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Conditional Generative Adversarial Network for Generating
Communicative Robot Gestures

Nguyen Tan Viet Tuyen, Armagan Elibol, and Nak Young Chong

Abstract— Non-verbal behaviors have an indispensable role
for social robots, which help them to interact with humans
in a facile and transparent way. Especially, communicative
gestures allow robots to have the capability of using bodily
expressions for emphasizing the meaning of their speech,
describing something, or showing clear intention. This paper
presents an approach to learn the synthesis of human actions
and natural language. The generative framework is inspired
by Conditional Generative Adversarial Network (CGAN), and
it makes use of the Convolutional Neural Network (CNN)
with the Action Encoder/Decoder for action representation. The
experimental and comparative results verified the efficiency of
the proposed approach to produce human actions synthesized
with text descriptions. Finally, through the Transformation
model, the generated data were converted to a set of joint angles
of the target robot, being the robot’s communicative gestures.
By employing the generated human-like actions for robots, it
suggests that robots’ social cues could be more understandable
by humans.

I. INTRODUCTION

Non-verbal behaviors including facial and bodily expres-
sions have an indispensable role for social robots, allowing
them to naturally interact with humans in a facile and
transparent manner [1]. Especially for social robots without
dedicated facial articulation, communicative gestures en-
dow them with the capability of using bodily expressions
for emphasizing the meaning of their speech, describing
something, or showing clear intention. These social skills
could improve interacting partners’ understanding and make
interaction outcomes rewarding. In this paper, we propose an
approach to learn the relation between human actions and
natural language. The generated actions are used for social
robots to convey the meaning of their speech. The approach
is inspired by Conditional Generative Adversarial Network
(CGAN) [2], an extension of Generative Adversarial Net-
works (GANs) [3]. The designed framework is built upon a
Convolutional Neural Network (CNN), which has been used
efficiently in many different GAN application domains. This
paper investigates on the generative network built upon CNN
for generating social robots’ gestures synthesized with their
verbal content of speech.

The rest of the paper is organized as follows. In Section II,
we provide a review of previous studies in generating co-
speech robot gestures inspired by the rule-based approach.
We then emphasize the importance of utilizing human behav-
iors to generate robot gestures and recent studies based on the
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learning from the demonstration approach. In Section III, the
proposed model is described in detail. In Section IV, we val-
idate the proposed approach on a publicly available dataset.
Finally, our conclusion and future works are described in
Section V.

II. RELATED WORK

The approach to communicative robot gesture generation
can be divided into mainly two groups: rule-based and data-
driven.

A. Rule-based Approach

Most of the existing works on generating communicative
robot gestures rely on the ruled-based approach. Behavior
Expression Animation Toolkit (BEAT) [4] is a well-known
model. It receives speech texts as the inputs and releases
non-verbal behaviors. In BEAT, the association between
text and gesture is defined by a set of rules derived from
state of the art in the non-verbal conversational behavior
researches. Similarly, the model [5] accepts both speech text
and the audio signal as the inputs, the rule-based system
analyzes the input utterance text to generate the facial and
bodily expressions for virtual agents. Recently, several social
robots such as RoboThespian, Nao, and Pepper have become
capable of making the communicative gestures synchronized
with their speech. However, their gestures are handcrafted
by animation experts to ensure the familiarity and human-
likeness of the gesture.

B. Data-driven Approach

Although the handcrafted gestures provide the familiarity
and human-likeness of the robots’ motions, this approach
only allows robots to produce their communicative behav-
iors in the pre-designed scenarios. Moreover, the generated
gestures are constrained by a set of defined rules. It should be
remarked that social robots need to be capable of interacting
with different types of users in a personal way by adapting
and learning new behaviors throughout their lifetime [6],
[7]. Thus, robots should be endowed with the capability
of learning social skills from human social interactions. In
order to attain this objective, the relation between gestures
and corresponding natural language context needs to be
addressed in a variety of communication topics. In [8],
the mapping between bodily gestures and natural language
has been investigated. The model receives text descriptions
as inputs and produces gestures performed by the Master
Motion Map (MMM) model. Since the output actions are
represented in the joint space of the MMM model, it is



Fig. 1: The designed framework for generating gestures af synthesized with the text description d.

difficult to implement the generated gestures of this approach
on the other robots whose joint configurations are different
from the MMM framework. To address this drawback, our
approach generates actions represented in Cartesian space,
allowing them to be transformed effectively into different
social robot platforms. Recently, GAN has received con-
siderable attention in a variety of research contexts. Es-
pecially, it has been applied with great success in image
generation task [9]. In terms of action generation, the author
[10] proposed the GAN framework named Text2Action to
generate co-speech actions. It is constructed based on a
sequence to sequence network. Different from Text2Action,
our generative framework is built upon CNN, which has been
widely used in many application domains such as image
[11], [12], video [13], and audio generation [14]. As a result,
this paper investigates the convolution operation toward the
autonomous generation of communicative gestures.

III. METHODOLOGY

Overview of the Proposed Approach

Fig. 1 presents the proposed framework. In the training
phase, ar = [S1, S2, S3, ..., ST ] (ar ∈ R3×8×T ) denotes
a real action containing a sequence of skeleton frames S ∈
R3×8 performed over a period of time T . As shown in Fig. 2,
S consists of 8 joints defined in 3D space. Through the

Action Encoder, ar is encoded to an action matrix xr ∈
R3×16×T . On the other hand, d = [w1, w2, w3, ..., wk] is a
natural language sentence composed of k words to describe
the action ar. It is started by feeding the description d to
the Embedding Description network. The output e is con-
catenated with the noise vector z sampled from the Normal
distribution, and they are fed to the Generator network. The
purpose of the Generator G is to generate the fake action
matrix xf ∈ R3×16×T as much realistic as possible to beat
the Discriminator D while D tries to differentiate between
xr and xf taking into account the embedding vector e.

Once the training process is completed, the generated
action matrix xf , synthesized with text description d, is
decoded to af ∈ R3×8×T . Through the Transformation
model [15], the action af , defined in 3D Cartesian space, is
transformed into the target robot’s motion space represented
by joint angles. The following parts will detail the designed
framework shown in Fig. 1.

A. Embedding Description

In order to capture the meaning of text description d =
[w1, w2, w3, ..., wk] by a fixed-length vector, we use the
encoder phase of the skip-thoughts model [16]. The hidden
layer hk, encoded from a sequence of words {w1, ..., wk}, is
determined by Eq. 1. Here, ck is the word embedding of wk,
W and U are the weight matrices, � denotes the component-



wise product, zk and rk are the update gate and reset gate
of Gated Recurrent Unit [17].

hk = (1−zk)�hk−1+zk�tanh(Wck+U(rk�hk−1)) (1)

It has been shown that hk effectively represents the
semantics and syntax of the whole sentence to be encoded
[16]. Then, hk is compressed to a smaller dimensional vector
e before being fed into the G and D network.

B. Action Encoder and Decoder

Action Encoder: It has been shown that CNN has a
natural ability to learn representation from 2D matrices
[18]. Human actions, defined as a sequence of skeleton
frames, could be represented as 2D matrices containing three
channels representing x, y, z coordinates, respectively. On
each channel, the horizontal axis covers the time sequence T ,
while the vertical axis represents the spatial distribution of
joints at a certain timestamp. Then, CNN based approach is
utilized to jointly capture spatial and temporal information
of actions [18], [19], [20], [21]. It should be emphasized
that the chain order of joints in the vertical axis affects the
spatial information represented in the action matrix xr. To
efficiently capture spatial relations of the adjacent joints of
the action ar, the Action Encoder puts its relative joints
near each other. With this representation, by feeding the
input ar to the Action Encoder, the encoded matrix xr

is released and it can be seen in Fig. 2. Specifically, on
each channel c ∈ {x, y, z} of the matrix xr, the horizontal
axis covers the time sequence T of the action ar, while
the vertical axis is a sequence of joints in a given order
I = [1, 0, 1, 2, 3, 4, 3, 2, 1, 1, 5, 6, 7, 6, 5, 1] (I ∈ R16) at a
certain timestamp. Thus, instead of feeding the raw input ar

to the D network, the Action Encoder allows the spatial-
temporal information of the action ar to be presented as the
action matrix xr.

Action Decoder: In order to decode the action matrix xf

to the action af as displayed in Fig. 1, our designed Action
Decoder calculates the joint value jc,m,t of the action af

over the time sequence as shown in Eq. 2 and Eq. 3. This
calculation allows that jc,m,t is defined based on the average
values of its distribution on xf . Here, jc,m,t denotes the
value of joint index m (m = [0, 7]), on the dimension c
(c ∈ {x, y, z}), at the time stamp t (t ∈ [1, T ]), and n(m) is
the number of times the joint index m in the order I .

jc,m,t =
1

n(m)

16∑
p=1

xf (c, p, t)δ(p,m, I) (2)

δ(p,m, I) =

{
1 I(p) = m

0 I(p) 6= m
(3)

C. Generator and Discriminator Network

In this paper, the proposed Generator G and Discriminator
D are based on CNN similar to our previous work [21].
Initially, the noise vector z is sampled from the Normal

Fig. 2: Action Encoder encodes the raw action ar to the
action matrix xr

distribution N(0, 1). It is concatenated with the vector e,
encoded from Embedding Description, before being fed to
the G network. As presented in Fig. 1, G is designed
with a fully connected layer to reshape the input vector
and followed by four fractionally-strided convolutions to up-
sample the data to an output target xf . On each layer, batch
normalization is applied for stabilizing the learning process,
and followed by the Rectified Linear Unit (ReLU) activation
[22] except for the last layer. Here, the tanh activation
function is used before producing the fake action matrix xf .

Discriminator D is designed with five convolutional layers
similar to the architecture of G. D receives either xr from
training data or xf from G as an input. At the fourth layer,
the embedding vector e is concatenated with the output
of the convolutional layer. Here, the embedding e provides
conditional information for D to evaluate whether the input
action satisfies this condition or not. At the last layer, the
results are passed into a sigmoid function to produce an
output probability.

The training process is summarized in Algorithm 1. The
vector e provides conditional information to the G network
in order to generate the action matrix xf , synthesized with
the action description d. The Generator aims to fool the
Discriminator, it is trained to maximize the output proba-
bility, yf . Conversely, D is trained to differentiate between
xr and xf based on (1) the human-likeness of the action,
and (2) the synthesis of an action and its corresponding
description. It should be remarked that the second point plays
an essential role, allowing the generated action to express the
meaning of the input description effectively. To endow D
with the capability of evaluating this synthesis, D is trained
to maximize the output probability yr when receiving a pair
of real action input xr and embedding vector e. On the
other hand, given a pair of input xf and e, the Discriminator
is trained to minimize the output probability yf . From the
training data, we also collect the miss-matching description
d̂, which incorrectly describes the action xr. When feeding
a pair of the real action xr and ê to the D network, the



Discriminator is trained to minimize the output ym, implying
that xr does not synthesize d̂. The binary cross-entropy is
applied to compute the miss-classification error LD, LG of
the network D, and G, respectively. The parameter of D is
updated while keeping the parameters of G constant. Then,
the parameters of G are adjusted to optimize the error LG

while keeping network D unchanged.

Algorithm 1 The proposed algorithm for the training phase
Input: real action ar, matching description d,
miss-matching description d̂, training batch steps S.

1: for s=0 to S do
2: xr ← ActionEncoder(ar);
3: e← EmbeddingDescription(d);
4: ê← EmbeddingDescription(d̂);
5: z ← N(0, 1);
6: xf ← G(z, e);
7: yr ← D(xr, e);
8: yf ← D(xf , e);
9: ym ← D(xr, ê);

10: LD ← log(yr) + log(1− ym) + log(1− yf );
11: D ← D − α∂LD/∂D; {Update Discriminator}
12: LG ← log(yf );
13: G← G− α∂LG/∂G; {Update Generator}
14: end for

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset and Preprocessing

The designed framework was validated on the same dataset
as applied in [10]. This dataset consists of 2, 822 actions ar

and 31, 863 corresponding natural language descriptions d
(one action could be associated with more than one descrip-
tion). As shown in Fig. 2, ar ∈ R3×8×32 is a sequence
of 32 skeleton frames representing the human upper body
motion. Each frame S includes 8 joints defined in 3D. From
the dataset, we filtered the actions whose joint positions are
out of the range [−1, 1]. Totally, 29, 663 pairs of actions ar

and corresponding descriptions d were obtained. For each
ar, we also collected the miss-matching description d̂. The
obtained data ar, d, and d̂ were split into 90% for training
and 10% for testing. Concerning the Embedding Description,
as mentioned in Section III-A, we used the encoder phase of
the skip-thoughts model trained with the BookCorpus dataset
[23]. As the BookCorpus dataset consists of 11, 038 books in
a variety of topics, it allows the encoded vectors to effectively
capture the semantics and syntax of the input sentences,
without being biased toward any particular domain.

B. Evaluation Metrics

Consider that ar = [S1, S2, S3, ..., ST ] is the real
action associated with the description d, and af =
[S′1, S

′
2, S
′
3, ..., S

′
T ] is the fake action synthesized with d. In

order to verify the synthesis between af and d quantitatively,
we used covariance description with temporal hierarchical
construction [24] to evaluate how similar the generated action

Fig. 3: Skeleton sequence of generated action for “a young
woman demonstrates example of lifting exercises.”

Fig. 4: Generated action for “a girl practices lifting exercise
at the gym.”

Fig. 5: Generated action for “a woman performs weight
lifting exercises.”

af and the real action ar are. Given ar and af as the inputs,
Eq. 4 encodes them as the corresponding feature vectors
Cr and Cf , respectively. Here, S is the sample mean of
Si computed over the time T and ᵀ represents the trans-
pose operator. This feature vector efficiently captures spatio-
temporal information of action over the time sequence, it has
been used for action recognition tasks [24] and unsupervised
learning tasks [7]. Finally, the similarity between Cr and Cf

is measured by cosine similarity as given in Eq. 5.

C =
1

t− 1

T∑
i=1

(Si − S)(Si − S)ᵀ (4)

Similarity(Cr, Cf ) =
Cr · Cf

||Cr|| ||Cf ||
(5)

C. Generated Actions Synthesized with Input Descriptions

From the training data, the real action ar, the matching
description d, and the miss-matching one d̂ were fed to the
designed network with the batch size 100. The dimension of
the noise vector z is 100. The Adam optimizer [25] with the
momentum 0.5 and the learning rate 2 × 10−5 was applied
for both G and D network. The Discriminator and Generator
were sequentially trained for 700 epochs.

Fig. 3 illustrates the generated action of the proposed
model by feeding an input “a young woman demonstrates
example of lifting exercises”, which is included in the testing
data. The action looks like a person is lifting two arms over
the shoulder two times. Moreover, we also tested the two
modified versions of that sentence such as “a girl practices
lifting exercise at the gym” and “a woman performs weight
lifting exercise”. The resulting actions are presented in Fig. 4
and Fig. 5, respectively. A closer look at Fig. 3, 4, and 5 show
that skeleton frames of those actions are not exactly matched
to each other at a certain timestamp. However, generated
bodily expressions seem to be similar over the time sequence.
Those results suggest that G does not merely memorize and
reproduce the data. It is able to generate a diverse set of
actions to convey a particular meaning. For social robots, this
capability would allow them to perform novel behaviors over



Fig. 6: Comparison with the real action (GT) for “a sprinter is sprinting on the track with his head down”: Text2Action
(T2A) [10], the model without Action Encoder/Decoder (w/o E/D) [21], and the fully implemented model (full model).

TABLE I: Similarity comparison among Text2Action [10]
(T2A), the model without Encoder/Decoder [21] (w/o E/D),

and the fully implemented model (full model).

Text2Action w/o E/D full model
Average similarity 0.4196 0.5060 0.5287

time, which positively contributes to the user’s engagement
during interaction [26].

D. Quantitative Evaluation of Generated Actions

The real action ar is correctly synthesized with the text
description d. Thus, it is reasonable for evaluating actions
produced by the G network by measuring the similarity
between ar and af , since those are synthesized with the
same description d. Notice that ar and af could express the
same meaning over the time sequence, although their corre-
sponding skeleton frames are not exactly matched each other
at a certain timestamp, as mentioned in IV-C. The evaluation
metric suggested in IV-B satisfies such requirement. Here,
we sequentially fed text descriptions of the testing data to a
given G network. Both the generated and real actions were
plugged into Eq. 4 and Eq. 5 for measuring their similarity.

In order to quantitatively verify the differences between
our proposed network and the related approach - Text2Action
[10], we trained their proposed network again on this training
data while keeping the same training parameters as suggested
by the authors. Additionally, we also verified the efficiency of
the action generation framework without the Action Encoder
and Decoder, which is described in our previous work [21].
Specifically, the raw action ar was fed to the designed
network without encoding. Then, the action af is generated
from G without passing through the Action Decoder. Table I
presents the similarity between the real actions of testing
data and actions generated from Text2Action, our model
without Action Encoder/Decoder, and fully implemented
model, respectively.

Table I indicates that by feeding the same text descriptions,
the generated actions produced from our networks are more

similar to the real ones. Thus, our generated data are more
connected to the input sentences. It should be emphasized
that our D network is trained to differentiate between data
generated by G and the real training data taking into ac-
count the description d as similar as applied in [10], [21].
Additionally, D is trained to detect the error when the real
action is associated with the miss-matching text d̂. This
strategy enables the Discriminator capable of evaluating the
synthesis between a given action and a conditional input in
a more efficient way. On the other hand, Table I indicates
that the fully implemented framework yields higher accuracy
than the one without Action Encoder and Decoder. The
experiment showed that by feeding the raw input ar to
the framework as applied in [21], the training process was
faster since the Action Encoder encodes ar as xr, which
is the higher dimension matrix. However, by distributing the
relative joints near each other as in xr, it allows the spatial
and temporal information of ar to be represented better.
Thus, D could detect the motion properties of the input
action faster and more efficiently. Consequently, D provides
more informative feedback to G, for optimizing the generated
action. Fig. 6 displays an example of feeding a sentence “a
sprinter is sprinting on the track with his head down” to the
three G networks. The real sample indicates a person that is
pumping two hands up and down while the head is bent down
slightly. Although the posture of bending his/her head down
is unsuccessfully expressed neither by the three generated
actions, those actions look like persons are pumping two
hands up and down several times. Especially with the fully
implemented model, the action is more natural and similar
to the real one.

E. Transforming Generated Actions into the Pepper Robot

The action af defined in 3D Cartesian space, through the
Transformation model [15], it is converted to a set of joint
angles for controlling the upper body expression of the target
robot. Fig. 7 and 10 present the actions produced from our G
network, given input sentences included in the testing data.
The generated actions are performed by the Pepper humanoid



Fig. 7: Generated action for “the man rides on the surf
board in the water” from the proposed network

Fig. 8: Action for “the man rides on the surf board in the
water” displayed on the Pepper robot

Fig. 9: Action for “the man rides on the surf board in the
water” from the NAOqi API ALAnimatedSpeech

Fig. 10: Generated action for “one girl is dancing to
music” from the proposed network

Fig. 11: Action for “one girl is dancing to music”
displayed on the Pepper robot

Fig. 12: Action for “one girl is dancing to music” from the
NAOqi API ALAnimatedSpeech

robot as shown in Fig. 8 and 11. Notice that we used
the robot’s on-board module ALTextToSpeech1 to enable
the robot to utter input sentences while performing bodily
expressions. In order to see the differences between our
approach and the robot’s NAOqi API ALAnimatedSpeech2,
the same sentences were fed to that module. Fig. 9 and 12
show the generated actions.

In Fig. 7, given the input sentence “the man rides on the
surf board in the water”, the generated human action seems

1http://doc.aldebaran.com/2-5/naoqi/audio/altexttospeech.html
2http://doc.aldebaran.com/2-5/naoqi/audio/alanimatedspeech-api.html

like a person with his/her arms fully extended to maintain
the balance while the body orientation keeps changing. A
similar bodily expression is performed on the robot as shown
in Fig. 8. In Fig. 10, the action of “one girl is dancing
to music” is expressed by the exaggerated movements of
two hands. That action is performed by the Pepper robot
as in Fig. 11. Compared to our generated actions, actions
produced by the robot’s NAOqi API ALAnimatedSpeech are
mostly not related to the input descriptions. The robot’s
actions as shown in Fig. 9 and 12 could be observed
that a person is describing or conveying something by
slight movements of his/her hands. The experiment results
revealed that actions produced from the robot’s on-board
module are not appropriately fit to the robot spoken texts.
The reason is that that ALAnimatedSpeech consists a set
of actions handcrafted by animation experts to ensure the
familiarity and human-likeness of the robot’s motions. By
feeding an input text, random actions could be produced
if certain keywords are not detected from the sentence.
Thus, this approach only allows robots to produce limited
behaviors within specific contexts. It should be remarked
that generating appropriate behaviors is considered as an
important strategy to maintain the quality of social human-
robot interaction [26]. In our proposed approach, embedding
vectors capture the meaning of whole input sentences, instead
of certain keywords. They are used as essential materials to
produce the output data. Consequentially, the robot’s actions
produced by our approach more appropriately express the
meaning of text inputs.

V. CONCLUSION AND FUTURE WORKS

This paper presents an approach to generate communica-
tive gestures for social robots by imitating human behaviors.
The generative framework was inspired by CGAN and
built upon CNN. It receives a speech text as determining
information to control the generated data. The proposed
approach was validated on a public dataset. The experi-
mental and comparative results with related works verified
the efficiency of the proposed framework. Furthermore, the
generated actions were transformed into the target robot
motions taking into account the robot’s physical constraints,
and synchronized with the robot’s speech. It has been shown
that the proposed framework enables the robot capable of
performing bodily expressions to better convey the meaning
of their speech. By investigating the connection between
human bodily expressions and natural language to generate
robots’ communicative gestures, this approach allows mes-
sages encoded in robots’ behaviors are more recognizable
to human perception. Our future work aims to utilize the
fully designed framework for generating actions defined in
a higher “resolution”, as shown in Fig. 13. By producing
actions employing a higher number of joints, it suggests that
sophisticated contexts of input sentences could be expressed
transparently.



(a) The generated actions throughout the training process

(b) “A person waves with its right hand” (c) “A person waves with the left hand”

Fig. 13: The proposed framework including Action Encoder/Decoder is validated on the KIT dataset [27]. The generated
action af ∈ R3×20×240 is defined by 20 joints in 3D Cartesian space. Fig. 13a shows the action af produced from G
network throughout the training process. Fig. 13b and 13c presents the generated actions to express the meaning of the

given sentence inputs.
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