.

The primary application of this ability is in verifying that a given manipulation

will produce a desired outcome. This verification may take the form of a proof

using logical assertions and rules of deduction, or it may be a simulation, which

produces a model of, the outcome of the operation, to be compared with the

desired outcome. This ability is useful because (1) manipulator programs can

be tested without the use of a manipulator, (2) design of a manipulator can

be tested without the expense of constructing it, and (3) manufacturability

aspects of a new product can be tested during the initial design of the product.

* The ability to recognize an observed instance of an operation. There

are two applications of this ability: study and programming. Our ability to

interpret human manipulation is limited by our lack of fundamental theoretical

knowledge of manipulation. Our ability to learn from human manipulation

is dependent to some degree on our understanding of the basic methods of

14
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Figure 8. Grippers
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producing motions. Recognition of operations is also relevant to the problem

of programming manipulators. A number of circumstances arise in which it is

much easier to "show" the robot what to do than it is to "tell" it what to do.

[Lozano-Perez 1982]

0 The ability to plan an operation obtaining a given outcome Zn a given

situation. The primary advantage of a better understanding of manipulation is

that robot planning and programming will be improved. Our present capacity

to synthesize successful robot programs relies on a combination of intuition,

trial and error, and individual experience. Developing a theoretical basis for

manipulator planning provides valuable conceptual tools to human program-

mers, and allows some of the planning work to be performed automatically.

0 The ability to implement the operations on a robot. A manipulator opera-

tion is useful in robotic manipulation only if it can be performed by robots.

It is instructive to try to fit the present state of manipulation into this structure.

There are five low-level manipulator operations which have been extensively studied.

The first three of these are:

MOVETO. This is clearly the best understood manipulation primitive. There

are two versions of this operation, depending on whether an object is

held in the gripper or not. The goal of the operation is to move the

object or the robot from its present position/orientation to a specified

position/orientation.

GRASP. This operation assumes that the gripper is perfectly positioned so

that the object will not move as the fingers close. The goal of the operation

is to totally constrain the position/orientation of the object relative to the

hand by closing the fingers.

UNGRASP. This operation assumes that the object is held by the gripper,

but that the object position is stable even without the gripper, hence

opening the gripper doesn't move the object.

These operations form a language which is comprehensive and well-understood only

in a very weak sense, because there is no provision for uncertainty. It is necessary

16



to assume that the world is composed of rigid objects, that all initial positions

and orientations are precisely known, and that the robot is a perfect positioner.

Given these assumptions all of the abilities listed above have been attained to some

extent. Simulations have been demonstrated [Meyer 1981, Soroka 1980], and some

aspects of the planning process have been successfully automated [Lozano-Perez

1980]. Programming a robot by leading it through a task constitutes recognition

of the primitives, although recognition is essentially trivial in a universe containing

only three objects. Many industrial manipulator systems and most research systems

implement the three primitives. So the three primitives are fairly well unuerstood.

Unfortunately, the inability to deal with uncertainty is a severe limitation when

real manipul ation tasks are addressed.

The three-primitive language can be augmented by the addition of two other

operations, which are useful in many situations involving uncertainty:

MOVE-UNTIL-TOUCH. The robot moves in a stated direction until a specified

sensor or combination of sensors signals that contact has occurred.

COMPLIANT-MOVE. The robot executes a motion while accommodating to

position constraints due to contact with an object.

For MOVE-UNTIL-TOUCH there has been some work in simulation [Meyer 1981], recog-

nition [Summers and Grossman 1981], and automatic planning[Taylor 1976], al-

though it lags the work on the first three primitives considerably. For COMPLIANT-

MOVE, there has been some work on automatic planning [Mason 1981]. Both primi-

tives have been implemented on research manipulators [Bolles and Paul 1973,

Shimano 1978, Silver 1973, Finkel et. al. 1974, Goto et. al. 1974, Hanafusa and

Asada 1977a, Inoue 1971], and MOVE-UNTIL-TOUCH has been implemented on a few

commercial manipulators. These operations are useful for dealing with small errors

in the placement of objects, by allowing the manipulator to adapt to perceived force

or touch feedback. However, large uncertainty in object placement renders these

strategies useless, because if they touch an object they are unable to interpret the

information obtained.

In summary, our present understanding of manipulation is limited to situations

17



involving little or no uncertainty, either in the robot, in the shape of parts, or in the

placement of parts. This observation is corroborated by industrial practice-most

robot assembly requires accurate robots and accurately oriented and fed parts. The

drawbacks of this limitation are considerable. Even though a robot is a general-

purpose positioning device, easily programmed for new tasks, it must be surrounded

by peripheral equipment-orienters, feeders, and the gripper-which must be de-

signed and constructed anew for every application. This situation compromises the

advantages of industrial robots over fixed automation: development cycles for new

products are lengthened, and capital expenditures for new equipment are required

for major changes.

There are two approaches to alleviating our inability to cope adequately with

uncertainty. One is to study further the five primitives outlined above, with the

hope that they will still form a "comprehensive" vocabulary when our model of

the world is extended to include uncertainty. The other approach is to identify

and study new primitives which are more suitable for dealing with uncertainty.

This thesis identifies a. class of manipulation primitives which ' re particularly ap-

propriate for dealing with uncertainty, specifically manipulation without prehen-

sion, i.e. manipulation of objects which are not rigidly held by the gripper. The

motion of the object is partially determined by the manipulator, and partially

determined by other constraints and forces, such as support contact, gravity, and

friction. The hinge grasp is a perfect example of manipulation without prehension.

It also demonstrates the suitability of these primitives for coping with uncertainty.

It is often taken as obvious that uncertainty in a task requires sensory feedback

and adaptive motion by the robot. However, the hinge example provides a counter-

example: only the motion of the hinge-plate is adaptive, and no sensory feed-

back is required.

The ultimate motive for the study of manipulation without prehension is

the development of automatic planning. However, there are a number of other

applications of the results of this thesis:

Immediate. The study of manipulation without prehension provides

manipulator programmers with a number of useful conceptual tools. The

18



ability to deal reliably with uncertainly positioned objects is especially

appealing. It is also useful to position an object by pushing it on a surface,

or to align two objects by pushing. Certain problems in placing objects

reliably are addressed. In addition, the results are useful in the design of

auxiliary machinery, especially part-orienting machines and grippers.

Short-range. More realistic simulation systems can be implemented,

allowing for grasping and pushing of objects whose positions are uncertain.

Long-range. With further study and experience it should be possible

to embody the new primitives in manipulator programming languages.

Likewise automatic planning, verification, and teaching-by-showing with

uncertainty will become feasible.

These applications are described in greater detail in chapter three, with example

implementations of some of them.

1.3. Overview of thesis

Chapters two and three -focus on the mechanics and application of a class

of manipulation operations which includes all of the stages of the hinge-plate

grasp. It is assumed that the frictional forces obey Coulomb's law, and that

the frictional forces dominate the inertial forces. It is shown in section 2.5 that

the latter assumption is valid in many common manipulation situations. The

subject of chapter two is the characterization of the motion of the object. We

have already seen some of the results: that the direction of rotation of the object

can be determined by inspection. In addition, means are developed for obtaining

a complete characterization of the motion-not just the direction of rotation, but

the instantaneous center of rotation and the angular velocity.

Chapter three addresses the issues of applying the theory to problems in

practical manipulation. A number of potential applications are discussed in detail,
and examples are presented in the design of automatic orientation machines and

grippers, in the automatic planning of grasping motions, and in the verification of

manipulation programs.
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1.4. Previous Work

Manipulator operations

The first computer-controlled manipulator [Ernst 1961] had a hand with touch

sensors, which it used to locate blocks scattered in its workspace. It grasped

the blocks one at a time, moved them over a box, and dropped them in. This

demonstrated four of the five common manipulator operations: MOVETO, GRASP,

UNGRASP, and MOVE-UNTIL-TOUCH. The first COMPLIANT-MOVE was demonstrated by

Inoue ten years later [Inoue 1971]. Implementation of these primitives has been

an active research area since that time. Implementation of MOVETO has spawned

research on manipulator kinematics [Uicker et. al. 1964, Pieper 1968, Paul et. al.

1981], path generation [Paul 1972, Taylor 1979, Paul 1979], and control [Bejczy

1974, lollerbach 1980, Horn and Raibert 1978, Kahn and Roth 1971, Khatib 1980,

Luh et. al. 1983, Luh et. al. 1980b, Raibert 1978, Whitney 1969, Whitney 1972,

Young 1978].

Implementation of MOVE-UNTIL-TOUCH was investigated primarily at Stanford

[Bolles and Paul 1973] and IBM [Will and Grossman 1975, Darringer and Blasgen

1975]. Implementation of COMPLIANThMOVE has been approached using purely mechani-

cal compliance [Drake 1977], using open-loop compliant actuation [Inoue 1971, Paul

1972], and using closed loop servos with force sensors [Silver 1973, Goto et.al. 1974].

There are a number of other operations which are less well known than the

five cited above. The hinge-plate grasp studied in section 1.1 is such an operation.

Another example is the object-alignment operation depicted in figure 9, program-

med by R. H1. Taylor [Albus and Evans 1976]. In order to precisely align the lid

on the box, they are simultaneously squeezed in the vise. Alignment in the other

horizontal direction may be obtained by squeezing with the robot gripper. This is

a good application of manipulation without prehension.

Of course, GRASP and UNGRASP apply to a material handling or assembly robot.

There are a number of operations, e.g. WELD, DRILL, SCREW, which occur in other

applications.
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Figure 9. Aligning a lid on a box

Simulation and Verification

By verification, I mean that initial conditions, goals, and a manipulator pro-

gram are expressed symbolically, and a procedure is applied which attempts to

deduce that the goals will be fulfilled if the initial conditions are met. By simula-

tion, I mean that an initial state and a manipulator program are provided, and that

a procedure is applied which generates successive states. A verification is generally

more powerful (and harder to invent) since the initial conditions need not com-

pletely specify the manipulator and task state. This is particularly relevant to the
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problem of dealing with uncertainty, where the initial state may be unpredictable.

Simulations generally require a complete specification of the initial state, although

one could imagine a simulation which generates a set of possible states at each

iteration, rather than one particular state.

There has been very little work on verifying manipulator programs. One

approach to automatic planning [Taylor 1976] includes a verihicaition step. The

AL system [Finkel et.al. 1974] included a simulation so that trajectories could be

generated before execution time. MOVE-UNTIL--TOUCH is included in a simulation

developed at IBM [Meyer 1981].

Recognition

It was noted above that recognition is essentially trivial when the universe

includes only the three operations MOVETO, GRASP, and UNGRASP. A number of

manipulators are programmed by leading the robot through the desired sequence

of operations. Programming by showing has also been demonstrated for the more

difflicult situation including the fourth primitive MOVE-UNTIL-TOUCH [Summers and

Grossman 1981].

Planning

Planning manipulation programs, even using only three basic primitives, is

an extremely complex process. For programs composed of just GRASP, UNGRASP,

and MOVETO, it is necessary to plan a hand position to grasp an object [Lozano-

Perez 1976] and to calculate collision-free trajectories [Udupa 1977, Lozano-Perez

and Wesley 1979, Lozano-Perez 1981]. When MOVE-UNTIL-TOUCH is included, it is

necessary to determine where its use is necessary [Taylor 1976]. It is also useful to

accept just a statement of goals, which is transformed into a particular sequence of

manipulator operations [Ambler et. al. 1975, Ambler and Popplestone 1975, Taylor

1976, Lozano-Perez 1976, Lieberman and Wesley 1975, Lozano-Perez 1980]. Total

automation of manipulator programming is not imminent, but this line of research

also leads to near-term benefits, such as programming aids and conceptual tools

to ease the burden on human programmers and enable more sophisticated robot

applications.
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Chapter 2

Theory of Pushing

In this chapter we analyze a class of manipulator operations by formulating

a few. closely related problems in mechanics. The solutions to these problems

help us to predict the outcomes of particular manipulator operations and to plan

manipulator operations that produce specified outcomes.

The manipulator operations studied will be referred to as quasi-static planar

pushing operations, or simply pushing. We precede the definition of quasi-static

planar pushing with some examples. All three stages of the hinge-plate grasp

maneuver were examples of quasi-static planar pushing (figure 3). Figure 10 shows

a block held in the gripper being placed on a tabletop. If the block's position in the

hand is uncertain, it is impossible to place the block without a collision. When the

collision occurs, several alternatives are possible: the hand may deform; the block

might be crushed; the block may rotate in the fingers to a cocked position; or all of

these might occur. One possibility is that the block slides in the fingers, maintaining

planar contact with one of the fingers. This is an instance of quasi-static planar

pushing. Figure 11 shows a block being packed in a box. Due to the presence of

obstacles, it is impossible to position the block while it is in the gripper, so it is

being slid into place. As long as the block does not tip up on its back edge, this is

also an example of quasi-static planar pushing.

In each example, the object is in planar motion, being driven by a partial con-

straint on the position of the object. The planar motion is due to a constraint called

the support constraint, and the other constraint is called the pushing constraint.
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Figure 10. Placing an object

In the hinge example, the contact between the hinge-plate and the tabletop provides
the support constraint, while pushing constraints arise during contact with each
finger. For the placing example, it is the finger contact which formed the support
constraint, while the tabletop provides the pushing constraint. In the block-packing
example, the bottom of the box provides the support constraint, with pushing con-
straints arising whenever the block contacts the fingers, the side of the box, or any
of the other blocks. ''Planar Pushing" refers to the kinematics of the operation:
an object in planar motion being pushed. "Quasi-Static" refers to the fact that
inertial forces are assumed to be negligible in the analysis. Very fast motions and
collisions fall outside the range of our analysis.
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Figure 11. Palletizing a block -

Frictional forces play a crucial role in determining the motion of an object

during quasi-static planar pushing. The next section presents a brief summary of

the relevant theory of sliding friction. The remainder of the chapter is concerned

with formulation and solution of various problems involving pushing. The most

important result is that we can predict, by inspection, whether the object will

rotate, and if so, in what direction. The utility of this result has already been

demonstrated in the verification of the hinge-plate grasp in chapter one, and further

applications will be demonstrated in chapter three. However, this result by itself

is not sufficient for our purposes. It is sometimes also necezsary to characterize

completely the object's. motion. Besides the direction of rotation, we must know
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the instantaneous center of rotation, and the rate of rotation. Numerical means are

developed to solve this problem. The analysis is developed by cases, distinguished

by whether the contact is sliding or fixed with respect to the pushing constraint.

The analysis is then extended to the case when it is not known a priori whether

sliding contact or fixed contact occurs. The final section addresses the quasi-static

assumption (that inertial forces are negligible compared to frictional forces), with

the goal of characterizing the conditions under which the assumption is valid.

The primary difficulty encountered in analyzing the problem of sliding objects

is that the distribution of pressure at the contact between the object and the sup-

porting surface is generally indeterminate. Consequently the system of frictional

forces arising at the contact between the object and the support is also indeter-

minat.e. Surprisingly, the most important results are obtained without any assump-

tion on the form of the pressure distribution, except that the pressure is bounded.

Even this restriction is awkward-occasionally in the thesis the results will be ap-

plied to examples with a finite number of support points, corresponding to infinite

pressures.

2.1. Friction of Planar Motion

2.1.1. Review of Sliding Friction

Coulomb's Law

Coulomb conducted the first thorough investigation of sliding friction [Coulomb

1781]. He searched for dependencies of the frictional force on every conceivable

parameter, including the time of repose before sliding commences, elapsed time of

sliding, speed of sliding, types of surfaces, cleanliness of surfaces, and, of course, the

magnitude of the normal force. Although all of these factors affect the frictional

force, Coulomb found that over an enormous range of materials and normal forces

the frictional force is virtually independent of every factor except the materials

and the magnitude of the normal force. The result is now commonly identified as

Coulomb's Law: the tangential force of friction during sliding is directed opposite

to the direction of motion, with magnitude proportional to the normal force. The

constant of proportionality is known as the coefficient of dynamic friction, and
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depends on the contacting materials, but not on the speed of motion. If there

is no motion in progress, a different, usually slightly higher, constant is used-the

cocfficient of static friction. The tangential force of friction is constrained to

be no greater than the product of the normal force with the coefficient of static

friction. During sliding, Coulomb's law completely determines the frictional force.

When there is no motion, the frictional force may not be completelydetermined. In

some cases, the potential indeterminacy is resolved by the tendency of the frictional

force to resist any impending motion at the point in question.

This law is not original with Coulomb; Amontons [Amontons 1699] had pre-

viously asserted the law, and had published engineering tables based on it. But the

earliest known statement of the law appears in the notes of Leonardo da Vinci:

Every body resists in its friction with a power equal to the fourth of
its heaviness if the motion is plane [or slow?] and the surfaces dense and
polished [or clean?]. 1

Leonardo thought that there was a universal coefficient of sliding friction-one

fourth. This value is nearly correct for many combinations of common materials.

In spite of the prior claims of Leonardo and Amontons, there is ample justification

for naming the law after Coulomb. Before his investigations the law was nothing

more than conjecture. It is doubtful that Leonardo engaged in any substantial

experimental verification of the law2 , and it is clear from the tables published by

Amontons that most of the data is extrapolation from a few experiments of limited

scope. 3

Friction Cone and Friction Angle

There is a geometric interpretation of Coulomb's law, apparently first con-

structed by Moseley [Moseley 1839]. Consider a point moving on a surface (figure

12). We construct the vector f representing total contact force acting on the point,

comprising the normal force f, due to the surface stiffness and the tangential force

ft due to friction. Coulomb's law states that these are related by ft = pf. If

we construct the normal to the surface, then Coulomb's law is equivalent to the

1[Leonardo da Vinci 14??], 72v.b.
2 [Truesdell 1968] p. 9.
3 [Gillmor 1971] p. 123.
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Figure 12. Friction Cone. A point is sliding on a surface with velocity v. a is the
angle of friction: tan- 1s

statement that the total contact force f will make an angle a = tan' ft/f, with

the normal. The set of vectors making the proper angle with the surface normal

form a cone, called the friction cone. The angle a is called the friction angle.

General Planar Motion with Friction

I have only located three previous works dealing with sliding friction during

general planar motion [Jellett 1872, Prescott 1923, Macmillan 1936]. Jellett avoids

most of the complications of general planar motion, but he does show that if all

the applied forces (excluding the support contact forces) reduce to a single force,

then the problem of planar motion of a body reduces to the problem of the motion

of a point in the plane.

Prescott provides the first substantial discussion of friction in the context of

general planar motion of a solid body. He developed expressions for the moment of

frictional forces about the instantaneous rotation center, under the assumption that

the weight of the object is uniformly distributed on its base. He also considers the

problem of the motion of an object subject to a force applied at a single point. For
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objects with a finite number of supporting points, with the support forces known,

he develops the conditions under which the object will rotate about a given point.

For a special case (two points of support equidistant from the point of application

of the external force) he derives the set of all possible rotation centers. Similar

plots of rotation centers will play an important role in sections 2.3.2 and 2.4.2 of

this thesis.

MacMillan considered a more general problem. Rather than assuming uniform

pressure or known pressure with a finite number of points of support, MacMillan

assumes a linear pressure distribution:

p(x, y) = ax + by + c

where (x, y) represents a point in the contact region. The three parameters a,

b, and c can be determined if the external applied forces are known. le then

derives expressions for the force and moment, given a planar motion of the ob-

ject. Unfortunately these expressions are complicated-evaluation of them requires

evaluation of seven different line integrals taken around the boundary of the contact

region. MacMillan's most important result is that during a pure translation, the

system of frictional forces arising in the contact area may be reduced to a single

force acting through a fixed point-the center of friction.

This chapter generalizes MacMillan's results to arbitrary pressure distributions.

Expressions for force and moment are developed for general planar motion. Without

additional assumptions on the form of the pressure distribution, the location of the

center of friction can be calculated from knowledge of the external applied forces.

The generality of this result is very important, since the pressure distribution at

the contact region of two surfaces is usually complicated and unpredictable.

MacMillan used the center of friction to find the frictional force and moment

during translation, but its utility goes well beyond this-its position determines

whether an object will rotate when it is pushed, and, if so, whether clockwise

rotation or counter-clockwise rotation occurs. This gives a partial characterization

of the motion of an object being pushed.
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It would also be useful to have a complete characterization of the motion of

an object being pushed. We approach this problem by developing methods for

computing the instantaneous rotation center given the applied forces, and assuming

no more than three points of support. It is shown that the set of rotation centers

that can be produced by unconstrained pressure distributions is bounded by the

set of rotation centers that can be produced with three point support.

Modern Work

The problem of general planar motion in the presence of friction has not

attracted much attention in recent times. Frictional force is, of course, non-

conservative, rendering many of the techniques of classical mechanics inapplicable.

Most of the discussion of the problem in the mechanics literature is limited to

systems with a single degree of freedom. There has been some modern applied

mechanics work on sliding friction in oscillatory systems [Den Hartog 1956], but it

does not extend to general planar motion.

Modern texts on sliding friction treat single degree of freedom problems, or

problems which clearly reduce to a single degree of freedom or to a point on a

plane. It is interesting to note that textbooks never discuss the circumstances under

which the crucial reductions may be applied, but still expect students to apply the

reductions. It is also interesting that this omission is not noticed by students.

The field of tribology [Bowden and Tabor 1950] focuses on the description and

mechanism of frictional forces, not on the motion of objects subject to friction. One

result of this work is the development of descriptions more accurate than Coulomb's

law. This is certainly relevant to the present work, since determination of the

frictional forces is an important part of the theory. Nonetheless, we will assume

Coulomb friction throughout most of the thesis, and will furthermore assume that

the static and dynamic coefficients of friction are equal. To quote Prescott: 4

But all these small inaccuracies we shall disregard for two very good

reasons: firstly, because the laws are sufficiently accurate for most practical

purposes; and secondly, because exact laws are not known.

4[Prescott 1923], p. 106.
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To this I should add that the focus of this thesis is the characterization of the

planar motion of objects being pushed. This thesis goes considerably farther than

the previous works cited, in spite of the relaxation of assumptions on the form of

the pressure distribution. Further generalization would certainly be desirable, but

it is a matter of addressing one problem at a time.

2.1.2. Force and Moment of Sliding Friction During Planar Motion

This section will develop expressions for the force and moment due to friction

with the support durirrg general planar motion. Following sections will i'se these

results to analyze quasi-static planar pushing.

Any planar motion is either a translation or a rotation about some instan-

taneously motionless point. Translation and rotation are handled separately. For

translation, we will find that the system of frictional forces reduces to a single force

through a point whose position is independent of the direction of translation. This

point is the center of friction. No analogous reduction occurs for rotation.

We will consider an obje.:t in motion on a planar surface (figure 13). Let R

be the region of contact with the surface, let dA be the differential element of area

of R, let x be the position of dA, let p(,Z) be the pressure at x, and let y,, be

the velocity of the object relative to the supporting surface at X. We will assume

Coulomb friction, with coefficient of friction p. The normal force at x is given by

p(Z) dA

so the application of Coulomb's law gives for the tangential force at x

-p h p(Z) dA.

The total frictional force ff is obtained by integrating over the support contact

region R:

f J -p .p(j) dA. (2.1)

The total frictional moment mf is obtained by similar means.
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Figure 13. Force and Moment of Sliding Friction.

M -=bxz0-iu p(Z) dA (2.2)

A
whcre by (a, b)T 0 (c, d)T we mean ad - bc, i.e. k - (a, b, 0)T X (c, d, o)T.

Translation

During a pure translation, all points in the object have the same relative

velocity / 1. Hence this term may be factored out of the integral, along with

the coefficient of friction:

J-P fp(K)dA (2.3)

mf= f- ] x(x)dA .(2.4)

RI
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Let fo be the total normal contact force, and let 0o be the centroid of the pressure

distribution p(x):

fo =f p(j) dA

fX p() dA

fo

Substituting into equations 2.3 and 2.4 we obtain

ff=-p' fo

mf =xZo ff-

Inspection of these equations shows that the system of frictional forces reduces to

a single force'applied at ZO. This result is the basis for all of the remaining results.

Theorem 1. The system of frictional forces of a translating object reduces

to a single force, applied at the centroid of the pressure distribution, whose

direction is opposite the direction of translation. Proof: given above.

When the system of frictional forces reduces to a single force applied at a

particular point, whose location is independent of the direction and velocity of

motion, and whose direction is opposite the direction of motion, we say that that

point is the center of friction. Theorem 1 says that during translation a center

of friction exists, and it is the centroid of the pressure distribution. We also know

that the magnitude of the frictional force is the product of the applied normal force

with the coefficient of friction, and hence that the problem reduces to the problem

of a point in a plane with the same coefficient of friction, but that is less important

for our purposes.

This result may appear to be of limited value, because the pressure distribution

is usually indeterminate. Fortunately we can show (section 2.1.3) that the centroid

of the pressure distribution may be predicted even when the pressure distribution

itself is indeterminate. We will also show that the assumption that the frictional

forces obey Coulomb's law may be relaxed somewhat, but first we complete the

present discussion by developing expressions for the force and moment of friction

during rotation.
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Rotation

Let Z, be the instantaneous center of rotation, and let 0 be the angular velocity.

The velocity at x is given by

Y)- kX (x2.)

so

sgn(O)k X
' V-1|x - xr |

A A
where k is the unit vector normal to the x-y plane. Hence k xx indicates a rotation

of x by 7r/2. Substituting into equations 2.1 and 2.2, we obtain after simplification

*AX

f=-Ysgn(O)k p(Z) dA (2.5)

X Xr
mf = -y sgnAOI x1 Z p(Z) dA. (2.6)

Comparing with equations 2.3 and 2.4, we see that the simplification obtained

for the case of translation does not apply to rotation. The center of friction plays

no apparent role during rotation of an object.

It is sometimes useful to consider a translation to be a rotation about an

infinitely distant rotation center. By allowing the range of Zr to include points

at infinity, equations 2.5 and 2.6 may be used for both rotation and translation,
provided we adopt some special conventions. Specifically, we will arrange that the

expression

sgn(A) ~

continues to give the direction of motion of x even when & is infinitely distant.

The convention is best illustrated by example. Suppose a point x is translating

along a line 1 (figure 14). This could be considered to be the result of a clockwise

rotation about (infinitely distant) rotation center xr1 or a counter-clockwise rotation

about X,2. By convention, we will choose the rotation center so that a translation

corresponds to a clockwise rotation. Hence, we will adopt the definition
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Zr2

Figure 14. Convention for Rotation Center at Infinity

sgn()= 1, if > 0;

1-1, if b<; 0.

This departure from the usual definition of the signum function (whose value at zero

is zero instead of -1) allows us to use equations 2.5 and 2.6 for both translation

and rotation.

2.1.3. The Center of Friction

In the previous section, we found that during translation a center of friction

occurs at the centroid of the pressure distribution. In many practical situations, the

pressure distribution is not known. Microscopic variations in the contact surfaces

may drastically alter the pressure distribution. Fortunately, the contact pressure

and moment must balance certain components of the applied forces, fixing the

position of the centroid in the process. This gives us a practical method for finding

the center of friction without concern for indeterminate details of the pressure

distribution.

First consider the simple case of an object on a horizontal plane, with no applied

force except the force of gravity. The only vertical forces acting on the object are
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gravity, which reduces to a single force through the center of mass Kg, and the

contact pressure. Due to the planar constraint there is no vertical acceleration, so

the magnitude of the total force due to the contact pressure must equal the weight

of the object:

fA = Mg

where M is the mass of the object, and g is the magnitude of the gravitational

acceleration. The centroid of the pressure distribution x 0 can be found by similar

means. Construct two lines through -c parallel to the x and y axes. The planar

constraint prevents angular acceleration about these lines, so the moments of force

are zero. The tangential frictional forces exhibit no moment about either of these

lines, so for the total moments we obtain

fnty -- yo)p~X) d A~J yg -- yo) I ~.0~
+ fo=

fR(x -- Xo)p(x) dA (xg - xo) .0

from which we easily obtain

LX001-[Xg 1

So in the absence of applied forces other than gravity, the center of friction lies

directly beneath the center of mass.

This result easily generalizes to the case of arbitrary systems of applied forces.

Let fa,z be the normal component of the total applied force, and let ma,z and m,,y

be the total moments of applied force about the x-axis and y-axis, respectively.

Then the magnitude of the total force due to the contact pressure is

fA fa,z

and the center of friction is

f~ M a,

This result allows the determination of the center of friction given only the applied

forces.
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The proof of Theorem 1 assumes Coulomb friction. This assumption is un-

necessary. The existence of the center of friction requires only two assumptions

on the nature of friction: (1) that the direction of the frictional force is opposite

to the direction of motion; and (2) that the magnitude of the frictional force is

independent of the direction of motion. For ease of reference, we will refer to any

friction law satisfying these two assumptions as resistive friction.. That theorem

1 holds for resistive friction is easily demonstrated by expressing the differential
A

frictional force at a point as the product of a magnitude dF and a direction 1. The

total force and moment are obtained by integration:

F = 2dF

M = Jx® ?dF.

A
By our first assumption, u is anti-parallel to the direction of motion. During

A
translation, u is the same for all x.

F =4idF

M =JxdF® u

f xdF A
f=.~dFDuJ dF.

Hence during translation, the system of frictional forces reduces to a single force

E applied at a point f.EdF/ f dF. The location of this point is independent of the

direction of translation, by assumption (2).

2.2. Pushing with Fixedjwr Rolling Contact

In this section we investigate the first of the modes of pushing: pushing with

a fixed contact or a rolling contact, meaning that there is no relative motion at

the contact between the object and the pushing constraint. In some texts, this

is referred to as perfectly rough contact. Figure 15 shows a typical fixed contact

situation. An object is sliding along the support plane, with point & touching

a constraint surface which is in motion along the support plane. The contact

point x is fixed with respect to the object and with respect to the constraint.
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Figure 15. Typical fixed contact problem

Normal relative motion of the contact point is prevented by the pushing surface,

and tangential relative motion is prevented by friction, so the instantaneous velocity

of the contact point is completely determined, leaving only one degree of freedom

in the motion of the object.

Most of our analysis is instantaneous, i.e. we investigate the instantaneous

velocity and instantaneous angular velocity of the object. This analysis applies

equally well to the case of rolling contact, in which the object rolls without sliding

along the pushing constraint. The instantaneous velocity of a contact point is

completely constrained as it is for fixed contact, so the instantaneous analysis is

the same.

The goal of this section is to find the relation between the object's motion and

the constraint surface's motion. The results depend on the object geometry for fixed

contact. Given a straight line motion by the constraint plane, then if the object

has a single point of support, the object's entire motion may be characterized in

closed form. If the object has three points of support, or if the pressure distribution
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is known by somc other means, then the velocity can be obtained by numerical

means (not, however, by integrating the acceleration). However, even if the pressure

distribution is indeterminate, we may obtain one important piece of information by

inspection-whether the object will rotate and if so in which direction.

These results will be demonstrated under the assumption that the inertial

forces are dominated by the frictional forces. Analysis depending on this assumption

will be referred to as quasi-static analysis. In section 2.5 the use of this assumption

will be discussed in detail. The important point is that quasi-static analysis is

appropriate at low speeds or for objects with low inertia. A quasi-static trajectory

represents the limit of the object's motion as the time-scale of the constraint plane's

motion is expanded. The results agree well with our intuition of the behavior of

objects being pushed about on a table top.

2.2.1. Rotation Mode

First we will show how the position of the center of friction determines whether

rotation occurs, and if so in which direction. For the sake of simplicity, we

will demonstrate the result first for planar objects, and then generalize to three

dimensions. The terms used are shown in figure 16. We will define the line of

pushing to be the line passing through the contact point in the direction that the

constraint is moving. The coordinate system is chosen so that the contact point X,

is at the origin, with the line of pushing coincident with the y-axis. xO is the center

of friction. R is the support region, the area of contact between the object and the

support plane. The pressure distribution is p(x), defined on R. The contact force

exerted on the object at e is f,. The instantaneous center of rotation is &,. An

elementary result of kinematics is that the line from the center of rotation to any

point must be perpendicular to the velocity of that point. Since the velocity of x.

lies on the y-axis, the center of rotation Z, must lie on the x-axis. The magnitude

of the velocity of the constraint, and of the contact point, is v, and the angular

velocity of the object is 0.

We wish to characterize the object's motion. The velocity of the contact point

g is known, but the angular velocity 0 is unknown. The contact force is applied

at x, and hence exhibits no moment about x. Neglecting the inertial forces, the
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Figure 16. Planar Fixed Contact Pushing. fp is line of pushing.

moment of the frictional force about x, must therefore be zero, which gives the

necessary equation for determining b:

mf(Xr) 0 (2.7)

where ;x (Xr, O)T. Equation 2.7 is the quasi-static equation. Exploitation of

this equation yields the desired results.

Theorem 2. If pushing at a single fixed point yields translation, then the

center of friction must lie on the line of pushing.

Proof: By our choice of coordinate system, the object is translating in the y

direction. Theorem 1 says that the frictional forces reduce to a single force applied

downward through the center of friction. For this force to exhibit no moment about

the contact point, the center of friction must lie on the y-axis. I
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Corollary. When pushing at a single fixed point, if the center of friction

does not lie on the line of pushing, then the object must rotate.

Theorem 3. During single fixed point pushing, if the center of friction lies

on the line of pushing, and not all the normal support force is applied on the

x-axis; then the object must translate.

Proof: Translation corresponds to a rotation center at infinity, hence we must

show that oo is the unique root of the quasi-static equation mf(x 7 ) = 0. It is simple

to show that oo is at least one of the roots; when the center of friction is on the

line of pushing, the total frictional force will act along the line of pushing (theorem

1), exhibiting no moment about the contact point.

It is slightly more difficult to show that this root is unique. This will be proven

by showing that the function mf(xr) is an injection, that is, that no two values of

x, give the same moment. It follows that oo is the unique root of mf(X,) = 0.

The x-coordinate of the rotation center, x, may take on ary value on the real

line except zero, and may also take the value oo, which corresponds to translation.

We will consider this domain to be connected at oo, so that x, is considered to be

increasing from the low end of the +x-axis through oo and on up to the high end

of the -x-axis. For the moment due to friction we have equation 2.6:

mf =z-Y sgn()Jf -~ ~p( x)dA

R

It is easily verified that the direction vector

sgn(A)X

does not change sense as xr passes from the positive x-axis through infinity to the

negative x-axis. The choice of conventions for x, = oo guarantees that the moment

as a function of x, is continuous. By taking the derivative with respect to Xr, we

find that the moment is a monotonic decreasing function of x,:
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dmf d x - (d
-y sgUA f Z - -- -- p(Z) dA

dx, RA

-tsgn(O)fJ2X .- _1_X- rJ7 - (Z .- Z)X Xr) ()dR |x Kx- 2_ P

-yzsgn(O)f - pp(x)AdAR

1 sgn() 12px) dA

sgn 0 - sgn Xr, so finally we have

dmf y2~XI

= - -- Jxr2 p(x) dA

The integrand is non-negative for all x in R, and is positive for at least some x in

R. The derivative is continuous at oo, taking on a value of zero. Hence the moment

is a monotonic decreasing, continuous function of x, and is therefore an injection.

Theorem 4. Assume that-not all of the support force lies on the x-axis. The

rotation mode is respectively clockwise, fixed, counter-clockwise if and only if

the center of friction lies respectively to the left, on, to the right of the line of

pushing.

Proof: The case of the center of friction on the line of pushing is given by

theorems 2 and 3. We need to prove the result for the center of friction to the left

or right of the line of pushing. For this proof we show that mf(xr) has essentially

the form shown in figure 17; that is, that it starts out positive on the low end of

the +x-axis, and passes continuously and monotonically to negative values at the

high end of the -x-axis. Again we use equation 2.6:

mf =_Ypsgn(Z)x - ~ ~Tp(W)dA
R [k

As x, approaches 0 from the +x direction, mf approaches the limiting value

y fR 1&jp(x) dA, which is positive. Let 0+ be a number on the +x-axis close enough

to 0 that mf(0+) is positive. In similar fashion we can define 0- to be close enough
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Figure 17. Typical plot of mf(Xr)

to 0 from the minus side that mf(0-) is negative. Now, assume that the center

of friction lies to the right of the line of pushing. Then by theorem(1) we know

that mf(oo) is negative. Since rnf is continuous, it must take on the value 0 for

some xr between 0 + and oo by the mean-value theorem. Since mf is an injection,

this is the only root. Hence Xr must lie on the +x-axis, corresponding to clockwise

rotation.

If the center of friction lies to the left of the line of pushing, then mf(oo) is

positive, and the root of mf(xr) must lie on the -x-axis, corresponding to counter-

clockwise rotation.

Theorem 4 gives us a powerful method for reasoning about the motion of an

object being pushed. It is possible to determine by inspection the gross characteris-

tics of the object's motion. For example, figure 18 shows a block being pushed by

a vertical plane. If the object is slightly tilted either to the left or to the right,

contact will occur at the corresponding vertex, and corrective rotations will bring

the lower edge of the block back into contact with the constraint. The orientation
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Figure 18. Stable Pushitig of Block by Inspection

of the block on the constraint is therefore stable.

Theorem 4 only applies if some of the support force is off of the x-axis. What

happens if the pressure distribution is zero except on the x-axis? Then mf(x,) is

not strictly decreasing, but will be constant for x, in intervals of the x-axis where

p(x) vanishes. If a root of mf(x,) = 0 lies in one of these intervals, then any point

in the interval is a root. This may seem strange, since it suggests that the location

of the instantaneous rotation center is non-deterministic. The root of the problem

is the quasi-static assumption, which neglects inertial forces. When this problem

occurs, the angular momentum of the object must be taken into account to predict

the location of the instantaneous rotation center.

2.2.2. Rotation Rate

Inspection tells us whether the object will rotate and in which direction. It

does not tell us how fast the rotation will be. The answer to this question is given

by the solution of the equation mf = 0, where mj is given by equation 2.6:

/x- irmf = -- ysgn()Jx -'T p(Ex)dA
k I
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The solution of this equation is investigated in particular circumstances in each of

the next four sections. In some special cases the solution can be found, but in the

most general case the indeterminacy of the pressure distribution prevents unique

solution of the equation.

Known pressure distribution

Occasionally we have the luxury of knowing the actual pressure distribution,

either by tactile feedback, by the use of especially well-behaved materials, or if the

contact surface has a special shape. When this occurs, the moment as a function of

the rotation center is easily computed from equation 2.6. In the proof of theorem 4,

we found that this function is very nicely behaved, being continuous and monotonic,

suggesting the use of numerical methods. A false-position type root-finder [Acton

1970] was implemented which converges quickly and reliably.

Single point of support

If there is a single point of support, the orientation of the object as a function

of time may be obtained in closed form. A characterization of the motion can also

be obtained using centrodes, a method of describing planar motion commonly used

in kinematics [Reuleaux 1876, Hilbert and Cohn-Vossen 1952]. Any planar motion

can be described as the motion obtained by letting one plane curve, the moving

centrode, roll without slipping along a second plane curve, the fixed centrode. The

point of contact between the two centrodes is the instantaneous rotation center.

If there is a single point of support, the entire normal force is applied at that

point, which is therefore the center of friction. Equation 2.6 degenerates to:

mf -y sgn(A)xi -( - fi

where ;x is the single point of support and fi is the force applied at x1. The root

of mf = 0 is most easily found geometrically. Clearly mf vanishes only when x,

is orthogonal to x1 -- r, as in figure 19. We obtain from the figure

[~i I Xr COS 0
|*1 = [~cosI

cos C
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XX

Xc=0 xr = (X",0) X

Figure 19. Pushing with single point of support

But x, = -v/so we have

_V cos90

This differential equation is separable; we solve by separating variables and integrat-

ing both sides:

= dO
V cos 0 -fJ

lnIsec 0+ tan01|=t-to
V

obtaining a closed-form relation between the orientation 0 and the time t.

To characterize the motion in terms of centrodes, we observe that the line

through x1 and Zr is fixed with respect to the object. Since the instantaneous

rotation center is on this line, this is the moving centrode. To find the fixed
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0 x

Figure 20. Finding the Fixed Centrode.

centrode, we must use a fixed coordinate system (figure 20). The y-axis coincides

with the line of pushing, as before, but the contact point is not necessarily at the

origin. If (x, y) is the position of the center of rotation, then (0, y) is the position of

the contact point. The differential change in y is related to the differential change

in 0 kinematically:

dy = xd0

dO
cos 0

Integrating both sides,

y = I I ln Isec0 + tan 01.
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Figure 21. Centrodes resulting from single point of support

Finally, we substitute x/[1II for sec0 and substitute x 2 + I212/Il1| for tan0 to

obtain:

-- =ln + (z-j+ 1)

which gives half of the fixed centrode curve. The other half is obtained by reflection

in the x-axis. The two centrodes and the resulting motion are illustrated in figure

21.

Three point support

No closed form expression for x,. is available in the case of three points of
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support. However, if the center of mass of the object and the object's weight are

known, the pressure distribution may be determined as follows. Let X1 , x2 , 3 be

the three support points, and let fi, f2, and f3 be the normal components of the

corresponding support forces. Let ;0 be the center of mass and let fo be the total

weight of the object. Then balancing force and moments gives:

xiii + x2f2 + X3 f 3 = xofo

yifi + Y2f2 + Y3f3 = Yofo

fi + f2 + f3 = fo

which can be rewritten as

~IO~

Xf = fo Yo

where

X= y1 y2 X3
X 1 Y2 1Y.

. f= f2-

X is singular if and only if i, Z2, and Z3 are collinear. Otherwise we may invert

the matrix to obtain the complete pressure distribution:

.lO~

f =foX 1 Yo]. (2.8)

L1-J

The solution yields positive forces if and only if ;o is inside the triangle whose

vertices are the points of support. If this condition is met, equation 2.8 allows

computation of the pressure distribution given the weight and center of mass of

the object. Hence the problem of three-point support is reduced to the problem of

known support treated above, and the false-position root-finder previously described

may now be applied.
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General support: bounds on angular velocity

In general, the pressure will be distributed over more than three points, even

over finite area. When the pressure distribution is indeterminate, the angular

velocity is also indeterminate. If we cannot predict the exact angular velocity, the

next best thing is to determine the range of possible angular velocities, which is

the subject of this section. The important result is that to search for the fastest

or slowest angular velocity, we only have to consider three-point support-the range

of angular velocities possible with three-point support is identical to the range of

angular velocities possible with arbitrary support. While numerical search through

all possible three-point pressure distributions is not an appealing prospect, it is

certainly more appealing than search through all possible supports.

Theorem 5. x* is an extremum of the set of all possible rotation centers

if and only if it is an extremum of the set of all possible rotation centers

obtainable with three-point support.

Proof: Recall that the rotation center may lie anywhere on the x-axis except

at the origin, and may also be at oo. This domain is considered to be ordered

starting at the low end of the +x-axis and increasing through oo to the high end

of the -x-axis. There are two extreme values of the set of possible rotation centers

to consider: the greatest lower bound and the least upper bound. We will prove

that x* is the glb of the set of all possible rotation centers if and only if it is the

glb of the set of all rotation centers obtainable with three-point support. The case

of the lub is similar.

It will suffice to assume that x* is the glb of the set of all possible rotation

centers, and show that it may be obtained with three-point support. From this

the "only if' part of the theorem follows immediately, since if x* is attained with

three-point support it must represent the glb of the three-point supports because

three-point supports are a subset of the set of all possible supports. The "if" part is

proven as follows: Suppose x* represents the glb of three-point supports, but not of

the set of general supports. The glb of general supports is known to be attainable

with three-point support, contradictory to hypothesis.
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All that remains is to show that if x* is the glb of the rotation centers attainable

with general support, then it may be attained with three-point support. This

involves two steps: (1) show that if x* is the glb of rotation centers giving zero

moment (i.e. the gib of all roots of the quasi-static equation mf(xr)-= 0), then

zero is the glb of moments for x*; and (2) show that for a given rotation center Xr,

if zero is the glb of the moments, it can be attained with three-point support.

Some additional notation will be helpful at this point. Let mf(xrp) give

the frictional moment as a function-of the rotation center X, and the pressure

distribution p. Let P be the set of all feasible pressure distributions, i.e. those

giving the proper force fo and centroid o. Let P3 C P be the set of feasible

three-point supports. Let x, be the glb of the set of possible rotation centers. We

have:

X = glb{xr13 feasible p in P such that mf(xrp) = 0}

First we wish to show that zero is the greatest lower bound of the possible frictional

moments with rotation center x*:

0-= glb{mf(x*, p)jp is feasible}

For any given pressure distribution we know from the proof of theorem 4 that mf

is continuous in x, and that for xr "low" enough, mf(xr,p) is positive. Hence by

the mean value theorem if mf(X*, p) is less than zero, there will be some rotation

center x7 less than :,. with mf(xp) equal to zero, contrary to the definition of x,*.

Finally we need to show that if zero is the greatest lower bound of moments

attained with a given rotation center Xr, then there is a three-point support p such

that mf(xrYp) is zero. For this part we will leave x, fixed and write the moment as

mf(p) g(;x)p(Z ) dA (2.9)
R

where

X - X,
g(Z)=-p sgn(O)fo - Zr

fo
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p is the normalized prcssure distribution. A given p is feasible if and only if

J pdA = 1

R

JrdA=--x0
R

Equation 2.9 gives the frictional moment as the weighted average of g~c), and q(x)

represents the maximum potential contribution of a point x to the moment. Let G

map the contact region R into ;3 by associating with each point : in R its potential

moment g(,Z):

G(= Y
Y g 

.

This gives a nice geometrical interpretation of the calculation of the moment. G

maps R into a surface in R3, and the set {fR G(Z)p(,) dAl fR p(x) dA = 1} is the

set of all convex linear combinations of the points in that surface in R3, i.e. it is

the convex hull of the surface. There is another constraint on p-the centroid must

be x 0. Any feasible point in the convex hull of G(R) must satisfy

JG (gx)p(x)dAf= Y p()dA

R R _gWx
X0~

JR g(x)p(x) dA.

Hence the feasible points give a line segment obtained by intersecting the convex

hull of G(R) with a vertical line through 10. By hypothesis, zero is the greatest lower

bound of all possible frictional moments, so the bottom of this line segment has

third coordinate zero. The problem is to show that this point, which is the convex

linear combination of a possibly infinite number of points of G(R), is also a convex

linear combination of just three points in G(R). Intuition (and Caratheodory's

theorem on convex sets [Grunbaum 1967]) tells us that every point in the convex

hull of G(R) may be expressed as a linear combination of just four points in G(R).

Hence the extremal point lies in the convex hull of just four points, which is a
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polyhedral subset of the convex hull of G(R). Being extremal, it must lie on a face

of this polyhedron, and hence may be expressed using just three (or less) of the four

vertices. *

2.2.3. Extension to three dimensions

We now wish to extend the planar analysis to the case of. a rigid three-

dimensional body, in planar contact with the support. Difficulties arise because the

contact point is not necessarily in the horizontal plane. This gives rise to moments

which can affect the position of the center of friction, and if large enough, can

cause the object to tip over. These moments obviously depend on the magnitude

and direction of the force at the contact point, which is determined by the object's

motion. Since the planar analysis uses the position of the center of friction to

determine the object's motion, there is a potential for circularity in the analysis

which must be avoided. In this section, we review previous results and extend those

affected by the indeterminacy of the center of friction. The final three-dimensional

analysis is analogous to the planar analysis although algebraically more complex.

First we obtain an expression for the position of the center of friction. Let

{fa} be the set of all applied forces, including the contact force f,. The set of

applied forces excluding the contact force will be called the external forces {fe}.

As before, we define the center of friction Zo to be the point in the x-y plane such

that the system of applied forces reduces to a single force &2 through xO and a

single moment Ma about a vertical line through xo. In similar fashion let X, be a

point in the x-y plane such that the system of external forces reduces to a single

force F, through xe and a single moment Me about a vertical line through Xe. e

would be the center of friction, but for the contact force. As a simple consequence

of these definitions, we find:

A A
Mak = (xe -so) X Ee + (c -Lo) X fc + Mek

The first and second component equations of this vector equation may easily be

used to obtain the following expression for the center of friction:
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-ze-
Fe,z + -fc, - -

~ FP 1eCz + fc,z T41eCz + f ez _f e,Y -

where we use the components of Ve =(Fez, Fe,,, Fe,z)T, ;c= (xe, ye, z,)T, and fe =

(,2 x)y fe,z)T. In many cases, the external applied forces and the vertical contact

force are known, with the x and y components of the contact force determined by

the motion of the object. Hence we define the nominal center of friction Zn:

Xc

eFe,z + [ifz
- LJCJ(2.10)

Fe,z + f,z(

giving a simpje expression for the true center of friction:

ZOez f- . (2.11)~I~ Fez + fcz _fcyl.

The most important result of the planar analysis was the inspection method for

finding the direction of rotation of the object. The formula giving the frictional

moment at the point of contact remains unchanged, so theorem (4) is unchanged.

Unfortunately, the center of friction is no longer easily determined. Fortunately,

the theorems hold not just for the center of friction, but for the nominal center of

friction as well. This is a simple consequence of theorem (6).

Theorem 6. The center of friction and the nominal center of friction lie

on the same side of the line of pushing (or are both on the line of pushing.)

Proof: By equation 2.10 the nominal center of friction must lie on the line

segment ,cjie. We will assume that Zo and xn are on opposite sides of the line of

pushing and obtain a contradiction. The assumed relation is illustrated in figure

22. By equation 2.11 the line determined by 1, and xo is parallel to the contact

force. It is easily verified by inspection of the figure that the relation shown can

only occur if the center of friction falls between the line of pushing and the line of

action of the contact force. It will later be shown (corollary to theorem 10) that

the line of action of the contact force and the line of pushing lie on the same side

of the center of.friction, a contradiction. I
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Figure 22. Construction for theorem 6. ip is line of pushing, eF is line of force.

Corollary. Theorem (4) holds with "nominal center of friction" substituted

for "center of friction".

As with planar systems, the direction of rotation may be determined by in-

spection, if the applied forces, excluding the horizontal components of the pushing

force, are known. The next problem is to determine the actual rate of rotation. If

the pressure distribution is somehow determined, then again numerical means will

yield the rate of rotation. As with the planar analysis, we begin by writing the

quasi-static equation:

( ~ ~ ^ .k+Mx -g x)J~~c
(e ZEc) X E - k + Me + y sgn( ) (z - X- ~p(x) dA ==0. (2.12)

R
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If the pressure distribution is not known, the position of the instantaneous rotation

center cannot be predicted. In analogy with our treatment of the plane, we will

focus on three-point support. Theorem 5 still holds, so bounds on the angular

velocity can be obtained by investigating the space of all three-point supports, as

before.

For three-point support, it is possible to find a single equation in Xr, as with the

planar analysis, but the expression is much more complex. Ultimately a numerical

approach will be required to find roots of equation 2.12, but first we must eliminate

p(x). As in section 2.2.2 we let fi, f2, and f3 represent the forces at ;r, Z2, and ;Z

respectively, and let f be the vector (fi, f2, f3 )T. As before, we obtain

[XO 1
f = foX- [yo (2.13)

where

X=y1 X2 X3 -

-1-Y2 Y

This gives an expression for f which depends on (Xo, yo, 1)T which must now be

eliminated. We can modify equation 2.11 to give

-xo- - n- fX'

Yo n - ZC fCY.(2.14)
Fez + fcz

Substituting into equation 2.13 we obtain

-Xn- fcX

f = foX4 yn -fe,.(2.15)
~Fez + f cz

Now we need another set of equations for fc, and fey. Using equation 2.5 for the

frictional force, balance of forces gives:
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0 [21 fcv~
S=Fey +fej

. 0 . 0.

This can be rewritten as

~ex -fcx-

0 = ey - p sgn( )T f

.0 - .0 -

where

A
kkx0 kx3x X~

0

Substituting equation 2.15 into equation 2.16 we obtain

0 [2:y + fy:
0 -0. 0.

s( n-

/I sgn(O)T foX 'Y
zc

e,z + fc,z

Expanding, we have

Fe,x 1 [fc,xl

0= FeYj + fcyJ

. J. . 0.J

-psgn()TfoX

+xn- -f T[ .

-yn + TX~l fce
- .L0

g = sgn(O)fo zc
Fe,z + fe,z

Collecting terms, we obtain

-Fe, x 1-n- ~fc,x

- Fey + p sgn()TfoX- [yn ('+ STX')fc,].

0 . - I 1.0

In order to solve for (f, f,y) it is necessary to invert I + t TX-1. First we must

verify that this matrix is non-singular. The matrix can be rewritten

1+ TX- 1 =(X + T)X 1 .
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[fc 1-.
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The matrix X is non-singular if and only if the points Xt, X2, and x3 are not

collinear. This same condition also guarantees that X + T is non-singular. This

is best demonstrated geometrically. The matrix may be rewritten

A- AkXX22 -Z, A+ A 2Zr A T]
X +kX ~ X2+ k x I + k X

T K 1 1 .

This matrix is non-singular if and only if the vectors

- i+ gk X ~k ~' ,i = 1,)2,13

are not collinear. Figure 23 shows an example construction of these vectors. It is

easily verified that the vectors form a non-degenerate triangle similar to the triangle

formed by the vectors x 1, X2, Z3. Hence the matrix in question is singular if and

only if the matrix X is singular.

Inverting the matrix gives the desired expression for ( f,y,0):

fc,- 1Xn- -Fe,z]

fcy = X(X + T)I ybL sgn()foTX--[Yn] - Fe,yJ. (2.17)

-0 .- - . 0 .

Equation 2.17 can be substituted back into equation 2.15 to get an expression for

f. The expression for f can be substituted into equation 2.12 which gives a single

equation in a single unknown - x. The next step, not yet attempted, is to apply

numerical methods to find the root of this equation.

2.3. Pushing with Sliding Contact

The problem of pushing an object restricted to planar motion was divided into

two cases. The first case, studied above, assumes that the contact of the pushing

constraint with the object is fixed or rolling. In this section, we assume that the

contact is sliding. The results for sliding contact are similar to those for fixed

contact, except that the role of the line of pushing is now assumed by a line of

force, which is simply the line along which- the contact force acts. As before, we

first show that the rotation mode may be determined by inspection, and then turn

our attention to the problem of finding the location of the instantaneous rotation
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Figure 23. Columns of X +T

center. The main difficulty arises because there are now two degrees of freedom,

rather than one. The instantaneous rotation center may be almost anywhere in the

extended plane. We therefore require two quasi-static equations, rather than one,

whose simultaneous root is the rotation center.

Figure 24 illustrates some of the differences between the fixed contact case and

the sliding contact case. In the case of fixed contact, the instantaneous velocity of

the contact point is completely determined; that is, the pushing surface imposes

two constraints on the contact point. In the case of sliding contact, there is only one

constraint on the instantaneous velocity of the contact point. On the other hand,

the contact force must now lie on the edge of the friction cone, as a consequence

of Coulomb's law. We have lost a constraint on the instantaneous velocity of the

contact point, but we have gained a constraint on the contact force.
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Figure 24. Sliding contact at pushing constraint. a is the friction angle tan-1 Ya.

2.3.1. Rotation Mode

First we will show how to determine the rotation mode by inspection. In order

to proceed with the development, we will distinguish two different sliding contact

modes: left-sliding and right-sliding. By left-sliding we mean that the object is

sliding to the left, from the point of view of the pushing constraint. Right-sliding

is defined similarly.

If we apply Coulomb's law to the contact force between the object and the

pushing constraint, we know that the force must lie on the edge of the friction

cone. If left-sliding contact occurs, then the force must lie on the right edge of the

friction cone. If right-sliding contact occurs, then the force must lie on the left edge

of the friction cone. In either case we can predict the line along which the force

must act, which we will term the line of force. The line of force plays the same

role for sliding contact that the line of pushing plays for fixed contact.

Figure 25 shows the terminology for the analysis. It is most convenient to work

in a coordinate frame whose origin coincides with the center of mass of the object
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Figure 25. Terminology for sliding contact analysis. tF is the line of force.

(projected into the plane), and with one axis aligned with the line of force. Hence

we define the r- coordinate frame, with the i-axis parallel to the line of force.

Let (r/, c) be the coordinate representation of the contact-point X, and let (rc, 0)

be the the polar representation of (r7C, c).

The figure shows one possible circumstance giving rise to the particular line of

force shown. The object is sliding to the left along the pushing constraint, which

makes an angle of tan- p with the r7-axis. The same line of force would occur if

the object were sliding to the right with the pushing constraint making an angle of

- tan- 1 pywith the ri-axis.

We will assume that the applied forces are simply a gravitational component

perpendicular to the plane of motion and the contact force applied along the line

of force. If we write the equations of motion we obtain
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F rn .

M =- 1

where F is the total force tangent to the plane, M is the total momcnt of force

about the vertical through xg, m is the total mass, and I is the rotational inertia

about the vertical through x9. As in the case of fixed contact, we will work with the

quasi-static equations, obtained by assuming that the inertial forces are negligible:

M= 0

If we expand F and M, we obtain

.f + =f0
mf + (I -mg) O fc = 0

Now fc is constrained to be parallel to the &-axis, so we have

fc =[fc

Applying this constraint, and using the choice of origin as the center of mass xg,

we obtain

ff, = 0

ff,c + fe = 0
mf +r71cfc = 0

The contact force magnitude f, can be eliminated from these to obtain

ff,q = 0
mf - ?7cff,= 0.

(2.18)

(2.19)

Sometimes the quasi-static equations will be rewritten as:

Qi(r,O ) 0

Q2 (Zr,0) 0

where Qi = ff,, and Q2 = mf -- rcff,g.

The quasi-static assumption gives two very simple equations in the force and

moment due to friction. Equations 2.5 and 2.6 give the force and moment as
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functions of the rotation center and the object's orientation. Hence equations

2.18 and 2.19 give the rotation center X, as an implicit function of the object's

orientation. Although we cannot solve the resulting equations for the rotation

center ;., we can use the equations to show that the rotation mode depends on the

position of the center of friction with respect to the line of force.

First, a simple observation is required on theorem 4 (which says that the center

of friction and the center of rotation are on the same side of the line of pushing).

Define the line of motion to be the line tangent to the path of the contact point.

If we substitute "line of motion" for "line of pushing", then theorem 4 applies to

sliding-contact as well as to fixed-contact. The best way to look at this is to assume

fixed contact is occurring, and consider the contact forces arising. If the same

forces are applied by means other than fixed contact with a pushing constraint, the

object's behavior must be the same. The only reason a change of terminology is

required is that "line of pushing" is undefined for sliding contact.

Theorem 7. Assume that not all of the support force lies on the x-axis. The

rotation mode is respectively clockwise, fixed, counter-clockwise if and only if

the center of friction lies respectively to the left, on, to the right of the line of

motion. Proof: above.

One other result is required before theorem 9 is taken up. By combining some

kinematic considerations with the quasi-static assumption, we can show that the

center of rotation can not be within the interior of the friction cone during pushing

with sliding contact. Figure 26 shows the reasoning. In this figure are shown the

pushing constraint, the constraint normal, the friction cone, and the line of pushing.

We will apply two kinematic considerations. First of all, the velocity of the contact

point on the object must have a positive component along the constraint normal.

In terms of the location of the instantaneous rotation center, this means that if

the rotation center is to the right of the constraint normal, clockwise rotation must

occur, and if it is on the opposite side counter-clockwise rotation must occur. The

second kinematic consideration has to do with the direction of sliding. For clockwise

rotation, left-sliding occurs when the rotation center is above the normal to the line

of pushing and right-sliding occurs when the rotation center is below the normal to
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the line of pushing. For counter-clockwise rotation, these arc reversed.

Now suppose the quasi-static equations give a center of rotation in the friction

cone, as shown in the figure. Since the total force and the total moment at the

center of mass are zero, the total moment of force about the rotation center, or any

other point, must also be zero. There are two contributors to the total moment of

force at the rotation center: the contact force, and the frictional forces. We can

immediately observe that left-Iliding occurs, hence the contact force acts on a line

passing to the right of, the rotation center. This contributes a positive moment

to the total moment at the rotation center. We can also observe that clockwise

rotation occwrs, so the frictional force at every contact point contributes a positive

moment to the total moment at the rotation center. The total moment at the

rotation center must be positive, contrary to our assumption.

Theorem 8. During pushing with sliding contact, the instantaneous center

of rotation cannot be in the interior of the friction cone. Proof: above.

Theorem 9. Assume an object is being pushed with sliding contact, and

that the pressure distribution is non-pathological (to be defined.) Then if the

instantaneous rotation center lies to the right of the line of force, clockwise

rotation occurs, if the instantaneous rotation center lies to the left of the line

of force, counter-clockwise rotation occurs, and if the rotation center lies on

the line of force, translation occurs.

Proof: There are three main steps in this proof: (1) show that the quasi-static

equations define the rotation center Xr(O) as a continuous function of the-orientation;

(2) use the previous step to show that if the result is obtained for just one orientation

then it applies for all orientations; and (3) construct a single orientation for which

the result holds.

First we will show that the quasi-static equations 18 and 19 implicitly define

a continuous function xr(O) giving the instantaneous rotation center as a function

of the object orientation. The domain of this function is the interval [0, 27), and

the range is the extended plane (i.e. the plane plus a line at irfinity) with the line

orthogonal to the pushing constraint through the contact point deleted. The two
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Figure 26. The COF cannot be in the friction cone. iFRs_ is the line of force for
right-sliding contact. fF,LS is the line of force for left-sliding contact. If the rotation
center is in the L quadrants, left-sliding must occur; if it is in the R quadrants,
right-sliding must occur.

half-planes are connected at the line at oo, so the topology of the range is that

obtained by cutting along the line orthogonal to the pushing constraint through

the contact point, and gluing along the line at oo (figure 27).

To show that the function exists, and is continuous, we will apply the implicit

function theorem [Rektorys 1969] to the quasi-static equations

Q2(.r,0) =0Q2(21ri 0) = 0.
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Figure 27. Range of X,(O). EL is perpendicular to the pushing constraint. eoo is
the line at infinity.

For this we need to show two things:

1. that the partial derivatives aQa/ax, DQa/Oy,, and OQa/0, for Qe = 1, 2,

exist and are continuous; and

2. that the determinant

O9QI

JX,

is non-zero.

The first condition may be shown to hold for arbitrary bounded pressure distribu-

tions, but there are some pressure distributions for which the second condition

fails. When the second condition holds, we say the pressure distribution is non-

pathological. Following the proof some examples of pathological pressure distribu-

tions will be presented.

Returning to the first condition, we require the existence of continuous partial

derivatives of Qi and Q2 with respect to x,, yr, and 0. Now Q1 and Q2 are simple

linear combinations of components of the total frictional force and the frictional

moment (equations 2.18 and 2.19.) These in turn are integrals over terms of the

form
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sgn(0)

which is a unit vector parallel to the line g-. We have already observed that this

term is continuous at oo, by virtue of the multiplication by the term sgn(O). This

term is clearly continuous in the rest of the plane, except where x= xr. However,

this happens only at a single point in the region of integration. For bounded pressure

distributions, the value of the integrand at a single point cannot affect the value

of the integral [Kolmogorov and Fomin 1970]. We conclude that the integrals are

continuous in x and xr, and therefore Qi and Q2 are also continuous in ;1 and Zr.

Finally, we must observe that x is actually a function of 0: X(0), a detail that we

have suppressed up to now for the sake of simplicity. The location of any point

x fixed in the object varies smoothly with the object orientation 0. We conclude

that Q, and Q2 have continuous partial derivatives with respect to x, y,, and 0. It

follows that the quasi-static equations implicitly define a continuous function zr(0).

The second step reduces the proof to the problem of finding a single orientation

giving the desired result. For this we depend on the fact that continuous functions

map connected subsets of the domain to connected subsets of the range.

Let OL be the set of all 0 such that the center of friction is to the left of the

line of force, and let 9[ be the set of all 0 such that the center of friction is to

the right of the line of force. This divides the domain [0, 27r) of xr(0) into four

intervals: 0 L, OR, {0+}, and {0-} (figure 28.) A simple application of theorem 1

shows that an orientation in 0 L or eR cannot give translation. Hence each of the

images Zr(EL) and ;xr(ER) do not intersect the line at infinity. Since a continuous

map of a connected region must be connected, each image must lie either entirely

to the left of the line at oo, giving clockwise rotation, or entirely to the right of the

line at infinity, giving counter-clockwise rotation. Examination of a single case will

tell which of these two alternatives actually occurs. If just one orientation in each

of the intervals eL and 0 R is constructed whose image is on the predicted side of

the line at infinity, then the entire interval must also lie on the predicted side of

the line at infinity, giving the desired result.

For the third step, we must demonstrate an orientation in each of the intervals
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Figure 28. Domain of Xr(O). eF is the line of force.

-L and eR for which the result holds. Figure 29 shows an orientation in eR for

which the result is easily demonstrated, namely the orientation at which the line

zCZ0 coincides with the pushing constraint, with the line of pushing passing to the

left of the center of friction. Since the line of force must lie in the friction cone,

the center of friction must lie to the right of the line of force, so this orientation

is in the interval OR. The velocity of the contact point in the object must have a

positive component along the normal to the pushing constraint due to kinematic

constraint. Hence it is impossible for the line of motion to pass to the right of the
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Figure 29. A single case giving the result of theorem 9. Cp is the line of pushing.

center of friction. In this case the object must rotate clockwise, which is the desired

result. An orientation in the interval EL giving the desired result is obtained by

rotating the object an additional 180 degrees.1*

Again we have a very simple rule whereby the rotation mode of an object being

pushed may be determined by inspection. The result is very similar to the result

for fixed contact.

Theorem 9 is restricted to "non-pathological" pressure distributions, meaning

that the determinant D is non-zero, where D is given by:

ax, Yr

Equivalently, the gradients ( , )T and )must not be parallel ataxy sYrfhqss Lt sYr mue notrb p r t
any solution of the quasi-static equations. Let us consider the contribution from
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Figure 30. Gradients of Q1, Q2 for single point.

one point in the contact region to these gradients. Figure 30 shows an example

illustrating this contribution. The contours of both Qi and Q2 are radii extending

from the point of integration x. Both gradients must be perpendicular to the contour

passing through the rotation center ,r, and will therefor be parallel.

Now consider the situation with two points (figure 31.) We have drawn the

contours for both points. At &rj, the contours are not parallel, and we would not

expect the total gradients to. be parallel. At gr2, on the other hand, the contours

are parallel, and so the gradients are parallel. In fact, anywhere on the line X 1 22

the gradients will be parallel. Now, that only matters if a root of the quasi-static

equations lies on that line. To construct an example, we need only place the contact

point on the perpendicular bisector of !1Z2, and let the normal forces at x 1 and

Z2 be equal. In that case, pushing in the direction of the bisector will give a root

at infinity on the line X1Z2, by theorem 1. This happens to be the only pressure

distribution for which the set of possible rotation centers was known previous to

this thesis. Prescott [Prescott 1923] showed that the rotation center may lie on
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Figure 31. Gradients of Qi, Q2 for two points.

the circle through Xi, D, and the contact point, or it may lie on the part of the

line through x1 and X2 exterior to the circle. Figure 32 shows this set of possible

rotation centers. For each possible rotation center, we have noted the corresponding

angle of the line of force. For all points on the line this angle is constant, due to

the pathological nature of the pressure distribution and contact point.

Again there is a similarity to the case of fixed contact. In order to prove

theorem 4, it was necessary to exclude pressure distributions concentrated on the

x-axis. When this restriction was violated, the location of the rotation center was
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Figure 32. Rotation centers of pathological distribution.

not uniquely determined. In the case of sliding contact, the same phenomenon

occurs. As before, the actual instantaneous rotation center cannot be determined

without taking into account inertial forces.

There is one intcresting difference between fixed contact and sliding contact:

for fixed contact, the rotation mode is determined by the line of pushing, whose

direction is determined by the pushing constraint alone. For sliding contact, the

rotation mode is determined by the line of force, whose direction may depend on the

orientation of the object, rather than on the orientation of the pushing constraint.
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Figure 33. Line of force may depend on object orientation. eF is line of force.

Figure 33 shows both possibilities. In one case, we have contact between a vertex of

the object and an edge of the pushing.constraint, and the line of force is determined

by the orientation of the pushing constraint. But in the other case, contact occurs

between a vertex of the pushing constraint and an edge of the object, and the line

of force is determined by the orientation of the object. When this occurs, a certain

degree of control is lost; the rotation mode of the object cannot be controlled by

varying the orientation of the pushing constraint.

2.3.2. Rotation Center

As in the case of fixed contact, we can calculate the location of the rotation

center only when the support is known. The rotation center is found by numerically

searching for the simultaneous root of the quasi-static equations 2.18 and 2.19.

Figures 34 and 35 show plots of Qi(r) and Q2(;r) for the case of a single point

of support at (1, O)T. Both of the surfaces have singularities at the single point of

support, and both surfaces pass through the horizontal plane at this point. This

has two important consequences: (1) roots tend to occur at areas of large pressure
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Figure 34. Example plot of Qi(;,)

(i.e. objects tend to rotate about points of support); and (2) numerical methods

will have difficulty converging on the roots. The first point is interesting because it

confirms and explains the tendency of objects to rotate about a point of support,

and also because it suggests a strategy for making an object turn about a particular

point.

The expected difficulty in applying numerical methods to the problem of finding

the root did occur. Both a two-dimensional false-position approach [Acton 1970]

and an accelerated Newton-Raphson approach [Brown 1967, Brown and Conte 1967]

failed to converge reliably, even when the initial guesses were quite close to the

actual root. Fortunately, another formulation of the search is possible, closely

related to the physical interpretation of the quasi-static equations.

The basic idea is to reduce the two-dimensional sliding-contact case to the

one-dimensional fixed-contact case. The reasoning we will use is similar to the
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Figure 35. Example plot of Q2(,rZ)

proof of theorem 7. Assume that an object is being pushed with sliding contact. If

we observe the line of motion of the contact point on the object, and then mimic

this line of motion by pushing in the same direction with fixed contact, the object's

motion must be the same. The value of this observation is that the numerical

method of section 2.2.2 can be applied to find the rotation center given just the

direction of motion of the contact point. For a fixed pressure distribution and

object orientation, we can plot the locus of the rotation center as the line of motion

varies, as in figure 36. Now, it is a simple matter to compute the total contact force,

given a rotation center, so for each rotation center plotted in figure 36, we can note

the angle of the line of force. Once these annotations are made, we can find the

rotation center corresponding to a given direction of the line of force (henceforth

the angle of force) simply by "looking it up" in the figure.

The method implemented is similar in approach. For a given direction of
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Figure 36. Plot of rotation centers vs. Force angle

motion of the contact point the method of section 2.2.2 can readily calculate

the rotation center, so the problem is reduced to finding the direction of motion

corresponding to a given angle of force. This reduces our original two-dimensional

problem to a one-dimensional problem. Finally, examination of the plot shows

that the angle of force varies monotonically with the angle of motion (i.e. the

numbers running up the plot only increase). Again the method of false-positions

was applied. Convergence was quite reliable, usually occuring in about five seconds

of Lisp Machine processor time, and in no case worse than a minute. (The precision

required was .001 centimeters.)

2.4. Undetermined Contact Mode

So far, for each contact mode (left-sliding, right-sliding, and fixed), we have an

inspection method of determining the rotation mode. However, it is rarely obvious

what the contact mode. is, making it impossible to determine whether to compare
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the center of friction to the line of pushing, the left edge of the friction cone, or the

right edge of the friction cone. The first goal of this section is to present a general

inspection method for finding the rotation mode, which can be applied without

foreknowledge of the contact mode. The second goal is to develop a numerical

method for determining the exact location of the rotation center.

2.4.1. Rotation Mode

In the previous section, we made a slight change to theorem 4 which allowed

its application in the case of sliding contact. We now note that theorem 9, which

states that the center of friction and the center of rotation are on the same side of

the line of force, applies to fixed contact as well as to sliding contact. The line of

force is well-defined in any case: it is simply the line along which the contact force

is applied. The only thing special about sliding-contact is that the line of force

is easy to predict. Thus theorem 7 and theorem 9 can be applied simultaneously,

regardless of the contact mode. We obtain:

Theorem 10. With reference to the center of friction, the center of rotation,

the line of force, and the line of motion: both centers lie to the left of both lines,

or both centers lie to the right of both lines, or the two lines and the center of

friction coincide and the center of rotation is on the line at infinity. Proof:

This is an immediate consequence of theorems 9 and 7. *

Corollary. During fixed contact the line of force and the line of pushing lie

on the same side of the center of friction.

(This corollary was used in the proof of theorem 6.)

Theorem 11. If the center of friction lies to the left of the friction cone,

the object must rotate counter-clockwise. If the center of friction lies to the

right of the friction cone, the object must rotate clockwise.

Proof: If the center of friction lies to the left of the friction cone, then it lies

to the left of the line of force. By theorem 10, the rotation center also lies to the

left of the line of motion, which implies a counter-clockwise rotation. The other

case is similar. I
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Figure 37. Zone Labeling CF,RS is the line of force for right-sliding contact. OF'LS

is the line of force for left-sliding contact. p is the line of pushing.

We are now ready to develop the method of determining the rotation mode for

undetermined contact mode. For a given situation, we divide the plane into zones,

as shown in figure 37. There are four zones, defined by the left and right edges

of the friction cone, and the line of pushing. The zones are labeled in clockwise

direction 1, 11, 11, IV, without regard for where the line of pushing falls with respect

to the friction cone.

Theorem 12. Let the translations line be the boundary between zones II and

III. If the center of friction falls to the left of the translations line clockwise

rotation occurs. If the center of friction falls to the right of the translations

line counter-clockwise rotation occurs. If the center of friction is on the

translations line, translation occurs.

Proof: The result is proven by cases, applying elementary kinematics and

pushing theory to show that the predicted rotation mode is obtained for each zone.

First we consider the case of the line of pushing falling to the left of the friction

cone (figure 38). If the center of friction falls in zone 1, 11, or IV, the predicted
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rotation mode is obtained immediately by application of theorem 11. This leaves

the case of the center of friction in the friction cone, i.e. inside zone 111. The left

edge of the friction cone is the line of force if right sliding occurs, and the right

edge of the friction cone is the line of force if left sliding occurs, as indicated by the

labels in the figure. By theorem 10, the line of motion must be on the same side of

the center of friction as the line of force. Hence the line of motion for right sliding

is constrained to lie to the left of the center of friction, which is indicated by the

label "RS1". Likewise the left-sliding line of motion is constrained in the interval

indicated by the label "LS1". The right-sliding line of motion is further constrained

kinematically. If right-sliding is to occur, the right-sliding line of motion must lie

to the right of the line of pushing, as indicated by the interval labeled "RS2".

Likewise the left-sliding line of motion lies in the interval "LS2". At this point it

is clear that left-sliding is altogether impossible-the intersection of the intervals

"LS1" and "LS2" is empty. By theorem 4 fixed contact implies clockwise rotation.

By theorem 9 right-sliding contact also implies clockwise rotation. This proves the

result for the case of the the line of pushing to the left of the friction cone. The

case of the line of pushing falling to the right of the friction cone is similar.

Figure 39 shows the case of the line of pushing falling inside the friction cone.

Again, if the center *of friction lies outside the friction cone, the result follows

immediately by theorem 11, which takes care of zones I and IV. The figure illustrates

the case of the center of friction in zone II. As before, the constraints on the lines of

pushing for left-sliding and right-sliding are indicated in the figure. Right-sliding

is impossible. Left-sliding is possible, but the line of motion must fall to the right

of the center of friction, hence counter-clockwise rotation occurs, by theorem 9. If

fixed contact occurs, counter-clockwise rotation occurs, by theorem 4. The proof

for the center of friction in zone III is similar.

The results are summarized in table 1. In every case, the rotation mode is

counter-clockwise for the center of friction in zones I and II, and clockwise for the

center of friction in zones III and IV. I

As we shall see, it is difficult to determine the contact mode, so the fact that

this result is independent of the contact mode is critical.
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Figure 38. Line of pushing to the left of the friction cone.

2.4.2. Rotation Center

In this section we develop methods for determining the contact mode, which

enables us to find the instantaneous rotation center in the general case. As in the

previous section, this is accomplished by applying theorems 7 and 9.

The method requires a plot of the locus of the rotation center as the angle

of force -y varies. Generation of these plots was described in section 2.3.2. The

use of the plot is most easily demonstrated by example. Supposing that -y = 0.47r

(figure 40), the line of motion is orthogonal to the line from the contact point to

!&r(y). If fixed contact occurs, then the normal to the pushing constraint must lie

within tan- 1 p of 'y, and the line of pushing is the same as the line of motion.

If left-sliding (right-sliding) occurs, then the right edge (left edge) of the friction

cone is at an angle -f. The line of pushing must be to the right (left) of the line

of motion. So for fixed contact, the line of pushing is determined and the pushing

80



e iF,LS

II III
IV

SRS2

LS2 \LS1
RS1

Figure 39. Line of pushing inside friction cone.

constraint orientation is constrained, but for left- or right- sliding contact, the

pushing constraint orientation is determined and the line of pushing is constrained.

For a given rotation center, the contact mode is not determined, which is readily

verified by experiment. The constraints for each contact mode are illustrated in

figure 40.

So it is easy to determine the set of possible pushing constraint orientations

and lines of pushing for a given rotation center and contact mode. Of course,

our purpose is the opposite, to determine the rotation center given the pushing

constraint orientation and line of pushing. This is accomplished by assuming a

particular contact mode and constructing the resulting rotation center. If this

rotation center gives a line of motion consistent with the assumed contact mode,

and a line of force consistent with the friction cone, then we have a solution. This is

illustrated in figures 41 through 43. The pushing constraint and the line of pushing

are shown in the figure as given, and the friction cone is also constructed. First we

will assume fixed contact (figure 41.) The rotation center must be at the intersection
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Figure 40. The three possible contact modes. 0.47r. {fp,?S} and {P,LS} are
the sets of possible lines of pushing for right-sliding and left-sliding respectively.
fp,x is the line of pushing for fixed contact. iI,Ls and I_,RS are the constraint
normals for left-sliding and right-sliding respectively. {iI,x} is the constraint
normal for fixed contact. iF is the line of force.

of the normal to the line of pushing and the locus of rotation centers. From the

locus we can read off the angle of force y (.3757r), which is outside the friction cone.

Fixed contact is impossible.

Figure 42 is constructed assuming right-sliding contact We construct the

friction cone and obtain the angle of force -y = .57r. The corresponding rotation
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Figure 41. Finding the rotation center. Fixed contact impossible.

center is located, and a line drawn from the rotation center through the contact

point. The normal to this line through the contact point is the line of motion of the

contact point. The line of motion lies to the left of the line of pushing, inconsistent

with the assumption of right-sliding contact.

Finally, we try left-sliding contact (figure 43.) The previous construction is

repeated, except that this time the angle of force is y .47r. The line of motion

constructed lies to the left of the line of pushing, as required for left-sliding.

It is clear that if this procedure finds a solution it is valid, and that if there is a
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Figure 42. Finding the rotation center. Right-sliding impossible.

valid solution this procedure will find it, but it is not clear whether the procedure will

always give a unique solution. This may seem paradoxical, because the existence

of several solutions would suggest that classical mechanics is non-deterministic.

However, we have already seen an example of this in section 2.3.1: if all the

normal force is concentrated at two points, the rotation center may, in fact, be

indeterminate. The root of this indeterminacy is the quasi-static assumption. Once

inertial forces are considered the indeterminacy disappears.

There is one other interesting aspect of the locus of instantaneous rotation
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Figure 43. Finding the rotation center. Left-sliding gives solution.

centers. If the pressure distribution remains constant with respect to the object as

the object moves, as it may for three-point support, and if the contact point is also

constant, then the locus of rotation centers will translate and rotate with the object.

In this case the locus of rotation centers is the moving centrode for every pushing

motion that can be produced. This is halfway to a complete characterization of the

motion of the object; a complete characterization also requires construction of the

fixed centrode.
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2.5. On Quasi-static Analysis

In the preceding sections a number of results concerning the nature of the

motion of an object being pushed have been derived, based on the assumption that

inertial forces are negligible. In this section this assumption is reviewed with an eye

toward a careful characterization of those practical situations for which quasi-static

analysis is meaningful. Perhaps the most important observation is that the quasi-

static assumption, or some similar assumption, is inevitable if vre wish to address

the problem of determining the rotation mode given just a model of the object, the

pushing constraint, and the line of pushing. In general, any rotation mode may

occur if there is a large enough initial angular velocity. A particular moment will

determine the angular acceleration, but will not preclude any particular angular

velocity. Hence, the problem of greatest interest is undetermined, unless some

additional assumption is made. The most reasonable interpretation of the problem

is given by assuming quasi-static conditions; that is, we assume that the pushing

motion is slow enough that inertial forces are negligible.

Quasi-static analysis is equivalent to the more traditional problem of sliding

friction, which is to assume an object is motionless, but with some motion impend-

ing, and to find the characteristics of the impending motion. (Usually it is required

to find the force or moment necessary to produce the motion, but occasionally it is

required to find the direction of the impending motion or the instantaneous rotation

center.) Impending motion problems involve no assumption on the inertial forces,

because the object is motionless. It is only when we wish to address the actual

motion of objects that an explicit assumption is necessary.

We shall refer to the solution of the full dynamic equations as the dynamic

solution, and to the solution of the quasi-static equation as the quasi-static solu-

tion. By comparing the quasi-static solution with the phase-plane portraits of

dynamic solutions, we shall find that for fixed applied forces, the quasi-static solu-

tion is valid when the product of the moment of inertia with the square of the

pushing velocity is small. In most cases, the applied force is proportional to the

mass of the object. When this is so, the quasi-static solution is valid if the product

of the radius of inertia with the square of the pushing velocity is small.
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We will consider the example of single point of support fixed-contact pushing of

an object whose mass is also concentrated at a single point (figure 44). The pushing

force is applied in the horizontal plane. Figure 45 shows phase-plane portraits of

the dynamic solutions of this system for three different pushing velocities. The

vertical axis is the normalized angular velocity O/v, and the horizontal axis is the

angle 0. In each case there is a stable equilibrium at (-wr/2, G) and an unstable

equilibrium at (7r/2, 0). If the pushing velocity is very small, the trajectories quickly

converge to a single trajectory which-is the quasi-static solution. As the pushing

velocity is increased, inertial forces play a larger role until ultimately the frictional

forces are irrelevant to the overall motion. The purpose of this section is to explain

and quantify the convergence of the dynamic solutions to the quasi-static solution.

The dynamic solution of this system is the solution to the differential equation

Ic =rnm(O, 0), where mc(O, 0) is the total moment of force about the vertical line

through the contact point, and I is the total moment of inertia of the object about

the same line. For the purposes of this section we will assume that the only applied

forces are gravity and a contact force in the horizontal plane. Hence the total

applied moment is given by equation 2.6 and we obtain

Ic =_ Mf (0, /V)

where v is the pushing velocity. Here we are using a normalized angular velocity

obtained by dividing by the pushing velocity. This will be useful for comparing

the trajectories obtained with different pushing velocities. The quasi-static solution

used in the preceding sections is the solution to

0 =m(O, 0/v).

At every point (0, )T on the quasi-static trajectory, the moment of force is zero,

so the angular acceleration of the dynamic solution has zero slope at that point.

Conversely, if the dynamic solution has zero slope at a point, the moment is zero,

so the point lies on the quasi-static trajectory. In phase-plane parlance, the quasi-

static solution is the zero-isochine of the phase plane portrait [Stoker 1950].

Wherever the dynamic. trajectory crosses the quasi-static trajectory in the

phase plane, the dynamic trajectory has zero slope. The next problem is to ascertain

87



x

x

x

x

x

x

x

x

x

x

- X1 X

X

X

X

X
0 X

X Zr

Figure 44. Pushing example for phase plane analysis. An object with a single point
of support is being pushed from a distance of ten cm. . indicates the locus of the
contact point, + gives the point of support, and X gives the rotation center.

the slope of the dynamic trajectory at other points in the phase plane. The slope

in the phase plane is

d6/v

dO

An expression for the slope can be obtained by using the identity

0 = v 2 dOv
dO

in the dynamic equation
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Figure 45. Phase plane plots. (a) v is 5 cm/sec. (b) 10 cm/sec. (c) 20 cm/sec.

ich = mf(0, i/v)

resulting in

dblv 1=O/ . mj(O,,0/v).
dO v 2 Ic(O/v)

We know that mf(0, b/v) is monotonic decreasing in 0/v. Confining our attention

to the region below the horizontal axis, we find that the slope is negative for points

below the quasi-static trajectory, and positive for points above the quasi-static

trajectory. As v 2 e approaches zero, these slopes approach infinity. Given an

object, the pressure distribution, and a range of normalized angular velocities 0/v
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we can find a combination of maximum pushing velocity and angular inertia to

produce an arbitrarily steep slope, causing the dynamic trajectory to approximate

the quasi-static trajectory to whatever degree of precision is desired. It only remains

to show that the particular combinations of pushing velocity and angular inertia

are practical in manipulation. Figures 46 and 47 show phase-plane portraits of a

small oak block and a hinge plate being pushed with fixed contact. The figures were

obtained by simulation. The dynamic trajectories agree closely with the quasi-static

trajectories, even at speeds approaching the maximum speed of our manipulator

(about 30 cm/sec.)
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Figure 46. Phase plane portrait for oak block. (a) v is 5 cm/sec. (b) 10 cm/sec. (c)

20 cm/sec.

91



x +

x +

x

x
x

x

(a)
-K

0

(b)

(c)

\00

I I

Figure 47. Phase plane portrait For hinge-plate. (a) v is 5 cm/sec. (b) 10 cm/sec.
(c) 20 cm/sec.

92

N<1-0



Chapter 3

Application

The theory presented in chapter two represents a considerable increase over our

previous level of understanding of manipulation without-prehension. Consequently,

there are a large number of potential applications, some of which were outlined in

section 1.1. The purpose of this chapter is to develop a.few applications in detail and

demonstrate implementations. There are two goals: to demonstrate that the theory

developed in the previous chapter is relevant to real problems of manipulation; and

to provide at least a cursory exploration of the issues standing between the present

theory and implementation.

The first application is to the design of auxiliary machinery for eliminating

uncertainty in the orientation and/or position of an object. It is assumed that the

object's shape and center of mass are known. Methods are outlined which rotate the

object to a desired orientation, without any sensory feedback. An implementation

is demonstrated which feeds blocks to a robot manipulator. Implementation using

the robot end-effector instead of a peripheral machine is discussed.

The second application is an automatic planner for grasping objects with a

simple parallel-jaw gripper. When the range of possible initial orientations of the

object is suitably restricted (e.g. to within 7r/3), and when the object shape is

suitable, the program can plan a motion which will orient the object to a predictable

orientation and acquire the object without sensory feedback.
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The third application is the hinge-plate grasp verification re-visited. It is

handled in greater detail, and the potential problems neglected in chapter one are

addressed.

3.1. Automatic Orientation

In most robot manipulator applications, parts to be acquired by. the manipulator

must be reliably and accurately presented at a specified position and orientation.

There is a resulting need for machines which can accept a part whose position

and orientation is variable, and reliably move the part to the desired position and

orientation. In general this is accomplished by special-purpose machines, which

are designed for a specific part shape [no author 19691. The main problem with

this approach is that new machines have to be designed and fabricated for every

new task. This compromises some of the advantages of robots-the robot may

be reprogrammed for a new task quickly, but the supporting auxiliary machinery

must go through a time-consuming and expensive development process. In this

section we show a simple method for orienting a wide variety of parts which greatly

simplifies the problem of designing the auxiliary orienting machine, or even allows

the orienting to be performed by the robot, eliminating the auxiliary machine al-

together. The method employs a fence which causes the object to attain a known

orientation just by pushing in a straight line. The motion and orientation of the

fence are determined by the shape of the object and the location of its center of

friction. The approach may be implemented by a simple rod fixed across a conveyor

belt, or by adding a simple auxiliary fence to the robot. The latter alternative is

used here.

Figure 48 shows a box being pushed by a straight fence. In the configuration

shown in the figure, the box's orientation is stable. If we consider a perturbation

raising the right vertex from the fence, we will have contact between the left vertex

and the fence. The center of friction is in zone IV, so the object will rotate back

in a clockwise direction by theorem 12. Likewise, a small clockwise rotation puts

the center of friction in zone I, giving a small corrective counter-clockwise rotation.

This is the beginning of an automatic orientation method, since if the box is "near"

the desired orientation, it will converge to it. Of course, local convergence is not
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Figure 48. A box being pushed by a straight fence

usually enough; we would like the object to attain the desired orientation for any

initial orientation falling within a specified range.

Figure 49 illustrates a simple method for finding all of the stable orientations

of the box of figure 48, and identifying the regions of convergence. First we orient

the figure so that the translations line is vertical. We roll the box, without sliding,

through a complete revolution along the pushing constraint, marking the path of

the center of friction. Every orientation of the object is mapped into a point on

the curve described. For a given point on the curve, the contact point for the

corresponding orientation must lie on the line orthogonal to the curve. Hence this

orthogonal line passes through the contact point and the center of friction. If the

tangent to the path has positive slope, the center of friction lies in zone I or II,

and counter-clockwise rotation occurs. If it has negative slope, clockwise rotation

must occur. Equilibria occur where the slope of the tangent is zero, i.e. where

the curve is horizontal. Stable equilibria correspond to local minima in the curve,

and unstable equilibria correspond to local maxima of the curve. In this respect

the curve behaves like a potential curve, but the analogy breaks down-there is no

conservative force field.

This construction simplifies design of automatic orientation machines. We
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rotate the entire figure to an angle minimizing the number of local minima attain-

able from the range of possible initial orientations of the object. Then it is necessary

to arrange for the translations line to lie on the vertical of the rotated figure.

The process is best illustrated by example. We wish to attain a repeatable

orientation and position for a rectangular block. Ihis will be accomplished with

two fences-one fence is used to orient the block, and a second fence is used to

position it. We plan the first motion by calculating the path of the center of friction

as the block is rolled along the first fence (figure 49). In this orientation, there are

four stable orientations of the block. The goal is to rotate the figure until line

Li has a negative slope and f2 has a positive slope, eliminating two of the stable

orientations. The rotated construction is drawn in figure 50. It is now necessary to

arrange for the translations line to be vertical. Unfortunately, if we examine the

friction cone for the fence (which is aluminum) and the block (which is unfinished

maple), it is impossible to get a translations line closer to the vertical than the left

edge of the friction cone. Aluminum is too slippery for this application, so the fence

was covered with a bicycle inner tube. The new friction cone admits the desired

translations line, which is achieved by driving the fence parallel to the vertical.

This motion will successfully orient the block to one of two orientations.

The second stage is to repeatably locate the block, without un-orienting the

block (changing the orientation might be okay, as long as the new orientation

is predictable). At the initiation of the second stage, the block's orientation is

determined, and the block's location has a single degree of uncertainty-that is,

it may be anywhere on a line segment tangent to the first fence. To reduce the

remaining uncertainty the second fence is swept along this locus of possible block

locations. The direction of motion and orientation of the second fence are chosen

so that the block's orientation is stable during the second stage.

This motion sequence was programmed and tested on the M.I.T. Purbrick arm

[Purbrick 1982]. Figure 51 is a photograph of the arm equipped with the two fences.

This arm is particularly appropriate for this demonstration, because the first two

motions of the arm are supplied by an x-y table. The fences are actually fixed, and

the motion is obtained by moving the x-y table beneath them. Figure 52 shows
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Figure 49. Locus of Center of Friction

the path of the x-y table. Segment 1 is the first stage of the motion, which orients

the block. Segment 2 backs the block off of the first fence, to prevent any motion

during the second stage. Segment 3 is the second stage, pushing the block to the

desired location. Segment 4 moves the block beneath the gripper.

The motion sequence was tested by having the arm drop the block pseudo-

randomly in the general vicinity of the first fence. After the orienting and position-

ing motions, the arm attempts to grasp the block and repeat the sequence. A record

of the initial test is given in figure 53. The initial position and orientation is noted

for each trial (the circle indicates the center of the bottom face of the block, and

the line segment is parallel to the longer edge). Successes are indicated by filled-in

circles, failures by open circles. The arm succeeded in 17 out of 20 trials. In each

of the failures, the block was properly oriented, but just beyond the reach of the

second fence during the second stage. The primary difficulty in programming this

test was to stay within the limits of joint travel of the x-y table.

A second test was performed, with the configuration of the block constrained
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Figure 50. Planning the Orientation Stage a, is the friction angle for oak on
aluminum; a, is the friction angle for oak on rubber. T is thi desired translations
line.

so that the block lay completely inside the square shown in figure 53. In this case,

the block was successfully oriented and positioned in each of 25 consecutive trials.

To execute the first and second stage required a total of seven seconds. Probably

the most interesting aspect of the test was that the entire experiment, including

design and installation of the fences, manufacture of blocks, program planning,
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Figure 51. The Purbrick Arm

coding, some debugging of the control system, and the final testing, required less

than 24 man-hours. The cost of materials for the fences was less than three dollars.

Single Stage Orienting and Positioning

A minor variation in stage one of the procedure described above allows an

object's position and orientation to be completely determined by a single uniform

motion. This is analogous to the hinge grasping maneuver described in chapter 1.

The main idea is to arrange for the object to slide down the fence to a projecting

stop after the orientation phase. An example of planning this operation is given

in figure 54. We have arranged that the center of friction falls between the line of

pushing and the friction cone. For the case shown, we can deduce that right-sliding

must occur. By the corollary to theorem 10, if fixed contact occurs the line of force

must lie on the same side of the center of friction as the line of pushing. This would

imply a line of force outside the friction cone, which is impossible, so fixed contact
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Figure 52. Orienting and Positioning the Block

does not occur. Left-sliding cannot occur, because it would require a line of motion

on the opposite side of the center of friction from the friction cone, which violates

theorem 10. By elimination, right-sliding contact must occur.

This method requires that the center of friction be outside the friction cone,

which gives an upper bound on the coefficient of friction. As noted above, to orient

an object often imposes a lower bound on the coefficient of friction. These two

requirements may conflict. As a general rule, single stage oriernting and positioning

is difficult if the initial orientation of the object is completely unknown. The
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Figure 53. Test of block positioning and orienting. The three open circles indicate
failures of stage two. The rectangle is drawn to indicate the size of the block. The
large square was used to constraint the configuration of the block for the second
run.

procedure is more suitable when bounds on initial orientation exist.

Gripper Design

The idea of using a fence to locate objects is immediately applicable to the

design of grippers. By implementing the fence with one or both fingers, we extend

the capabilities of the robot. Its dependence on the array of surrounding special-

purpose equipment is reduced, with an accompanying increase in flexibility, and

reductions in money, space, development time, and execution time. Figure 8 shows

three different grippers which can orient, position, and grasp a block with a single,
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Figure 54. Single stage orienting and positioning. FC indicates the friction cone.
p is the line of pushing.

uniform, open-loop motion. The first of these works in a fashion similar to the hinge

grasp example. The second works using the single stage orienting and positioning

maneuver described above. The object is assumed to be constrained in position

and orientation to the extent that it will hit the finger and converge to the correct

orientation, at which point it slides until it strikes the projecting stop on the finger.

The third grippe, in figure 8 is similar in use to the second, but it has the great

advantage of generality. It is not constructed especially for a given object; it

accommodates different shapes by reconfiguring the fingers.

3.2. Automatic Planning of Grasping

In this section, a method is developed for planning a grasp maneuver, given the

shape of the object and the range of possible initial orientations. The planned grasp

motion maximizes a stability margin to minimize the sensitivity of the operation

to errors in orientation or coefficient of friction. The method was implemented on

the Lisp Machine [Weinreb and Moon 1981], and planned grasp operations which

were successfully executed by the Purbrick Arm.

For each edge of the object, the procedure calculates the best finger orientation

and line of pushing, and computes a stability margin. The edge giving the best

stability margin is selected for the final grasping motion. It is then necessary to
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determine the length of travel necessary to orient the object, so that the closing of

the second finger is timely but not premature. The hard part is planning the finger

orientation and motion for a given edge, so the solution of that task is presented

in detail. The input is:

1. OBJECT, which is obtained by projecting the real object onto the support

plane and taking the convex hull. Its representation in the machine

includes a list of vertices, a list of edges, a location, and an orientation.

2. ORIENTATION-INTERVAL, an interval of angles which represent the sut of

possible initial object orientations.

Examples of calculating the finger orientation, the finger velocity, and the stability

margin for each edge are shown in figures 56 and 57. The steps in this body are:

1. FEASIBLE-FINGER-NORMALS is computed. This represents the finger orien-

tations which are included in the set of possible initial orientations of the

edge and are guaranteed to hit this edge first. If this set is empty, go to

the next edge.

2. NOMINAL-GOOD-INTERVAL is computed. This is the set of translations

lines which guarantee local convergence assuming that the object is at

its nominal orientation (zero).

3. GOOD-INTERVAL is computed. This is the set of translations lines which

give convergence for any object orientation in ORIENTATION-INTERVAL.

This set is the set of angles a such that if ORIENTATION--INTERVAL is

rotated by a it is contained in NOMINAL-GOOD-INTERVAL. If GOOD-INTERVAL

is empty, go to the next edge.

From this point, the goal is to find a motion giving a translations line as near the

middle of GOOD-INTERVAL as possible. For a translations line inside GOOD-INTERVAL,

the stability margin MARGIN is defined to be the distance to the nearest boundary

of GOOD-INTERVAL. If the translations line is outside GOOD-INTERVAL, MARGIN is

negative. Maximizing MARGIN gives a translations line as insensitive to error as

possible.
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The next step is to see whether the friction cone can be placed so that the

optimal translations line is inside the friction cone. If it can, this maximizes MARGIN.

4. Compute the mean of GOOD-INTERVAL-BEST-ANGLE-and try to put the

translations line on BEST-ANGLE. If this is possible then a friction cone

placed at BEST-ANGLE must have a non-empty intersection with FEASIBLE-

FINGER-NORMALS. This intersection is computed and saved as BEST-FEASIBLE-

INTERVAL. If it is non-empLy the FINGER-NORMAL, FINGER-VEL, and MARGIN

are computed and saved for comparison with other edges.

If the friction cone cannot be placed to contain BEST-ANGLE, the next best thing is

to get any angle of GOOD-INTERVAL inside the friction cone.

5. Compute GROWN-GOOD-INTERVAL. This is the set of all angles expressible

as the sum of an angle in the interval [--a, a] and an angle in the interval

GOOD-INTERVAL. This is intersected with FEASIBLE-FINGER-NORMALS to

obtain OK-FEASIBLE-INTERVAL. If OK-FEASIBLE-INTERVAL is non-empty,

the boundary nearer BEST-ANGLE m axi mi zes MARGIN for this Odge. FINGER-

NORMAL, FINGER-VEL, and MARGIN are computed and saved for comparison

with other edges.

This procedure is executed for each edge. The combination of edge, FINGER-

NORMAL, and FINGER-VEL which maximizes MARGIN is the motion chosen for execu-

tion by the manipulator.

The procedure was coded and run on the M.I.T. Lisp Machine [Weinreb and

Moon 1981]. Appendix I contains a listing of the code. Grasping motions were

planned for two objects: the part of a bicycle derailleur used to clamp it to the

bicycle; and an oddly-shaped nut with a spring attached, used in a steel frame

modular construction system (figure 55.) The convex-hull of the projections of the

objects was determined by hand and entered into the computer. Figures 56 and

57 show the constructions outlined above for each of the two objects. In the case

of the spring-nut, it is noteworthy that the longest edge is not chosen, because the

center of gravity is much closer to a different edge.
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Figure 55. Parts for testing PLAN-GRASP.

3.3. Verification of Grasping

The previous section demonstrated automatic planning of grasping operations

which eliminate uncertainty in the initial orientation of an object. In this section

we demonstrate verification of grasping maneuvers which eliminate uncertainty in

initial orientation and position. We have already seen a verification of one such

grasping operation: the hinge-plate grasp described in chapter one. The basic steps

in that proof showed that with one-finger contact the hinge must rotate to two-

finger contact; that with two-finger contact the orientation is stable; and that with

two-finger contact, one finger against its hinge-sleeve, the orientation is still stable.

The difficulty remaining is to derive conditions on the initial finger separation and

the finger-closing velocity such that two finger contact occurs before the fingers close

too much. The. approach taken here is to consider the set of all possible rotation
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Figure 5G. PLAN-GRASP running on the bicycle part.
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Figure 57. PLAN-GRASP running on the spring-nut.
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centers with one-finger contact, and use this set to find an upper bound on the

finger closing velocity.

Figure 58 is a plot of the possible rotation centers for the contact point at

the very corner of the hinge. Since we have contact between a point of the finger

and an edge of the hinge-plate, the pushing constraint normal is determined by the

hinge-plate, and the friction cone rotates with the hinge-plate. The'possible lines of

force must lie in the friction cone, and generate the set of rotation centers indicated

by the thicker curve. If we now slide he contact point along the edge of the hinge-

plate toward the hinge-sleeve, the thicker curve sweeps out a set of possible rotation

centers. Figure 59 shows this set, and also the set of rotation centers which may

be obtained by fixed-contact pushing when the finger is in contact with the hinge-

sleeve. The greatest distance from the rotation centers to the contact points is

rmax, which will be used to obtain an upper bound on the finger-closing speed.

To prevent the fingers from closing too soon, we will obtain an upper bound

on the amount of time required for orientation of the hinge. The angular velocity

of the object depends on the rotation center, the object orientation, and the finger
A

velocity. Figure 60 shows the construction used. u is the unit vector orthogonal

to the hinge-plate edge. vf is the finger velocity, and v is the velocity of the

contact point. The finger velocity has a component h representing the motion of

the hand and a component 1 representing the closing of the fingers. The orientaton

of the object is 0. The range of possible initial orientations of the object is [00, 01],

with AO = 01 - 00. The total amount of finger-closing required for grasping the

hinge-sleeves is Al. The distance to the rotation center is r.

To determine the angular velocity we will divide the velocity of the contact

point g by the distance to the rotation center r. To determine the velocity of the

contact point requires both the rotation center and the pushing constraint. Because

of the pushing constraint, the projections of the finger velocity and the contact
A

velocity onto the constraint normal u must be equal:

A A
Crgf Utdt dU

Carrying out the dot product:
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Figure 58. Rotation center locus for hinge-plate. The part of the locus delimited

by force angles .427r and .58-7r is feasible.

Scos 0 + 1 sin 0 = |3vI cos b

Substituting rO for 3tc I and solving for 0:

Scos 0 + i sin 0

r cos b
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Figure 59. Possible rotation centers for hinge-plate.

Now the idea is to prevent the fingers from closing before the orientation is complete.

We want an upper bound on the angular velocity, for which we will use A /0*,
where 0 is a lower bound for the velocity. For plausible values of 1, h and the

minimum initial orientation 00, a lower bound for the velocity is given by
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Figure 60. Finding upper bound on orientation time.

hcos 00 + lsin 00

rmax cOs b

Now the finger-closing time must not be less than the maximum time to orient the

object:

1 >-

Substituting for 0* and solving for 1 we obtain:

. Alh cos 0

- AOrrax cos b - Al sin 00

which can be used to verify the last detail of the hinge grasping example.
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Chapter 4

Concluding Remarks and Suggestions for Future Work

The goal of this section is to discuss some of the primary ideas appearing in

this thesis as they relate to future robotics research.

Mechanics of Manipulation

The general focus of this work is on the mechanics of the manipulator-object

pair. I believe that this is a fertile area for research which will prove important

to the development of better manipulator control and planning systems. The

mechanics of quasi-static planar pushing includes only one of several possible modes

of manipulation of an object. Other common modes need to be identified and

studied. A particularly important mode of manipulation is the collision of the

manipulator with an object. These collisions are inevitable, and an important

aspect of many robot manipulator applications. Non-planar motion is obviously

very important. Likewise the motion of objects with multiple pushing constraints

requires more attention.

Applications to Robotic Manipulation

The applications developed in this thesis need further elaboration. More ex-

perience in the use of manipulation without prehension is necessary. The method

developed for automatic planning of grasping maneuvers is too restrictive, and

needs to be integrated with previous work addressing aspects of grasping other

than uncertainty, such as stability and path planning. The applications to design

of grippers and other auxiliary machinery need to be developed further. Simulations

based on the theory of pushing should be developed.
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Quasi-Static Planar Pushing

There are also a number of specific problems in the results of chapter two

which require further attention. First of all, it was generally assumed that the

pressure was bounded, i.e. that any normal force was applied over finite area.

Although this assumption is defensible on physical grounds, it is useful to include

the mathematical idealization of applying a non-zero normal force at a point, or

on a line. Indeed, we have frequently done so throughout the thesis. It would

also be desirable to extend the results of theorems 4 and 9, which were restricted

to force distributions with support other than the x-axis in the former case, and

to situations giving a non-zero determinant D in the latter case. Although these

cases may not give uniquely determined rotation centers, I believe that the only

failure occurs when the theorems predict translation and rotation occurs. This is

not terribly awkward, because in most applications the translation would have been

unstable anyway. None of the applications demonstrated in the thesis used theorem

4 or theorem 9 to guarantee translation, except indirectly when they were used to

show that an orientation was stable.

Although it was proven that pushing at a point not in the horizontal plane

does not hinder Jetermination of the mode of rotation, it was not proven that the

moment as a function of the rotation center is monotonic, nor was it shown under

what circumstances this function is single-valued. Both of these questions must be

addressed, and numerical methods need to be developed for this case.
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zone left

Table 1

line of pushing w.r.t. friction cone
contact

mode

left' ccw ccw ccw

I right ccw ccw ccw

fixed ccw ccw ccw

left ccw ccw ccw

II right ccw X X

fixed ccw ccw ccw

left X X ccw

III right ccw ccw ccw

fixed ccw ccw ccw

left ccw ccw ccw

IV right ccw ccw ccw

fixed ccw ccw ccw

114

in right



Appendix 1. Listing of PLAN-GRASP

definitions of data structures

(DEFSTRUCT (<type> <options>)
<slot spec 1>

<slot spec n> )
where <slot spec k> is either <slot name> or (<slot name>
<nominal value>) defines a constructor macro MAKE-<type>, and
accessor macros <type>-<slot-name> For example, the first DEFSTRUCT
creates the macros MAKE-VECTOR, VECTOR-X, and VECTOR-Y.

(defstruct (vector

(x 0.0)
(y 0.0))

(:type :named-array)
:conc-name)

(defstruct (point (:include vector)
:conc-name))

(defstruct (object (:type :named-array)
:cohc-name)

(angle 0)
(position (make-point))
(list-of-vertices nil)
(list-of-edges nil)
(mass))

(defstruct (vertex

object
index
cof-angle)

(defstruct (edge

object
i ndex
v1
v2
normal-angle)

(:type :named-array)
(:include vector)
:conc-name)

(:type :named-array)
:conc-name)

(defstruct (finger (:type :named-array)
con c-name)

(normal-angle 0)

(length 5.0)
(center (make-point)))

; nominal face width is 5 cm
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angles are represented as fixed-point 24-bit numbers, in units of (2

* pi)/2**24. arithmetic is done modulo 2**24. , i.e. modulo 2*pi An
interval is represented by its lowest and highest angles, defined

counter-clockwise. The intervals are closed at the low end, open at

the high end.

(defstruct (angle-interval (:type :named-array)
:conc-name)

(low 0)
(high 0))

Ope'rations

vector arithmetic

(defun vector-plus (vi v2 &optIonal (v3 (make-vector)))

(setf (vector-x v3) (+ (vector-x v1) (vector-x v2)))

(setf (vector-y v3) (+ (vector-y v1) (vector-y v2)))

v3)

(defun vector-diff (vi v2 &optional (v3 (make-vector)))
(setf (vector-x v3) (- (vector-x v1) (vector-x v2)))

(setf (vector-y v3) (- (vector-y v1) (vector-y v2)))

v3)

(defun scalar-product (s v &optional (dest (make-vector)))
(setf (vector-x dest) (* s (vector-x v)))
(setf (vector-y dest) (* s (vector-y v)))

dest)

(defun vector-length (v)
(sqrt (float (+ (^ (vector-x v) 2)

(^ (vector-y v) 2)))))

(defun angle-of-vector (vector)
(radians-to-angle (atan (vector-y vector)

(vector-x vector))))

other vector operations

(defun unit-vector (angle)
(make-vector x (cos (angle-to-radians angle))

y (sin (angle-to-radians angle))))

(defun rotate-vector (v angle
&aux (c (cos (angle-to-radians angle)))

(s (sin (angle-to-radians angle))))

(make-vector x (- (* c (vector-x v)) (* s (vector-y v)))
y (+ (* s (vector-x v)) (* c (vector-y v)))))
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;;; angle arithmetic

(defun angle-plus (al a2)
(%24-bit-plus al a2))

(defun angle-diff (al a2)
(%24-bit-difference al a2))

(defun angle-to-radians (al)

(// (* (si:24-bit-unsigned al) 2 pi) (^ 2 24.)))

(defun radians-to-angle (r)
(si:make-24-bit-unsigned

(fix (* (// r 2 pi) (^ 2 24.)))))

other angle operations

(defun angle-between (a b c)
(< (si:24-bit-unsigned (angle-diff a b))

(si:24-bit-unsigned (angle-diff c b))))

(defun interval-includes-angle-p (interval angle)

(angle-between
angle
(angle-interval-low interval)
(angle-interval-high interval)))

(defun rotate-interval (int angle
&optional (dest (make-angle-interval)))

(setf (angle-interval-low dest)
(angle-plus (angle-interval-low int) angle))

(setf (angle-interval-high dest)
(angle-plus (angle-interval-high int) angle))

dest)

this returns length of an interval in RADIANS. If the low and the

high of an interval are the same, this indicates the whole circle,

which comes out to zero in angle units. Of course, it is impossible

to represent an empty interval with our encoding, so no information

would be lost using angle units.

(defun angle-interval-length (interval)
(let ((angle-length

(angle-diff (angle-interval-high interval)
(angle-interval-low interval))))

(if (zerop angle-length)
(* 2 pi)
(angle-to-radians angle-length))))

(defun copy (intt int2)
(setf (angle-interval-low int2)(angle-interval-low inti))

(setf (angle-interval-high int2)(angle-interval-high intl))

int2)

;;; returns mean of an angle-interval

(defun angle-interval-mean (int)
(angle-plus (angle-interval-low int)

(// (angle-diff (angle-interval-high int)
(angle-interval-low int))

2)))
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interval of angles which can be represented as sum of an angle from

intl and an angle from int2

(defun co-intervals (intl int2 &optional (dest (make-angle-interval)))

(setf (angle-interval-low dest) (angle-plus (angle-interval-low inti)
(angle-interval-low int2)))

(setf (angle-interval-high dest) (angle-plus (angle-interval-high intl)
(angle-interval-high int2)))

dest)

computes an interval d s.t. (co-intervals int-inside d) ==> int-outside.

empty d indicated by nil.

(defun ci-intervals (int-outside int-inside
&optional (dest-interval (make-angle-interval)))

(cond ((< (angle-interval-length int-inside)
(angle-interval-length int-outside))

(setf (angle-interval-low dest-interval)
(angle-diff (angle-interval-low int-outside)

(angle-interval-low int-inside)))
(setf (angle-interval-high dest-interval)

(angle-diff (angle-interval-high int-outside)
(angle-interval-high int-inside)))

dest-interval)
(t nil)))

(defun interval-includes-angle-bit (interval angle)
(if (interval-includes-angle-p interval angle)

1
0))

computes simple intersection of two intervals, i.e. doesn't know how

to describe union of two in-tervals, so returns nil instead, switches

on 4-bit number indicating inclusion of vertex of one interval in the

other interval.

(defun simple-intersect (intl int2 &optional (int3 (make-angle-interval)))

(if (or (null inti) (null int2))

nil
(selectq (+ (interval-includes-angle-bit intl (angle-interval-low int2))

(* 2 (interval-includes-angle-bit
intl
(angle-interval-high int2)))

(* 4 (interval-includes-angle-bit
int2
(angle-interval-low inti)))

(* 8 (interval-includes-angle-bit
int2
(angle-interval-high inti))))

(0 nil) ; empty intersection

(15. nil) ; not simple intersection

(3 (copy int2 int3))
(12. (copy intl int3))
(6 (setf (angle-interval-low int3) (angle-interval-low intl))

(setf (angle-interval-high int3) (angle-interval-high int2))

int3)
(9. (setf (angle-interval-low int3) (angle-interval-low int2))

(setf (angle-interval-high int3) (angle-interval-high inti))

int3)
(otherwise (ferror nil "Impossible set of inclusions")))))
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operations on objects.

returns preceding edge in list of edges of object

(defun preceding-edge (object edge-index
&aux (list-of-edges (object-list-of-edges object))

(length (length list-of-edges)))
(nth (remainder (+ edge-index length -1)

length)
list-of-edges))

(defun succeeding-edge (object edge-index
&aux (1-st-of-edges (object-list-of-edges object))

(length (length list-of-edges)))
(nth (remainder (1+ edge-index)

length)
list-of-edges))

constants

(defconst zero-vector (make-vector))

(defconst angle-pi (radians-to-angle pi))
(defconst angle-half-pi (// angle-pi 2))

(defconst coefficient-of-friction 0.25) Leonardo's value
(defconst friction-angle (radians-to-angle coefficient-of-friction))

define acceptable margin

(defvar margin-threshold 0.0)
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PLAN-GRASP

for each edge i
calculate feasible finger angle and finger vel
maximizing stability margin

select edge with largest stability margin

;;;if margin < stability-threshold, report failure

guess necessary length of travel

return edge index, finger angle, finger vel, travel, and trace.

(defun plan-grasp (object orientation-interval
&aux (record (make-plan-grasp-record

object object
orientation-interval orientation-interval)))

- (do ((edge-index 0 (1+ edge-index))
edge
best-edge-index best edge so far
(best-margin -1) ditto for margin

(best-finger-normal nil) ; ditto for finger normal

(best-finger-vel nil) ditto for finger vel

range of angles between preceding edge normal and succeeding edge

normal

(edge-contact-interval nil nil)

interval of finger normal angles such that initial contact will occur
with v1 or v2 before another vertex, for any object orientation in
orientation-interval

(feasible-finger-normals nil nil)

if object were in orientation 0 with 0 variation, this would be
good-interval

(nominal-good-interval nil nil)

angles of lines which, when drawn from v1 will pass to the -left of the
c.o.f., and when drawn from v2 will pass to the right of the c.o.f.,

for any object orientation in orientation-interval.

(good-interval nil nil)

the interval of angles which are the sum of an angle in good-interval

and an angle in the friction cone

(grown-good-interval nil nil)

intersection of grown-good-interval with feasible-finger-normals

(ok-feasible-interval nil nil)

(best-angle nil nil) mean of good-interval
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intersection of friction cone constructed
about best-angle with
feasible-finger-normals

(best-feasible-interval nil nil)

(finger-normal nil nil) ; best finger normal for edge

(finger-vel nil nil) ; best finger vel for edge
(margin -1.0 -1.0) ; stability margin for edge

)

loop through all edges

((= edge-index (length (object-list-of-edges object)))

(if (> best-margin margin-threshold) if good enough,
return parms

(list best-edge-index best-finger-normal
best-finger-vel
(plan-grasp-travel

best-edge-index best-finger-normal
best-finger-vel object orientation-interval)

record )

"no feasible grasp" record)) else report failure

get edge, and angles of preceding and succeeding edges

(setf edge (nth edge-index (object-list-of-edges object)))
(setq edge-contact-interval

(make-angle-interval
low (edge-normal-angle (preceding-edge object edge-index))
high (edge-normal-angle (succeeding-edge object edge-index))))

check for convexity

(if (not (interval-includes-angle-p
edge-contact-interval
(edge-normal-angle edge)))

(ferror nil "object not convex"))

compute feasible-finger-normals

(setq feasible-finger-normals
(simple-intersect

(ci-intervals edge-contact-interval orientation-interval)
(rotate-interval orientation-interval

(edge-normal-angle edge))))

proceed only if feasible-finger-normals is non-empty

(if (not (null feasible-finger-normals))
(progn

compute good-interval

(setq nominal-good-interval
(make-angle-interval low (vertex-cof-angle (edge-vi edge))

high (vertex-cof-angle (edge-v2 edge))))
(setq good-interval (ci-intervals nominal-good-interval

orientation-interval))
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;; proceed only if good-interval is non-empty

(if (not (null good-interval))

;;The object of this code is to choose the finger-vel and finger
normal so that the middle of the vel, the left, and the right
edges of the friction cone (i.e. the translations line) is in
good-interval.

first, compute best-angle, grow by (-atan(mu), atan(mu)), and
intersect with feasible-angles. If non-empty, choose
finger-normal in result and vel = best-angle. Margin is half
of (length good-interval)

(progn
(setq best-angle

(angle-irterval-mean good-interval)

best-feasible-interval
(simple-intersect
feasible-finger-normals
(rotate-interval (make-angle-interval

low (angle-diff 0 friction-angle)
high friction-angle)

best-angle)

(if (not (null best-feasible-interval))
(if (interval-includes-angle-p best-feasible-interval

best-angle)
(setq finger-normal best-angle

finger-vel best-angle
margin (// (angle-interval-length good-interval)

2))
(if (angle-between

(angle-interval-low best-feasible-interval)
best-angle-
(angle-interval-high best-feasible-interval))

(setq finger-normal
(angle-interval-low best-feasible-interval)
finger-vel
best-angle
margin
(// (angle-interval-length good-interval) 2))

(setq finger-normal
(angle-interval-high best-feasible-interval)
finger-vel
best-angle
margin
(// (angle-interval-length good-interval) 2))
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next, grow good-interval by [0, atan(mu)), and intersect
with feasible-finger-normals. If non-empty, finger-normal
is low angle of result of intersection, and margin is diff
between high of grown-good-interval and finger-normal, vel
= best-angle.

(progn
(setq grown-good-interval

(co-intervals
good-interval
(make-angle-interval

low 0
high friction-angle))

ok-feasible-interval
(simple-intersect

feasible-finger-normals
grown-good-interval))

(if ok-feasible-interval
(setq finger-normal

(angle-interval-low ok-feasible-interval)
fi nger-vel
best-angle
margin
(angle-to-radians

(angle-diff
(angle-interval-high grown-good-interval)
(angle-interval-low ok-feasible-interval))))

next, grow good-interval by [-atan(mu), 0), and
intersect with feasible-finger-normals. If non-empty,
finger-normal is high angle of result of intersection,
and margin is diff between finger-normal and low of
grown good-interval. vel = best-angle.

(progn
(setq grown-good-interval

(co-intervals
good-interval
(make-angle-interval

low (angle-diff 0 friction-angle)
high friction-angle))

ok-feasible-interval
(simple-intersect

feasible-finger-normals
grown-good-interval))

(if ok-feasible-interval
(setq finger-normal

(angle-interval-low ok-feasible-interval)
finger-vel
best-angle
margin
(angle-to-radians

(angle-diff
(angle-interval-high grown-good-interval)
(angle-interval-low

ok-feasible-interval))))
(setq finger-normal nil

finger-vel nil
margin -1))))))
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If there is an ok or good feasible finger-normal, and if

margin is greater than best-margin, save finger-normal,

finger-vel, margin, and edge-index.

(if (> margin best-margin)
(setq best-margin margin

best-finger-normal finger-normal
best-finger-vel finger-vel
best-edge-index edge-index)))

given an object and a pushing motion, estimate time for orientation to

converge

(defun plan-grasp-travel (edge-index finger-normal
finger-vel object orientation-interval
&aux (edge (nth edge-index

(object-list-of-edges object)))
(vi (edge-vi edge))
(v2 (edge-v2 edge))
(max-xr 0.0)

)

for each of v1, v2, guess the three vertices, other than contact point,

giving maximum distance to center of rotation, assuming fixed contact.

Maximum xr's occur at extremes of orientation-interval, so compute for each

vertex and save larger. Multiply by total angular excursion to obtain

upper bound on total pushing distance required for orientation to be

complete.

(mapc #'(lambda (v)
(let* ((supports (max-moment-supports v object))

(xr (center-of-rotation object supports v finger-vel)))
(i' (> xr max-xr)

(setq max-xr xr))))
(list v1 v2))

(* (angle-interval-length orientation-interval)
max-xr))
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