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Abstract

Dominating Sets of the Cartesian Products of Cycles

A dominating set for a graph G is a subset D of V(G) such that every vertex

not in D is adjacent to at least one member of D. In this project, we first briefly

survey a variety of known results on dominating sets of some families of graphs,

especially the Cartesian products of two k-cycles which are our main focus for

this project.

Then, we describe the application we developed to facilitate research on

dominating sets of the Cartesian products of k-cycles. After that, we obtain

linear-time algorithms to generate dominating sets of the Cartesian products of

two k-cycles with sizes matching the best known upper bounds. Additionally,

for two cases when k is congruent to two or three modulo five, we improve the

two known upper bounds.
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“Taking a new step, uttering a new word, is what people fear most.”

Fyodor Dostoyevsky, Crime and Punishment
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Chapter 1

Introduction

The definitions for graphs in this document are based on the conventions es-

tablished by West [22]. An undirected graph G is a triple consisting of a vertex set

V(G), an edge set E(G), and a relation that associates with each edge two vertices

called its endpoints. Each edge corresponds to an unordered pair of vertices.

We draw a graph on paper by placing each vertex at a point and representing

each edge by a curve joining the location of its endpoints. A loop is an edge

whose endpoints are equal. Multiple edges are edges having the same pair of

endpoints. A simple graph is a graph having no loops or multiple edges. In this

document, all the graphs are undirected simple graphs.

When u and v are the endpoints of an edge, they are adjacent and are neigh-

bors. The degree of a vertex v of a graph G is the number of edges incident to

v in G, and it is denoted by deg(v). The maximum degree over all vertices of

G is denoted by ∆(G). Similarly the minimum degree over all vertices of G is

denoted by δ(G).
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1.1 Definitions

A path Pn is a graph whose vertices can be ordered so that two vertices are adja-

cent if and only if they are consecutive in the list. A cycle Cn is a graph with an

equal number of vertices and edges whose vertices can be placed around a circle

so that two vertices are adjacent if and only if they appear consecutively along

the circle. A connected graph is a graph where there is a path from each vertex to

every other vertex. A tree is a connected graph with no cycles. A subgraph of a

graph G is a graph H such that V(H) ⊆ V(G) and E(H) ⊆ E(G).

An isomorphism from a simple graph G to a simple graph H is a bijection

f : V(G) → V(H) such that (u, v) ∈ E(G) if and only if ( f (u), f (v)) ∈ E(H). It

is said "G is isomorphic to H", written G ∼= H, if there is an isomorphism from G

to H. An isomorphism class of graphs is an equivalence class of graphs under the

isomorphism relation. An automorphism of G is an isomorphism from G to G.

For sets A and B, the Cartesian product A× B is the set of all ordered pairs

(a, b) where a ∈ A and b ∈ B. The Cartesian product of two graphs G1 and G2

denoted by G1�G2 is the graph with vertices V(G1)×V(G2) and u = (u1, u2) is

adjacent with v = (v1, v2) where v1, u1 ∈ V(G1) and v2, u2 ∈ V(G2) if and only

if u1 = v1 and (u2, v2) ∈ E(G2) or u2 = v2 and (u1, v1) ∈ E(G1).

Example 1.1.1 (Cartesian Product of Graphs ). Assume graph G1 is defined as V1 =

{v1, v2, v3} and E1 = {(v1, v2), (v2, v3)} and G2 is defined as V2 = {u1, u2, u3, u4}

and E2 = {(u1, u2), (u2, u3), (u1, u3)}. Then the Cartesian product of G1 and G2 is

graph G = G1�G2. Graphs G1, G2 and G are shown in Figure 1.1.
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v1

v2

v3

u1 u2 u3 u4

(v1, u4)

(v2, u4)

(v3, u4)(v3, u1)
(v3, u2)

(v3, u3)

(v2, u3)(v2, u1)

(v1, u1) (v1, u3)

(v2, u2)

(v1, u2)

G1

G2

G

FIGURE 1.1: Graphs for Example 1.1.1

Figure 1.2 shows the Cartesian product of two 3-cycles.

v1

v2

v3

u1 u2 u3

(v3, u1)
(v3, u2)

(v3, u3)

(v2, u3)(v2, u1)

(v1, u1) (v1, u3)

(v2, u2)

(v1, u2)

G1

G2

G

FIGURE 1.2: G = C3 � C3

A dominating set for a graph G is a subset D of V(G) such that every vertex

not in D is adjacent to at least one member of D. The domination number γ(G)

is the number of vertices in a smallest dominating set for G. The set D ⊆ V(G)

is called a γ-set if it is a dominating set of G and |D| = γ(G). A dominating set

S ⊆ V is perfect if every vertex v in V − S is adjacent to exactly one vertex in S.

A vertex v in a dominating set S is perfect if none of the vertices dominated by v

(including v itself) are dominated by any other vertex.
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1.2 Thesis Overview

In this project, we study dominating sets of Cartesian products of cycles. Chap-

ter 2 establishes the previous results on domination sets of some classes of graphs,

particularly on Cartesian product of graphs. In Chapter 3, we discuss the Java

application we developed to facilitate researching on dominating sets of Carte-

sian product of cycles. Chapter 4 includes some interesting results on dominat-

ing sets of Cartesian product of cycles. Finally, Chapter 5 consists of the sum-

mary of a results achieved. Additionally, various open problems encountered

through this research are summarized in Chapter 5.
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Chapter 2

Survey of Recent Results

In this chapter, we explore work related to this project. Section 2.1 describes

the history of dominating sets, particularly for some interesting graphs such as

Queen Graphs and Triangle Grid Graphs. In Section 2.2, we summarize previous

results on Cartesian product of cycles.

2.1 Dominating Sets

Research on domination of graphs backs to 1901 [15]. In the first published for-

malization [5], Claude Berge called it "the coefficient of external stability". Later

in the 1970’s the rate of the research on domination problem has increased sig-

nificantly. In 1998 Haynes et al. [11] published a book on domination which

included 1222 references on this area. In 1972, Richard Karp proved the Set

Cover Problem to be NP-complete by reducing Vertex Cover Problem to it [12]. As

there are vertex to set and edge to non-disjoint-intersection bijections between the

Set Cover Problem and Dominating Set Problem, this proved the dominating set

problem to be NP-complete as well [1]. The problem remains NP-complete even

if restricted to certain classes of graphs such as bipartite graphs. However, for

some classes of graphs such as trees, the dominating number can be computed

in polynomial time [1].
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2.1.1 Queen Graphs

Historically, the first known domination problem is the queen domination problem.

In 1848, a German chess composer Max Friedrich Wilhelm Bezzel [17] published

the 8-queens problem. The 8-queens puzzle is the problem of placing eight chess

queens on an 8× 8 chessboard so that no two queens threaten each other. In

1850, Franz Nauck published the first solutions and extended the puzzle to the

n-queens problem [3], with n queens on a chessboard of n× n squares. A problem

similar to the n-queens problem is the queen domination problem. For a chess-

board of size k× k, the queen domination problem is to find the minimum number

of queens needed on the chessboard such that all the squares are either occupied

or can be attacked by a queen. Figure 2.1, shows a board of size 8× 8, and Q’s

indicates the positions of queens.

Q

Q

Q

Q

Q

FIGURE 2.1: A Dominating Set of Queens for a Board of Size 8× 8

For modeling the queens dominating problem on a graph, Queenk is the

graph that represents a chessboard of size k × k. Each vertex of Queenk cor-

responds to a square of the board, and there is an edge between two vertices if

and only if their corresponding squares are in a same row, column, diagonal or

back-diagonal. Queenk is called a Queen Graph.



Chapter 2. Survey of Recent Results 7

A trivial upper-bound for γ(Queenk) is k− 2. The best known lower-bound

for γ(Queenk) is proved to be d k
2e by Finozhenok and Weakley [9] for all the

values of k except for k = 3 and k = 11. Östergård and Weakley established

an upper-bound γ(Queenk) ≤ 69k
133 + O(1) [16]. Recently, Bird [7] established

γ(Queen20) = 11, γ(Queen22) = 12 and γ(Queen24) = 13. The open case be-

fore that was for Queen19 which was solved by Kearse and Gibbons [13]. The

smallest open case at this time is for k = 26 [7]. Due to the elementary fact that

γ(Queenk+1) ≤ γ(Queenk + 1), it is known that 13 ≤ γ(Queen22) ≤ 14.

2.1.2 Triangular Grid Graphs

A triangular grid graph Tl consists of vertices (i, j, k) such that i, j, k ∈ Z∗ and

i + j + k = l, and two vertices are adjacent if the total absolute differences in

corresponding coordinates is two [22]. Figure 2.2 shows the Triangular Grid

Graph T4.

(0, 0, 4)

(0, 1, 3)

(0, 2, 2)

(0, 3, 1)

(0, 4, 0)

(1, 3, 0)

(2, 2, 0)

(3, 1, 0)

(4, 0, 0)(1, 0, 3) (2, 0, 2) (3, 0, 1)

(1, 1, 2) (2, 1, 1)

(1, 2, 1)

FIGURE 2.2: Triangular Grid Graph of Order 4

Exact values for γ(Tk) for 1 ≤ k ≤ 31 have been computed by different

researchers [21]. Wagon [20] conjectured for k ≥ 14, the dominating number of

Tk is equal to b k2+7k−23
14 c. The smallest open case at this time is for k = 32 [21].



Chapter 2. Survey of Recent Results 8

2.1.3 Grid Graphs

A grid graph Gn,m is a Cartesian product of paths Pn and Pm. A generalized grid

graph is a Cartesian product of finite number of paths. Figure 2.3 shows G6,5 =

P6 � P5.

In 1992, Chang [8] conjectured for 16 ≤ m ≤ n, γ(Pm � Pn) is equal to

b (m+2)(n+2)
5 c − 4. Gonçalves et al. [10] proved the conjecture and gave a piece-

wise formula for m < 16.

FIGURE 2.3: A Grid Graph G6,5 = P6 � P5

2.1.4 Hypercube Graphs

The k−hypercube graph, commonly denoted Qk, is the graph whose vertices are

binary vectors of size k and two vertices are adjacent if and only if they differ

in exactly one coordinate. Alternatively, Qk can be defined as a Cartesian prod-

uct of k two-paths. As the number of vertices grows exponentially, there has

not been much progress on finding the dominating number of Qk. Moreover,

determining γ(Qk) is an intrinsically difficult problem [2]. The smallest open
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case at this time is for k = 10, and γ(Q9) = 62 [6]. Moreover, it is know that

107 ≤ γ(Q10) ≤ 120 [6].

2.2 Dominating Sets of Cartesian Products of Cycle

The relation between the domination number and the Cartesian product of graphs

first came to attention in 1963 by V. G. Vizing [19]. Later in 1968 [18], he posed

his well-known conjecture.

Conjecture 2.2.1 (Vizing’s Conjecture[18]). For two graphs G and H,

γ(G � H) ≥ γ(G)γ(H).

He also proved an upper bound γ(G�H) ≤ min{γ(G)|V(H)|, γ(H)|V(G)|}

for the domination number of the Cartesian product of two graphs G and H [19].

Klavžar and Seifter [14] proved some equalities for the domination number

of Cartesian product of certain cycles. Theorem 2.2.1 describes them.

Theorem 2.2.1 (Klavžar and Seifter[14]). Let k ≥ 4. Then,

γ(C3 � Ck) = k−
⌊

k
4

⌋
, and

γ(C4 � Ck) = k.

Moreover, for k ≥ 5, if k ≡ 0 mod 5, then

γ(C5 � Ck) = k, and
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if k ≡ 1, 2 or 4 mod 5, then

γ(C5 � Ck) = k + 1.

Richard Bean [4] stated that the domination number of two k-cycles when k

is congruent to zero modulo five is equal to k2

5 . Moreover, he conjectured if k is

congruent to one modulo five then γ(Ck � Ck) =
k2+2k−8

5 , and if k is congruent

to four modulo five then γ(Ck � Ck) =
k2+k

5 [4].
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Chapter 3

DomGrid App

Finding a smallest dominating set is a difficult and time consuming task even for

small graphs. There are two main issues with doing this task by hand. Choosing

a good vertex to include in the dominating set is a main issue and determining

the dominated vertices is another one. There are several families of graphs that

can be shown on a grid. Two obvious ones are Grid Graphs and Queen Graphs. In

this context, for exploring dominating sets we developed an application called

DomGrid App specifically for visualization and playing with dominating sets of

Cartesian product of cycles. However, we can easily modify it for other graphs

that can be represented by a grid just by changing the adjacency information.

3.1 Visualization

The DomGrid App can take one or two input arguments. The first input argu-

ment is the number k indicating that the graph is Ck � Ck. The optional second

argument is a file that contains a sequence of partial or complete dominating

sets.
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3.1.1 Running DomGrid with One Input Argument

Figure 3.1 shows an example of running the application with input k = 6. The

grid corresponds to the graph C6 � C6 in Figure 3.2. The indices that are shown

in Figure 3.1 are vertex numbers. For this grid representation of the graph, there

is a bijection from [0, k2− 1] to [0, k− 1]× [0, k− 1] where x maps to (r, c) where

r = b x
k c and c = x mod k. The coordinates (r, c) map to x = r ∗ k + c.

In this document we refer to each copy of Ck in Ck � Ck by a row or a column

in the grid representation. Rows and columns are numbered starting with 0.

FIGURE 3.1: The constructed grid for k = 6

Each box represents a vertex in the graph. Clicking on a box for vertex v

adds v to the partial dominating set if it is not already included, otherwise v
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FIGURE 3.2: The Graph of C6 � C6

is removed from the partial dominating set. As shown in Figure 3.3, after the

first click on some box, each box gets a color and an integer label. If the vertex

v is not selected to be in the dominating set, the label of v is the number of

vertices that become dominated when v is added. If v is in the dominating set,

the label indicates the number of vertices that would become undominated if v

is removed from the dominating set.

Example 3.1.1. Note that vertex numbers for the graph in Figure 3.3 are shown in

Figure 3.1. In Figure 3.3, the red vertex (vertex 14) is in the dominating set. If it is

removed, five vertices will become undominated. Moreover, the top green vertex (ver-

tex 2) is not in the dominating set and by selecting it four more vertices will become

dominated; vertices 2, 1, 3 and 32. Vertex 8 will be dominated as well, but because it is

already dominated by 14, it is not included in the count that labels vertex 2.

For each value of k, the DomGrid App has a hard-coded value for the desired

dominating set size. For 1 ≤ k ≤ 22, the optimal dominating set sizes are known
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FIGURE 3.3: The Grid for C6 � C6 after clicking on vertex 14
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[4], and the program uses these values for the desired size. The optimal domi-

nating set sizes for 1 ≤ k ≤ 22 are listed in Table 3.1.

k γ(Ck � Ck)

1 1
2 2
3 3
4 4
5 5
6 8
7 12
8 16
9 18

10 20
11 27
12 32
13 38
14 42
15 45
16 56
17 64
18 71
19 76
20 80
21 95
22 104

TABLE 3.1: Known Optimal Values for γ(Ck � Ck) for 1 ≤ k ≤ 22

As it is stated in [14], an obvious upper bound for γ(Ck � Ck) is k2

4 . In Chap-

ter 4 we improve this bound to k× d k
5e. Moreover, when k is congruent to zero

modulo five, it is proved that γ(Ck �Ck) =
k2

5 [4]. The program uses the follow-

ing equalities for the desired number for γ(Ck � Ck) where d(Ck � Ck) refers to

the desired dominating number and k > 22. At the moment, these are the best

known upper-bounds.

• k ≡ 0 mod 5→ d(Ck � Ck) =
k2

5
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• k ≡ 1 mod 5→ d(Ck �Ck) =
k2+2k−8

5 (Conjectured by Bean [4] and proved

as an upper bound in this project)

• k ≡ 2 mod 5→ d(Ck �Ck) =
k2+2k−8

5 (Upper bound proved in this project)

• k ≡ 3 mod 5→ d(Ck � Ck) =
k2+2k

5 (Upper bound proved in this project)

• k ≡ 4 mod 5→ d(Ck �Ck) =
k2+k

5 (Conjectured by Bean [4] and proved as

an upper bound in this project)

If a user wants to try different desired dominating set sizes, the values which

are hard-coded in the program need to be changed.

The color of the boxes help researchers to understand the nature of exist-

ing partial or complete dominating sets. The colors are defined in terms of the

desired dominating set size.

For each k, the desired dominating set size is denoted by d, and at each step

of using the DomSet App, the size of the selected dominating set is denoted by

t. Therefore, r = d− t is the number of vertices still required. We partition the

vertices into 4 different categories

• Selected Vertices: These vertices are already in the partial dominating set.

• Good Vertices: If the label x is on this box and there are u vertices that

are not dominated so far, then x ≥ du
r e. They are good candidates to be

selected for the dominating set, because if the current partial dominating

set can be extended to one of the desired size, then at least one good vertex

must be used.

• Bad Vertices: Sort the labels on cells which are not currently selected in the

partial dominating set in decreasing order, and let S be the summation of

the first r− 1 values. Let x be the label on a box. If S + x < u, then the box
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corresponds to a bad vertex. If a bad vertex is added, then the resulting

partial dominating set provably cannot be extended to one of the desired

size.

• Maybe Good Vertices: They are not selected, good or bad vertices.

Based on the properties described earlier and their domination set status, we

define the colors of each box.

• Selected Vertices: These vertices are already in the partial dominating set.

– Red: The vertex is a perfect vertex. In Figure 3.4, vertices 8, 16 and 19

belong to this type.

– Pink: The vertex dominates at least one vertex that is dominated by

more than one vertex in the dominating set. In Figure 3.4, vertices 27

and 29 belong to this type.

• Dominated Vertices: These vertices are dominated by another vertex and

they are not in the partial dominating set.

– Gray: This vertex is dominated by more than one vertex. It can have

properties of other non-selected vertices, but it is shown as gray. In

Figure 3.4, vertex 28 is the only vertex with this property.

For vertices that are not gray, the colors are:

– Orange: This vertex is a good vertex.

– Yellow: This vertex is a maybe good vertex. In Figure 3.4, vertex 2

belongs to this type.

– White: This vertex is a bad vertex. In Figure 3.4, vertex 7 belongs to

this type.
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• Undominated Vertices: These vertices are not dominated by any vertex.

– Cyan: This vertex is a good vertex. In Figure 3.4, vertex 0 belongs to

this type.

– Green: This vertex is a maybe good vertex. In Figure 3.4, vertex 1 be-

longs to this type.

– Blue: This vertex is a bad vertex. In Figure 3.4, vertex 3 belongs to this

type.

FIGURE 3.4: The Grid for C6 � C6 after clicking on vertices 8, 16,
19, 27 and 29

DomGrid App has another visualization feature as well. As cyclically shifting

all vertices up, down, left or right gives an automorphism, by using arrow keys
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on the keyboard, all the vertices can be shifted in the desired direction. Figure

3.5 illustrates this feature using a series of actions. These actions can be applied

to dominating sets to recenter them so that the symmetries of a solution are more

visually apparent on the grid. Changing the position of the border of the grid

can facilitate playing with the vertices on the edges.

(a) The Grid of Figure 3.4 (b) Right Arrow applied to 3.5(a)

(c) Up Arrow applied to 3.5(b) (d) Left Arrow applied to 3.5(c)

FIGURE 3.5: DomGrid: Using Arrow Keys

3.1.2 Seeding the Program With Partial Dominating Sets

When used with two input arguments, DomGrid App supports all the properties

described when it has one argument. As mentioned before, the second argument
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is a file name. The file consists of a sequence of partial or complete dominating

sets. The file starts with an integer s denotes the number of different sets which

are included in the file. Each set starts with a number m that is the number of

vertices in this set followed by m different indices in the range [0, k2 − 1]. Using

the Page Up/Page Down keys on the keyboard, a user can switch between the

different partial dominating sets in the file. The program starts with no vertices

selected in the partial dominating set. Page Down moves to the first dominating

set in the file and Page Up moves to the last one. By pressing the Page Down key

the program goes to the next partial dominating set, and by pressing the Page

Up key it goes to the previous dominating set. If it reaches the last set and Page

Down is pressed or if it is on the first set and Page Up is pressed, the program

goes to its initial state, i.e. no vertices are selected for the partial dominating set.

Example 3.1.2. Assume DomGrid App is executed with k = 6, and a file with following

numbers.

INPUT FILE:

8 1 9 11 13 22 24 26 34

3 2 12 21

Figure 3.6 shows the output of DomGrid App with this input and the series of actions

that are mentioned in Figure 3.6.

Using input files facilitates visualizing possible dominating sets and vali-

dating the correctness of algorithms for dominating sets. They also facilitate a

search for possible patterns that can be extended for large values of k.
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(a) Starting Execution (b) Clicking on Index 13

(c) Page Down (d) Page Down

(e) Page Down (f) Page Down

FIGURE 3.6: DomGrid: Using a File and Series of Actions
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3.2 More Features

As mentioned earlier in this chapter, the DomGrid App provides many visualiza-

tion aids to help users to choose better vertices as candidates for the dominating

set and to understand the properties of their partial dominating sets better. In

this section, we describe more information which is displayed by the application

on the console output.

At first, the console displays the following descriptions.

• A brief description of the colors and their properties.

• The desired size d of a dominating set.

After clicking on a vertex, the user sees following information on the console:

• A text-based representation of the current situation of the grid. It shows

the grid in k lines. If vertex (r, c) is added into the dominating set, character

X is the c + 1th character on the r + 1 row, otherwise the character _ is

placed.

• Indices of selected vertices.

• The number of unselected vertices.

• The number of selected vertices t.

• The number of required vertices r = d− t.

• The first r unselected labels after sorting them in decreasing order.

• The number of undominated vertices u.

• If all the vertices are dominated, it shows a message whether the selected

dominating set is a good or bad set based on the predefined desired dom-

inating set size.
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Chapter 4

Improvement on Known Results for

Dominating Sets of the Cartesian

Products of Cycles

As mentioned earlier in Chapter 3, Richard Bean [4] has conjectured that for k ≡

1 mod 5, the size of an optimal dominating set of Ck � Ck is k2+2k−8
5 . Also, for

k ≡ 4 mod 5, he has conjectured that the optimal size is k2+k
5 . In both cases, there

is no suggested construction for such dominating sets.

In this chapter we describe three interesting constructions for dominating

sets of the Cartesian product of cycles. In Section 4.1, we describe and prove

the necessary and sufficient conditions for a perfect dominating set of Ck � Ck

when k ≡ 0 mod 5. Using that, we develop a construction for dominating sets

of Ck � Ck.

In Section 4.2, we describe a construction for a dominating set of the conjec-

tured size for Ck � Ck when k is congruent to one modulo five.

Finally, in Section 4.3 we describe another construction for a dominating set

of Ck � Ck when k is congruent to two modulo five. This construction improves

the upper bound of γ(Ck � Ck). Moreover, in this Section we conjecture that the
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exact value of γ(Ck � Ck) when k is congruent to two modulo five is k2+2k−8
5 .

4.1 General Construction For Dominating Sets of Ck �Ck

This section provides a general construction for a perfect dominating set for

Ck � Ck. This construction gives the perfect dominating when k is congruent to

zero modulo five. Richard Bean [4] stated that for this case γ(Ck � Ck) = k2

5 .

Figure 4.1 illustrates a perfect dominating set for C10 � C10.

FIGURE 4.1: A perfect dominating set of C10 � C10

Theorem 4.1.1. In a perfect dominating set of Ck � Ck for k ≥ 5, selected consecutive

vertices for the dominating set of one cycle (row/column) must have a distance of five

and they follow the staircase pattern in Figure 4.1.

Proof. Clearly, two vertices in a perfect dominating set cannot have distance one

or two. Assume they are in the same row or column and have distance three.

Without loss of generality, assume they are as shown in Figure 4.2(a). To domi-

nate the vertex circled in white in Figure 4.2(b) perfectly, there is just one option
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(a) (b)

(c) (d)

FIGURE 4.2: Two vertices in the dominating set with distance three

and we need to pick the vertex above it for the dominating set as it shown in Fig-

ure 4.2(c). Now for dominating the vertex circled in white in Figure 4.2(d), there

is no option that leads to a perfect dominating set. Therefore, two vertices in the

dominating set cannot have distance three and be in the same row or column.

Now assume two vertices are in the same row or column and have distance

four. This case is illustrated in Figure 4.3(a). For dominating the circled vertex

in Figure 4.3(b) perfectly there are two options; the vertex above it or below it.

Without loss of generality, we pick the vertex above it. This causes a problem

for dominating the vertices marked with the yellow box in Figure 4.3(d).
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(a) (b)

(c) (d)

FIGURE 4.3: Two vertices in the dominating set with distance four
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Therefore, the dominating vertices in a same row or column cannot have

distance less than five. Assume their distance is either 6, 7, 8 or 9. Figure 4.4

illustrates the case when they are at distance seven. For dominating the vertices

marked by a yellow box, and using the Pigeon Hole Principle, at least one of its

adjacent rows has vertices in the dominating set with distance less than five.

So they must be at distance 5 which makes a pattern similar to 4.1.

FIGURE 4.4: Two vertices in the dominating set with distance seven

The graph Ck � Ck has a perfect dominating set for k congruent to zero mod-

ulo five because the dominating set vertices can be selected in such a way that

in each row and column they are at distance five.

The following algorithm is a construction for creating a perfect dominating

set for Ck �Ck where k ≡ 0 mod 5. Note that because of the symmetric property

of Ck � Ck, several different perfect dominating sets exist, but we construct one

of them and the construction for the rest are similar.
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Algorithm 4.1.1 Construction Algorithm for a perfect dominating set for Ck �Ck

1: procedure DOMINATING SET(k)
2: i← 0
3: j← 0
4: for j← 0 to k− 1 do . For each column:
5: for t← 0 to b(k− 1)/5c do
6: Add vertex [(t× 5 + i) mod k, j] to S
7: end for
8: i← (i + 2) mod k
9: end for

10: return S
11: end procedure

The resulting dominating set of Algorithm 4.1.1 for k = 15 is shown in Figure

4.5.

Theorem 4.1.2. Algorithm 4.1.1 generates a perfect dominating set of Ck � Ck where

k ≡ 0 mod 5.

Proof. Based on the fact that k is congruent to zero modulo five, the distance

between two selected vertices in a same row or column is multiple of 5. As the

algorithm constructs the pattern described in Theorem 4.1.1, so Algorithm 4.1.1

generates a perfect dominating set.

Algorithm 4.1.1 generates a dominating set of size k2+3k
5 when k is congruent

to two modulo five. This improves the previous upper bound of k2

4 [14]. Figure

4.6 illustrates the resulting dominating set of Algorithm 4.1.1 for C27 � C27.

Theorem 4.1.3. Algorithm 4.1.1 generates a dominating set of size k2+3k
5 for Ck � Ck

when k ≡ 2 mod 5.

Proof. There are k columns, and for each column p = k+3
5 vertices are added

to the dominating set. Therefore, the size of the resulting dominating set of
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FIGURE 4.5: Output of Algorithm 4.1.1 for k = 15
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FIGURE 4.6: Dominating set generated by Algorithm 4.1.1 for k =
27.
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Algorithm 4.1.1 is k × k+3
5 = k2+3k

5 , which improves the upper bound of k2

4 for

Ck � Ck proved by Klavžar and Seifter [14].

Moreover, Algorithm 4.1.1 generates a dominating set of size k2+2k
5 when k is

congruent to three modulo five. Figure 4.7 illustrates the resulting dominating

set of Algorithm 4.1.1 for C23 � C23.

FIGURE 4.7: Dominating set generated by Algorithm 4.1.1 for k =
23.

Theorem 4.1.4. Algorithm 4.1.1 generates a dominating set of size k2+2k
5 for Ck � Ck

when k ≡ 3 mod 5.
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Proof. There are k columns, and for each column p = k+2
5 vertices are added to

the dominating set. Therefore, the size of the resulting dominating set of Algo-

rithm 4.1.1 is k2+2k
5 , which improves the upper bound of k2

4 for Ck � Ck proved

by Klavžar and Seifter [14].

Bean [4] conjectured for cases when k is congruent to four modulo five the

dominating number is k2+k
5 . Algorithm 4.1.1 generates a dominating set of size

k2+k
5 when k is congruent to four modulo five. Figure 4.8 illustrates the resulting

dominating set of Algorithm 4.1.1 for C19 � C19.

FIGURE 4.8: Returned dominating set by algorithm 4.1.1 for k = 19

Theorem 4.1.5. Algorithm 4.1.1 generates a dominating set of size k2+k
5 for Ck � Ck

when k ≡ 4 mod 5.
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Proof. There are k columns, and for each column p = k+1
5 vertices are added to

the dominating set. Therefore, the size of the resulting dominating set of Algo-

rithm 4.1.1 is k2+k
5 , which satisfies the conjectured value of Ck � Ck by Richard

Bean [4].

Table 4.1 summarizes the size of the dominating sets that Algorithm 4.1.1

generates, and it compares them with known results. Figure 4.9 shows the dom-

inating sets constructed by Algorithm 4.1.1 for 30 ≤ k ≤ 34.

k mod 5 Previous Results Algorithm 4.1.1 Results
0 k2

5 (Proved) k2

5
1 k2+2k−8

5 (Conjectured) k2+4k
5

2 k2

4 (Upper Bound) k2+3k
5

3 k2

4 (Upper Bound) k2+2k
5

4 k2+k
5 (Conjectured) k2+k

5

TABLE 4.1: Sizes of dominating sets constructed by Algorithm
4.1.1.
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(a) k = 30 (b) k = 31

(c) k = 32 (d) k = 33

(e) k = 34

FIGURE 4.9: Dominating sets constructed by Algorithm 4.1.1 for
30 ≤ k ≤ 34
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4.2 A Pattern for k ≡ 1 mod 5

In this section, a construction for k congruent to one module five is described.

This construction generates a dominating set of size k2+2k−8
5 for k ≥ 41 that

matches the conjectured size by Bean [4]. Figure 4.10 shows the constructed

pattern for k = 51 . Figure 4.11 shows the dominating sets of size k2+2k−8
5 for

cases when k is less than 41 and k is congruent to one module five.

FIGURE 4.10: Constructed Dominating Set for k = 51

Algorithms 4.2.1 shows the pseudo-code for the construction which gener-

ates a dominating set of size k2+2k−8
5 for k ≥ 41.

Figure 4.12 illustrates the construction steps of Algorithm 4.2.1 for k = 46.
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(a) Dominating set for k =
6

(b) Dominating set for k =
11

(c) Dominating set for k =
16

(d) Dominating set for k =
21

(e) Dominating set for k =
26

(f) Dominating set for k =
31

(g) Dominating set for k =
36

FIGURE 4.11: Dominating sets when k is congruent to one module
5 and k < 41
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Algorithm 4.2.1 Construction Algorithm for a perfect dominating set for Ck �Ck

1: procedure DOMINATING SET(k) . Constraint: k ≡ 1 mod 5, k ≥ 41
2: Step 1 - Double Dominations on the Boundary
3: Add vertex [1, 0] to S
4: Add vertex [0, 2] to S
5: Add vertex [0, 4] to S
6: Add vertex [k− 2, k− 1] to S
7: Add vertex [k− 1, k− 5] to S
8: Add vertex [k− 1, k− 3] to S
9: Add vertex [0, k− 2] to S

10: Add vertex [2, k− 1] to S
11: Add vertex [4, k− 1] to S
12: Add vertex [k− 1, 1] to S
13: Add vertex [k− 5, 0] to S
14: Add vertex [k− 3, 0] to S
15: le f t← 2 ∗ ((k− 1)/5− 3) + 1
16: right← (k− 1)/5 + 2
17: middle← (k− 1)/5− 7
18: Step 2 - Horizontal Pairs
19: for i← 0 to le f t− 1 do
20: r ← 2 ∗ i + 1
21: c← 5 + i
22: Add vertex [r, c] to S
23: Add vertex [r, c + 2] to S
24: Add vertex [k− 1− r, k− 1− c] to S
25: Add vertex [k− 1− r, k− 1− (c + 2)] to S
26: end for
27: r ← 2 ∗ (le f t− 1) + 1
28: c← 5 + (le f t− 1) + 3
29: Add vertex [r, c] to S
30: Add vertex [k− 1− r, k− 1− c] to S
31: Step 3 - Vertical Pairs
32: for i← 0 to right− 1 do
33: r ← k− 1− 5− i
34: c← 2 ∗ i + 1
35: Add vertex [r, c] to S
36: Add vertex [r− 2, c] to S
37: Add vertex [k− 1− r, k− 1− c] to S
38: Add vertex [k− 1− (r− 2), k− 1− c] to S
39: end for
40: r ← k− 1− 5− right− 2
41: c← 1 + 2 ∗ (right− 1)
42: Add vertex [r, c] to S
43: Add vertex [k− 1− r, k− 1− c] to S
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44: Step 4 - Perfect Domination on Left and Right
45: r ← 2 ∗ le f t + 1
46: c← 5 + le f t
47: Add vertex [r, c] to S
48: Add vertex [k− 1− r, k− 1− c] to S
49: for i← 0 to le f t do
50: rstart ← 2 + 2 ∗ i
51: cstart ← 3 + i
52: r ← rstart
53: c← cstart
54: while c ≥ 0 do
55: Add vertex [r, c] to S
56: Add vertex [k− 1− r, k− 1− c] to S
57: r ← r + 1
58: c← c− 2
59: end while
60: end for
61: Step 5 - Perfect Domination on Top and Bottom
62: r ← k− 1− 5− (right− 1)− 1
63: c← 1 + 2 ∗ right
64: Add vertex [r, c] to S
65: Add vertex [k− 1− r, k− 1− c] to S
66: for i← 0 to le f t do
67: rstart ← k− 4− i
68: cstart ← 2 + 2 ∗ i
69: r ← rstart
70: c← cstart
71: while r < k do
72: Add vertex [r, c] to S
73: Add vertex [k− 1− r, k− 1− c] to S
74: r ← r + 2
75: c← c + 1
76: end while
77: end for
78: for i← 0 to middle− 1 do
79: rstart ← 2 ∗ (le f t− 1) + 1− 5− 2 ∗ i
80: cstart ← 5 + le f t− 1 + 2− i
81: for j← 0 to middle− i do
82: r ← rstart − 3 ∗ j
83: c← cstart + j
84: Add vertex [r, c] to S
85: Add vertex [k− 1− r, k− 1− c] to S
86: end for
87: end for
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88: Step 6 - Middle Part
89: r ← 2 ∗ (le f t− 1)
90: c← 5 + (le f t− 1) + 5
91: for i← 0 to middle− 1 do
92: Add vertex [r, c] to S
93: Add vertex [r + 2, c + 1] to S
94: Add vertex [r + 2, c + 2] to S
95: Add vertex [r− 2, c− 1] to S
96: Add vertex [r− 2, c− 2] to S
97: r ← r− 3
98: c← c + 1
99: end for
100: return S
101: end procedure

Figure 4.13 illustrates the constructed dominating set of size 1880 by Algo-

rithm 4.2.1 for k = 96.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

FIGURE 4.12: Dominating set construction for k = 46
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FIGURE 4.13: Constructed Dominating Set by Algorithm 4.2.1 for
k = 96
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4.3 Improving the Upper-bound for γ(Ck �Ck) when

k ≡ 2 mod 5 and k ≥ 22

This section gives a construction for creating a dominating set of size k2+2k−8
5 for

cases where k is congruent to 2 modulo 5 and k ≥ 22. This improves the previous

upper bound of k2+3k
5 provided by our construction in Section 4.1. Moreover, we

conjecture that the exact value of γ(Ck �Ck) when k is congruent to two modulo

five is k2+2k−8
5 .

Algorithm 4.3.1 shows the pseudo-code for the construction which generates

a dominating set of size k2+2k−8
5 for k ≥ 22 when k is congruent to 2 modulo 5.

Figure 4.14 illustrates the constructed pattern for k = 52 and k = 57.

(a) k = 52 (b) k = 57

FIGURE 4.14: The patterns for k = 42 and k = 47

Figure 4.15 illustrates the construction steps of Algorithm 4.3.1 for k = 42.



Chapter 4. Improvement on Known Results for Dominating Sets of the

Cartesian Products of Cycles
43

Algorithm 4.3.1 Construction Algorithm for a perfect dominating set for Ck �Ck

1: procedure DOMINATING SET(k) . Constraint: k ≡ 2 mod 5, k ≥ 22
2: if (k%10 == 2) then
3: k← (k− 2)/5 + 3
4: k jig ← (k− 2)/10− 2
5: kpinkv ← 3 ∗ (k− 2)/10− 2
6: kpinkh

← (k− 2)/10− 1
7: else
8: k← (k− 7)/5 + 5
9: k jig ← (k− 7)/10− 2

10: kpinkv ← 3 ∗ (k− 7)/10− 1
11: kpinkh

← (k− 7)/10
12: end if
13: Step 1 - The J-shape on Top and the staircase-shape
14: Add vertex [0, 2] to S
15: Add vertex [1, 2] to S
16: Add vertex [2, 0] to S
17: r ← 3
18: for c← 0 to k do
19: Add vertex [r, c] to S
20: Add vertex [r, c + 2] to S
21: end for
22: Step 2 - Jig-shapes in the middle
23: for i← 0 to k jig do
24: Add vertex [r, c] to S
25: Add vertex [r, c + 2] to S
26: Add vertex [r + 1, c] to S
27: Add vertex [r + 1, c− 2] to S
28: r ← r + 3
29: c← c− 1
30: end for
31: Step 3 - Upside down J-shape in the middle
32: Add vertex [r, c] to S
33: Add vertex [r, c + 2] to S
34: Add vertex [r + 1, c + 2] to S
35: Add vertex [r + 2, c] to S
36: Add vertex [r + 3, c] to S
37: if (k%10 == 7) then
38: Add vertex [r + 1, c− 2] to S
39: end if
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40: Step 4 - Vertical Pairs
41: r ← r + 1
42: c← c + 5
43: for i← 0 to kpinkv do
44: Add vertex [r, c] to S
45: Add vertex [(r + 1)%k, c] to S
46: Add vertex [(r + 2)%k, c− 2] to S
47: Add vertex [(r + 3)%k, c− 2] to S
48: r ← (r + 1)%k
49: c← c + 3
50: end for
51: Step 5 - Horizontal Pairs
52: r ← k− 1
53: c← 4
54: for i← 0 to kpinkh

do
55: Add vertex [r, c] to S
56: Add vertex [r, c + 1] to S
57: r ← r− 3
58: c← c + 1
59: end for
60: Step 6 - Perfect Dominating Vertices
61: Finish-Perfect(S, k) . Picks the perfect dominating vertices
62: return S
63: end procedure

Algorithm 4.3.1 constructs a dominating set for Ck �Ck for all the values of k

when k is congruent to two modulo five. So we achieved the upper bound of size

k2+2k−8
5 for γ(Ck � Ck) in this case. This upper bound matches the domination

number for computed cases. This leads us to the following conjecture.

Conjecture 4.3.1. For k congruent to two modulo five and k ≥ 22,

γ(Ck � Ck) =
k2 + 2k− 8

5
.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

FIGURE 4.15: Dominating set construction for k = 42
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Chapter 5

Conclusions and Future Research

A summary of the work that is done in this project is provided in Section 5.1 .

In Section 5.2, various open problems that arose from the study are summarized

for further work.

5.1 Thesis Summary

This thesis provides constructions that give dominating sets of the following

sizes:

k mod 5 Best Formula Bounds
0 k2

5 (Proved) k ≥ 5
1 k2+2k−8

5 (Conjectured) k ≥ 41
2 k2+2k−8

5 (Conjectured) k ≥ 22
3 k2+2k

5 (Upper Bound) k ≥ 3
4 k2+k

5 (Conjectured) k ≥ 4

TABLE 5.1: Sizes of dominating sets constructed by our algorithms.

It is known that for zero modulo five the construction is optimal. Accord-

ing to Bean’s conjectures [4], these constructions are optimal for cases when k

is one or four modulo five. We have conjectured that the construction gives an

optimal result for two modulo five. The construction for three modulo five is
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not optimal, because it does not match the best known results for small cases

as indicated in Table 5.2, but it improves the previous upper bound. The main

contributions made on this project were the DomGrid App in Chapter 3, and im-

proving the upper bounds of γ(Ck � Ck) when k is congruent to two or three

modulo five in Chapter 4.

k Best Known Results Our Construction in Chapter 4
13 38 39
18 71 72
23 114 115
28 166 168
33 229 231
38 302 304
43 385 387

TABLE 5.2: Comparing the best known results on γ(Ck � Ck) for
k ≡ 3 mod 5 with our upper bound.

Finding a dominating set is inherently a harder problem than finding a domi-

nating number. In Chapter 4, we developed algorithms for construction of domi-

nating sets of desired sizes. The running time of these algorithms is proportional

to the size of the dominating set. Table 5.1 summarizes the known results on

domination number of Cartesian product of two k-cycles.

5.2 Future Work

In Chapter 3 we developed the DomGrid App for visualization of dominating sets

for the Cartesian product of two k-cycles. The DomGrid App can be generalized

to support more families of graphs which can be represented on a grid, such as

Cartesian product of two arbitrary cycles, grid graphs, hypercube graphs and

triangular grid graphs. This tool has proved extremely helpful for providing

human guidance and insight for the graphs that are a product of two k-cycles.
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They will likely also prove a very valuable research tool for these other dominat-

ing set problems. The smallest open case sizes and their bounds for hypercube

graphs, triangular grid graphs and queen graphs are summarized in Table 5.3.

Graph Family Smallest Open Case Bounds for γ
Hypercube Graphs (Qk) 10 107− 120

Triangular Grid Graphs (Tk) 32 87 (Conjectured)
Queen Graphs (Queenk) 26 13− 14

TABLE 5.3: Smallest open cases for the dominating number of three
families of graphs.

Another interesting problem that arises from Chapter 4 and Table 5.1 is to

either prove the conjectured values for dominating number of Cartesian product

of two k-cycles when k is congruent to one, two or four modulo five are optimal,

or to find smaller dominating sets for the cases where cycle size k is not zero

modulo five. Improving the upper bound when k is congruent to three modulo

five is another interesting research problem.
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