
SEDSpec: Securing Emulated Devices by Enforcing
Execution Specification

Yang Chen1,2, Shengzhi Zhang3, Xiaoqi Jia1,2*, Qihang Zhou1, Heqing Huang1, Shaowen Xu1,2, Haochao Du1
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3Metropolitan College, Boston University, USA

Abstract—Device emulation is a vital aspect of virtualization,
yet remains vulnerable to security threats. Prior research has
focused on monitoring I/O data flow or identifying internal device
anomalies but often falls short in precision and automation. In
this paper, we propose a novel method that leverages the normal
operations of an emulated device to formulate an execution
specification. The specification acts as a criterion to evaluate the
device’s behavior and state transitions. We implement SEDSpec,
a prototype system that automatically generates the execution
specification for an emulated device and devises three check
strategies for identifying any deviations from this specification,
thereby ensuring normal operations and enhancing the security of
the emulated device. We evaluate SEDSpec with five different ex-
ecution specifications. The results show that SEDSpec can detect
anomalies caused by vulnerability exploitation while maintain-
ing the devices’ regular functioning with minimal performance
overhead.

Index Terms—device emulation, anomaly detection, execution
specification, program analysis

I. INTRODUCTION

Virtualization is the cornerstone of cloud computing, facili-

tating resource sharing across multiple users. I/O virtualization

serving as a representative virtualization technology, enables

virtual machines to access various I/O devices, such as disks,

video cards, and network cards. Device emulation, a typical

implementation for the I/O virtualization, replicates the behav-

ior and functions of physical devices in a software environ-

ment. This technique, however, confronts security challenges

stemming from the sheer volume and diversity of emulated

devices, compounded by the complexity and often unclear

device specifications. Consequently, numerous vulnerabilities

plague device emulation; for instance, in recently published

399 vulnerabilities in QEMU [1], 254 were attributed to device

emulation [2].

These vulnerabilities can be exploited by attackers to initiate

denial-of-service attacks, compromise cloud user data, or

commandeer host systems, undermining the confidentiality,

availability, and integrity of cloud service. Typically, these

vulnerabilities are triggered by meticulously crafted I/O data

streams that originate from a guest system, pass through a

specific I/O interface, and reach the flawed emulated device. In

pursuit of enhancing the security measures associated with I/O

virtualization, efforts can be focused on two primary elements:

the I/O data streams and the emulated devices themselves.

*Xiaoqi Jia is the corresponding author (email: jiaxiaoqi@iie.ac.cn).

For the I/O data streams, ensuring their authenticity can

be achieved by implementing additional validation or filtering

mechanisms within the I/O communication framework. For

example, developing an intrusion detection system [3]–[6]

serves as an impactful safeguard against attacks that exploit

known, or “one-day” vulnerabilities in device emulation. By

analyzing characteristics of I/O data streams from prior at-

tacks, rules can be manually formulated to enable the intrusion

detection system to intercept atypical I/O communications.

However, this method requires significant manual effort and

is ineffective against “zero-day” vulnerabilities. Alternatively,

some researchers have endeavored to train I/O models that

can detect anomalous data streams by learning from benign

examples [7], [8], but the detection accuracy could be low

when dealing with intricate I/O interactions.

For the virtual devices, there are two predominant ap-

proaches. The first approach involves enhancing the security of

I/O virtualization by minimizing the Trusted Computing Base

(TCB), which is achieved by removing certain virtual devices

and narrowing the virtualization functionality scope [9], [10].

This reduction, however, may compromise the versatility of the

hypervisor. The second approach involves detecting anomalous

device state transitions through the construction of device state

transition models, which are typically derived from the manual

specifications of the devices [11]. This method, although

promising, entails considerable manual effort to comprehend

the device specifications and encapsulate the device state

transitions.

In this paper, we propose SEDSpec, a novel approach that

aims to enhance security in device emulation. In particular,

SEDSpec enhances security by constructing and enforcing

execution specifications for emulated devices, which serve as

abstract representations of the legitimate behavior and state

transitions. SEDSpec constructs the execution specification

from the runtime information of the emulated device, which

includes the data about the control flow and the state changes.

SEDSpec then refines the execution specification by applying

techniques of control flow reduction and data dependency re-

covery. Finally, SEDSpec integrates the execution specification

into the emulated device and monitors its runtime behavior

according to the execution specification and check strategies.

If any anomalies are detected, SEDSpec intervenes by halting

the operation or alerting a warning, depending on its working

mode and the violated check strategy.
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To evaluate the effectiveness and efficiency of SEDSpec,

we apply it to five emulated devices in QEMU, including

FDC (Floppy Disk Controller), USB EHCI (Enhanced Host

Controller Interface), PCNet (PCI Network Adapter), SDHCI

(Secure Digital Host Controller Interface), and SCSI (Small

Computer System Interface). The experiments indicate that

SEDSpec can achieve a false positive rate of no more than

0.15% in all device tests. Moreover, case studies show that

SEDSpec is capable of detecting device anomalies caused

by eight well-known vulnerability exploitations. These results

demonstrate SEDSpec’s effectiveness in ensuring the standard

operation of emulated devices while identifying abnormal

behaviors. Additionally, SEDSpec introduces no more than 5%

performance overhead on the throughput and latency of disk

devices. For network devices, the overhead is similar, with

bandwidth and latency overhead of less than 8% and 10%,

respectively.
Contributions. We summarize our contributions as below:

• We present a novel approach for the automatic generation

of device execution specifications, leveraging the control

flow and state transitions within an emulated device

during legitimate I/O operations. This enables the com-

putation of execution specifications solely by analyzing

the I/O data stream, facilitating early anomaly detection

prior to the activation of specific I/O operations in the

emulated device.

• We design three strategies to detect violations of exe-

cution specification at runtime, i.e., a parameter check

for integer overflow, an indirect jump check for control

flow hijacking, and a conditional jump check for irregular

device operation.

• We develop a prototype system, SEDSpec, that demon-

strates efficient anomaly detection across diverse em-

ulated devices while maintaining a low false positive

rate and an acceptable level of performance overhead as

shown by our experimental evaluation.

II. BACKGROUND AND RELATED WORKS

A. Device Emulation in I/O Virtualization
Device emulation is a common method for implementing

I/O virtualization, which provides various devices for virtual

machines. A hypervisor must satisfy the demands of virtual

machines in terms of device type and quantity, considering

the limited number of physical devices in a host machine.

Moreover, it should hide the real physical device details from

virtual machines. To achieve these goals, device emulation

replicates the behavior of relevant physical devices and pro-

vides input/output interfaces for virtual machines. As a result,

a virtual machine can only access the device information con-

structed by device emulation. Device emulation also manages

the communication between virtual machines and physical

devices on the host machine., preventing direct modification of

physical devices and enabling device sharing among multiple

users [12].
In the architecture combining Kernel-based Virtual Machine

(KVM) [13] and QEMU, the latter is responsible for emulating

a range of hardware devices to service virtual machine re-

quests. Specifically, when a guest operating system (OS) issues

an I/O request via interfaces like Port-Mapped I/O (PMIO),

Memory-Mapped I/O (MMIO), or Direct Memory Access

(DMA), the request is first intercepted by KVM. Subsequently,

this request is forwarded to QEMU, which discerns and

initiates the execution of suitable device emulation routines

tailored to the I/O request specifics. These routines typically

encompass operations on control registers, data buffers, and

DMA controllers of the emulated device, as well as the

invocation of interrupts or signals directed at the guest OS.

Upon completion of the emulation process, control is handed

back to KVM, facilitating the continuation of the guest OS’s

operations. This seamless process enables the guest OS to

interact with the emulated devices as if they were physical

entities.

B. Related Work

I/O virtualization is prone to security challenges and vulner-

abilities, which have been extensively studied by researchers

using fuzzing techniques [14]–[19]. These investigative en-

deavors have uncovered numerous security deficiencies within

I/O virtualization, indicating an urgent requirement for secu-

rity improvement. Consequently, substantial efforts are being

directed towards enhancing the security of I/O virtualization.

Enhancing security through the reduction of the TCB is a

viable strategy. This approach primarily involves minimizing

the hypervisor’s role in facilitating virtual machine access

to I/O devices. For instance, Bitvisor [9] allows the guest

OS to directly access some physical devices without hyper-

visor intervention. Similarly, NoHype [10] and Min-V [20]

selectively remove or disable some virtual devices within the

hypervisor based on specific cloud environment requirements.

However, these approaches modify the original hypervisor,

potentially leading to compatibility issues. Furthermore, they

do not address vulnerabilities inherent in the remaining virtual

devices.

I/O virtualization security can be improved through the

implementation of hypervisor intrusion detection systems.

Systems such as ELT [3] and CloudSeer [5] exemplify this

approach, monitoring the data stream in I/O communication

between a guest machine and the hypervisor. These systems

validate the legitimacy of I/O communication based on prede-

fined rules. However, this methodology may not be effective

against complex attacks that exhibit elusive characteristics.

Furthermore, ensuring accuracy and comprehensiveness in

attack identification within this framework necessitates sub-

stantial human intervention.

Model-based detection approaches upon I/O data stream

[8] or virtual device states [11] serve as another alternative

to defend the anomalies in I/O communication. For instance,

VMDec [8] employs Markov models to represent expected

I/O sequences, flagging any deviations from these models

as anomalies. However, due to the lack of knowledge of

the internal execution logic of I/O devices, this method may

exhibit limited accuracy when detecting device anomalies
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triggered by complex I/O data streams. On the other hand,

Nioh [11] constructs a finite state machine representing the

operational state of a device based on manually written device

specifications. This model delineates the possible device states

and transitions between them according to the specification.

Any state transition that is not accounted for in the model

is deemed anomalous. Nevertheless, the scalability of this

approach is limited because it relies on manual interpretation

and analysis.

III. OVERVIEW

A. Threat Model

In this study, we aim to detect abnormal behaviors of emu-

lated devices in a hypervisor caused by anomalous I/O requests

that may lead to potential attacks. To achieve this goal, we

define a threat model that considers various threats that could

disrupt the normal operation flow and data state transitions of

emulated devices. However, it should be noted that this model

does not take into account attacks that arise from legitimate

I/O requests or assaults stemming from external data irrelevant

to the device state.

We assume that arbitrary emulated devices can be enabled

and accessed by any virtual machine, without any security

access policies [10], [20] that restrict the use of devices.

Furthermore, we assume that an attacker has the capability

to access device drivers and interact with I/O devices from a

virtual machine. Such an attacker could be a root user on the

guest OS or a malicious process with elevated privileges. The

primary objective of the attacker is to exploit vulnerabilities

in emulated devices by transmitting malicious commands or

data to the device, thereby compromising the confidentiality,

availability, or integrity of the hypervisor.

B. Motivation

Several factors can contribute to the introduction of vul-

nerabilities in device emulation implementations. Firstly, an

emulated device is typically based on a device specification,

which is often written in natural language and thus prone to

ambiguity. This can result in bugs or inconsistencies when

attempting to replicate the exact behavior of physical devices

in software form. Secondly, many devices possess intricate

implementation logic, and the proficiency and experience of

the developers involved in the development vary widely, poten-

tially leading to implementation bugs. Lastly, unlike hardware

devices that maintain physical data separation, software de-

vices share a common memory space. Consequently, certain

corner cases that may pose minimal security risks within

hardware devices could manifest as critical vulnerabilities

within their emulated counterparts.

Vulnerabilities in emulated devices pose significant threats

to the security and availability of multi-tenant cloud environ-

ments. A compromise in one tenant’s emulated device could

potentially impact the entire cloud environment, disrupting

services and jeopardizing data security for all tenants. For

example, certain bugs such as infinite loops can consume sub-

stantial physical resources, thereby degrading the performance

of co-located virtual machines. More alarmingly, vulnerabil-

ities that facilitate virtual machine escape provide attackers

with access to sensitive data on both the host machine and

other virtual machines. They may even enable the execution

of high-privileged code, potentially granting control over the

entire host machine.

Nioh [11] posits that exploits in emulated devices often

trigger anomalous state transitions, detectable by constructing

a device state transition automaton. However, their approach

relies on manual interpretation and analysis of device spec-

ifications, which is labor-intensive and lacks scalability in

a virtualization environment with many virtual devices. It

suggests the need for a more automated and scalable solution.

We observe that the anomalous state transitions identified

by Nioh also manifest as execution paths not taken during

normal device operations at the code level. Based on this

observation, we propose a novel approach to automatically

construct an execution specification of a device by analyzing

its control flow and internal data. This specification can detect

abnormal device behavior by deploying check strategies and

can be adapted to different device commands for finer-grained

anomaly detection.

Address Sanitizer (ASan) [21], Undefined Behavior San-

itizer (UBSan) [22], and Control Flow Integrity (CFI) [23]

are runtime software security enhancement techniques that

leverage source code instrumentation and are applicable to

emulated devices. However, these techniques do not specif-

ically target abnormal state transitions of emulated devices,

thus failing to identify vulnerabilities that stem from such

transitions. For example, CVE-2016-7909 [24], a vulnerability

that triggers an infinite loop within PCNet due to an abnormal

state transition, can be detected by Nioh but not by ASan,

UBSan, or CFI. Moreover, these generic techniques monitor

every address operation and variable change, resulting in

substantial performance overhead. Additionally, the complex

intertwining of control and data flows in these instrumentation-

based techniques with the original program complicates the

tracing and analysis of anomalies. In contrast, our work aims

to detect abnormal state transitions in emulated devices and

to focus on structures or variables within these devices that

are susceptible to security issues, thereby reducing overhead.

By conducting anomaly detection before the execution of

emulated devices, we also aim to increase the flexibility of

the detection process.

To the best of our knowledge, no existing method can

automatically generate execution specifications for emulated

devices without relying on manual summaries of written

device specifications. Our method can automate this process

for multiple emulated devices and produce a set of valid

operation criteria, i.e., execution specifications. Using these

specifications, we can ensure that devices remain in a legiti-

mate operational state, thereby preventing potential attacks.

C. Challenges

We propose the construction of an execution specification

that represents the legitimate operation of emulated devices.
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Fig. 1. The design overview of SEDSpec.

Our objective is to utilize this specification to predict and

examine device execution for a given I/O interaction, thereby

enabling anomaly detection. However, this approach also

presents several challenges during its design and implementa-

tion.

Diversity of devices. Virtualization environments host a

wide variety of emulated devices, each with distinct device

specifications and implementation methods. Our approach

should be flexible and applicable to commonly used emulated

devices. To address it, we adopt an approach that builds

execution specifications based on control flow and internal data

changes, eliminating the reliance on device specifications and

making our method applicable to most devices.

Complexity of control flow. The implementation of an

emulated device is typically complex and code-intensive. Re-

lying on the full control flow graph of an emulated device

as its execution specification could incur significant overhead.

Therefore, we require a method to trim down the control

flow graph while preserving the validity of the extracted

execution specification. To this end, we adopt an approach that

formulates filtering rules to collect more streamlined control

flow information, further simplifying the control flow during

the construction of execution specifications. Meanwhile, we

utilize data dependency recovery to ensure the effectiveness

of execution specifications based on the reduced control flow.

Volume of device control structure data. Each emulated

device is characterized by its unique control structure; for

instance, the FDCtrl structure is associated with floppy disk

controllers, and the USBDevice structure pertains to USB

devices within the QEMU environment. Interactions through

I/O operations induce modifications in the respective control

structure of an emulated device. The execution specification

should produce internal data changes that match the control

structure data modification of the emulated device for a given

I/O interaction. However, tracking and accounting for every

data change is impractical due to the large amount of data in

the control structure. To address this, we select variables from

the device control structure that affect the control flow and

filter them into execution specification internal data based on

specified rules.

D. Design Overview
Figure 1 shows the overall workflow of SEDSpec, which

integrates runtime data and source code of an emulated de-

vice to derive an execution specification for further runtime

protection of the emulated device. The workflow consists of

three phases.
The initial data collection phase collects the control flow

and device state changes of the emulated device under benign

training samples. First, the Intel Processor Trace (IPT) module

[25] feeds the benign training samples to the emulated device,

captures the relevant trace data, and constructs the Indirect

Targets Connected Control Flow Graph (ITC-CFG) [26] from

the data. Next, the CFG analyzer identifies and filters the

variables in the device control structure that influence the

control flow transitions, based on the source code and the

ITC-CFG. These variables form the device state, which serves

as the internal data structure of the execution specification,

constructed in phase 2©. Finally, observation points are placed

inside the emulated device to record the device state changes.

By inputting training samples to the emulated device again, we

obtain a device state change log file that records both control

flow and data state changes.
The second phase involves the construction of the execution

specification construction. To achieve this, we use the Execu-

tion Specification Control Flow Graph (ES-CFG) to represent

the execution specification. The ES-CFG constructor analyzes

the logs in the device state change log file and locates the

statements in the source code that are related to the device state

parameters, which are the selected variables in the device state.

These statements form the basic blocks and transition edges

of the ES-CFG. The ES-CFG constructor also eliminates the

redundant basic blocks and resolves the data dependencies of

the device state parameters by combining data flow analysis

with source code analysis.
The third phase is runtime protection. In this phase, we build

a proxy system, ES-Checker, within the hypervisor to enhance

the security of the emulated device with the execution specifi-

cation. We design three check strategies based on the execution

525



specification in ES-Checker. Each time an I/O interaction

occurs, ES-Checker simulates the execution based on the

execution specification under the I/O interaction and checks

whether it violates any of the check strategies. Depending on

the check strategy and the working mode (protection mode or

enhancement mode), ES-Checker either halts the execution or

alerts a warning if a violation is detected. Otherwise, it allows

the emulated device to obtain the I/O data and operate on it.

IV. DATA COLLECTION

Data collection involves acquiring internal control flow

and device state data change information from the emulated

device runtime. To capture control flow information, we utilize

the Intel Processor Trace (IPT) during the execution of the

emulated device which enables us to generate the ITC-CFG.

To further gather the change information of device state data,

we select variables in the emulated device to build the device

state structure and employ instrumentation to obtain the data

changes on the device state parameters.

A. ITC-CFG construction

The control flow information is collected and processed in

the IPT module of SEDSpec. The IPT is a feature of Intel CPU

that traces the target executable process and generates various

types of packets based on the executed jump instructions [25].

The IPT module within SEDSpec is tasked with managing and

configuring IPT, parsing IPT packets, and generating the ITC-

CFG by adopting the approach proposed by FlowGuard [26].

In the IPT module, we configure filtering rules for IPT such

that only the control flow related to the target emulated device

is tracked. Initially, the IPT module starts and stops the tracing

at the locations where the I/O data stream enters and exits

the target emulated device, respectively. Furthermore, to avoid

contamination of the emulated device control flow by calls to

shared library functions, the IPT module calculates the range

of the emulated device code based on the memory layout and

sets it as the range of addresses that can be collected by IPT.

Lastly, to obtain a more streamlined emulated device control

flow, tracing of kernel space control flow is disabled within

the IPT module.

B. Observation point setting

The CFG analyzer within SEDSpec is tasked with exam-

ining the ITC-CFG and identifying variables that influence

control flow transitions to construct the device state structure.

Given that conditional and indirect jumps dictate the direction

of the control flow, the CFG analyzer focuses on detecting

such structures within the ITC-CFG and extracts variables

influencing these structures. Subsequently, these variables are

filtered based on two rules to yield the final set of variables,

constituting the device state. Table I illustrates the selection

of device state parameters based on the two rules.

Rule 1. Variables corresponding to the physical device
registers. The code of the emulated device is derived from its

physical counterpart. Given that certain device registers in the

real device are crucial for controlling its behavior, we include

TABLE I
SELECTION OF DEVICE STATE PARAMETERS

Variable types Related Vul. or Exp. Examples
Physical register re-
lated variables

msr (main status reg-
ister), dor (digital
output register), tdr
(transfer control reg-
ister).

Fixed-length buffer
variables

Buffer overflow data_buf, fifo.

Variables for counting
and indexing buffer
positions

Buffer overflow or in-
teger overflow

data_len,
data_pos.

Function pointer vari-
ables

Control flow hijack irq (a function
pointer handling
device interrupt
requests).

the variables corresponding to the device registers in the device

state parameters.

Rule 2. Variables associated with specific vulnerabilities.
According to the indication of CVE [2], buffer overflow, out-

of-bounds access, and integer overflow vulnerabilities account

for over 50% of the QEMU device emulation vulnerabilities as

of 2023. Consequently, we select the buffer variables, buffer

length variables, and variables performing buffer indexing as

part of the device state parameters for further runtime pro-

tection to detect device anomalies caused by exploiting such

vulnerabilities. In addition, attackers often exploit function

pointers in the device control structure to hijack the control

flow in common QEMU device emulation attacks, which

are also included as part of the device state parameters to

detect control flow hijacking. By monitoring these parameters,

SEDSpec identifies corresponding vulnerabilities or attacks.

Once the device state parameters are selected, the CFG

analyzer situates observation points at locations that impact

the direction of the control flows within the emulated device

program to collect device state change data. These observation

points are instrumented functions that record the device state

parameter changes and the auxiliary information for identi-

fying different block types during the execution specification

construction phase. Thereby, the observation points are typi-

cally positioned at conditional and indirect jumps within the

source code. Upon recompiling and executing the program, the

device state change log can be obtained by inputting training

samples.

C. Training samples.

Legitimate training samples are fed into the emulated device

to construct the ITC-CFG and generate the device state change

log. We source various samples from the web and QTest

[27], and generate samples by running our test program

under different settings and environments to simulate valid

interactions with devices. For network card devices, we adjust

parameters such as IP, MAC, gateway, interrupt mode, jumbo

frame, and FlowControl. For storage devices, we configure

different storage formats (e.g., FAT32, NTFS, EXT4), modes

(e.g., RAID, LVM, JBOD), and parameters (e.g., partition size,
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1. data = receive_data();
2. data_pos++;
3. 
4. if ( data_pos < 5 ) {
5.     buf[data_pos] = data;
6.     msr |= MSR_RSV;
7. }
8. else {
9.     handle_data(buf, data_pos);

10.     msr &= (~MSR_RSV);
11.     data_pos = 0;
12. }

data_pos 
msr

Device 
state

data_pos++

data_pos < 5

msr |= 1

msr &= (~1) 
data_pos = 0

data_pos < 5

Taken

Not Taken

DSOD

NBTD

Fig. 2. An example for constructing basic blocks of ES-CFG.

cache size). Regarding the environment, we execute the test

program on various systems with differing virtual machine

configurations such as CPU cores and memory size.).

V. EXECUTION SPECIFICATION CONSTRUCTION

An execution specification abstracts the emulated device’s

internal execution information during legitimate I/O interac-

tions, aiding in identifying potential anomalies. We define the

execution specification as the control flow and device state

changes that occur during legitimate operations of an emulated

device. The structure of the execution specification is described

using the control flow graph, termed ES-CFG.

A. ES-CFG Components

The ES-CFG is constructed based on the traditional CFG

structure, and we use terms from traditional CFG to describe

the components of ES-CFG. This section explains the role and

functionality of each component within ES-CFG.

1) Device state: The device state is the inner data of ES-

CFG. The selection process for device state parameters is

detailed in Section IV-B. The device state, a separate data

structure in the execution specification, does not affect the

emulated device control structure. It is initialized with the

values from the emulated device control structure upon booting

of the emulated device. Subsequently, SEDSpec modifies the

device state based solely on I/O data and ES-CFG.

2) Basic block: The basic block, a data structure encap-

sulating the semantics of C language code, serves as the

fundamental building block of the ES-CFG. An ES-CFG basic

block consists of two parts: Device State Operation Data

(DSOD) and Next Block Transition Data (NBTD). DSOD

comprises source code statements that manipulate the device

state, while NBTD contains source code statements that fa-

cilitate transitions to subsequent basic blocks based on device

state parameters. Not all basic blocks contain NBTD; those

without it invariably transition to their immediate successor

block. Figure 2 illustrates how DSOD and NBTD form in

an ES-CFG’s basic blocks derived from a device’s source

code when data_pos and msr are selected as device state

parameters.

An ES-CFG consists of various types of basic blocks,

categorized based on their position and functionality. The entry

block is the first basic block that SEDSpec accesses during I/O

interactions, parsing the target address/port of the I/O request

as a parameter for subsequent execution. Conversely, the exit

block is the last basic block of the ES-CFG, signaling the end

of an I/O round. The conditional basic block is involved in

conditional branching based on the device state parameters.

The command decision block identifies the current device

command and the accessible blocks under that command. The

command end block determines whether the current command

execution has concluded. These different types of blocks are

constructed by parsing the block type information in the device

state change log.

After an ES-CFG is deployed to an emulated device, SED-

Spec initiates the traversal from the entry block of the ES-CFG

for each I/O interaction round. The entry block captures and

logs relevant I/O information, including the port or memory

address, the data transmitted, and the I/O operation direction.

Then, the process transitions to the subsequent basic blocks,

which update the device state according to their DSOD and

navigate to the following block using their NBTD and the

updated device state parameters. Upon reaching a command

decision block, SEDSpec identifies the current command

type and determines accessible blocks under that command.

This allows SEDSpec to derive a subgraph of the ES-CFG

comprising the relevant blocks. SEDSpec then runs relevant

check strategies, detailed in Section VI-A, on the subgraph

for anomaly detection. If no anomaly is detected by the time

SEDSpec reaches the exit block, it outputs the final device

state which serves as the initial device state for the next round

of I/O interactions.

B. Construction of ES-CFG

1) Construction method.: The ES-CFG constructor builds

the ES-CFG utilizing both the device state change log and the

source code. The device state change log encompasses control

flow and device state information. Algorithm 1 presents the

pseudocode for the initial construction of ES-CFG using the

device state change log file and the emulated device source

code.

The pseudocode illustrates how the ES-CFG constructor

builds an ES-CFG. Each log in the device state change log file

contains the complete control flow data, device state change

data, and auxiliary information (such as device command

information, and correspondence between control flow and

source code) of an emulated device under a specific test case.

The ES-CFG constructor, for each log, restores the control

flow structure (line 2) and constructs the basic blocks and

transition edges of the ES-CFG from the control flow data

(line 4).

The process of constructing a basic block entails extracting

statements from the source code that induce changes in the

device state, leading to the generation of DSOD. To construct

a transition edge associated with a specific basic block, the

subsequent basic block is identified from the control flow data.

Concurrently, statements from the source code that trigger this

transition are identified and used to generate NBTD.
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Algorithm 1: Construction Algorithm of ES-CFG

Input: Device state change logs: ds logs; The

emulated device source code: ed sc.
Output: The emulated device execution specification:

es cfg; The emulated device command

access control table: cmd act.
1 foreach log in ds logs do
2 cfg ← RestoreRuntimeCFG(log) ;

3 access vec ← InvalidVec();

4 foreach basic block in cfg do
5 if IsCondBlock(basic block) then
6 ESCstrctBBWithTNTEdge(basic block,

ed sc);
7 UpdateAV(access vec);
8 end
9 else

10 ESCstrctBB(basic block, ed sc);
11 UpdateAV(access vec);
12 if IsExitBlock(basic block) then break;

13 ESCstrctEdge();

14 if IsCmdDecBlock(basic block) then
15 cmd ← DcdCmd(basic block, log);

16 access vec ← GetAV(cmd act, cmd);

17 end
18 else if IsCmdEndBlock(basic block) then
19 UpdateCAT(cmd act, cmd,

access vec);
20 access vec ← InvalidVec();

21 end
22 end
23 end
24 end

For an indirect jump in the control flow data, the ES-CFG

constructor builds the basic block (line 10) and the transition

edge (line 13) directly. For a conditional jump in the control

flow data (line 5), the ES-CFG constructor determines whether

it is taken or not to build the transition edge (line 6).

If the log carries data about the device command(line

14), the ES-CFG constructor identifies the device command

type(line 15) and uses it as the key value of the command

decision block’s mapping table structure (line 16). In the sub-

sequent basic block construction process, a bitmap is utilized

to record the accessibility of the basic blocks under the given

device command (line 7). This bitmap is ultimately stored in

the mapping table entry corresponding to this command (line

19).

By following the pseudo code procedure, we can obtain a

preliminary ES-CFG for an emulated device. However, this

ES-CFG may contain redundant basic blocks and unresolved

internal data dependency issues. Therefore, additional reduc-

tion of the control flow and recovery of the data dependencies

need to be handled to build the final applicable ES-CFG.

C. Control Flow Reduction

The control flow reduction has two parts: first, excluding

noisy control flow data in the data collection phase, as ex-

plained in Section IV-A; and second, deleting and merging

some redundant basic blocks in the ES-CFG generation, which

is presented below.

After constructing the preliminary ES-CFG, the ES-CFG

constructor merges some blocks based on the internal structure

of ES-CFG. The same ES-CFG basic block may be reached by

both the taken and not taken branches of a conditional basic

block because the construction process ignores the source code

that does not affect the device state. In this case, we merge

the two basic blocks and remove the NBTD of the previous

ES-CFG basic block.

D. Data Dependency Recovery

The ES-CFG primarily captures alterations in device state

parameters. However, control flow transitions may depend on

variables other than the device state parameters. Such data

dependency related variables should be properly analyzed.

The ES-CFG constructor performs a data flow analysis and

selects a solution based on the analysis result. Utilizing angr
[28], the ES-CFG constructor obtains a data flow graph accord-

ing to the data dependency relations of the target variable. If

the variable can be computed from the device state parameters,

it is replaced by that computation in the related NBTD.

Otherwise, the ES-CFG constructor inserts a sync point
function into the code of the emulated device. At runtime,

the issue is addressed by first using SEDSpec execution,

then running the emulated device, and synchronizing variable

values from the sync point function, before resuming SEDSpec

execution.

It is noteworthy that the variables introduced by sync points

may not be secure; however, this concern falls outside the

scope of our security focus. These variables are unrelated to

the device state and I/O data, indicating that they are not

associated with the device control structure data, which is

prone to security issues that we have identified. Although we

cannot guarantee the trustworthiness of these variables, they

are distant from the data considered hazardous within our area

of concern.

VI. RUNTIME PROTECTION

Runtime protection aims to monitor and enhance the se-

curity of the emulated device based on the execution speci-

fication. SEDSpec uses the dynamically collected data from

the legitimate execution of the target program to construct the

security constraints of the emulated device execution. This is

achieved by using the ES-Checker proxy system in Figure

1 3©. ES-Checker is deployed with three check strategies.

During each I/O interaction between the guest machine and

the emulated device, ES-Checker performs device execution

simulation in accordance with ES-CFG and employs the

relevant strategies for anomaly detection. If any anomaly is

detected during ES-Checker’s execution, the system will either

halt or alert a warning to indicate the abnormal execution,
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depending on the working mode and the violated strategies. If

ES-Checker finds no violation of the strategies, it guarantees

the real execution of the emulated device under the I/O

interaction following the check strategies.

A. Check Strategies

Check strategies constitute a set of inspection rules that

leverage the ES-CFG structure to perform targeted checks

at specific points during the traversal of the ES-Checker.

Specifically, these strategies can be employed to validate the

legitimacy of the device state modifications made by the

DSOD as the ES-Checker navigates into and out of each

ES-CFG basic block. Additionally, at jump points governed

by the NBTD, both indirect and branch jump checks can

be conducted to verify the validity of the jump. In light of

these considerations, we have formulated three check strategies

within the ES-Checker.

Parameter check strategy is tasked with verifying the

legitimacy of alterations to device state parameters, based

on DSOD validation. This strategy focuses on two types of

abnormal execution: integer overflow and buffer overflow.

In the case of integer overflow, if the value of an inte-

ger parameter of the device state exceeds the maximum or

minimum value of its type, the ES-Checker identifies this as

an integer overflow. The specific implementation method is

inspired by UBSan’s [29] approach, using LLVM IR metadata

to denote the parameter type and employing the LLVM IR

API to ascertain this type. Then, the ES-Checker determines

whether an overflow has occurred based on the parameter type

and changes in relevant bits in the flag register at runtime.

In terms of buffer overflow, when a buffer parameter is

included in the device state, its size is recorded by ES-

Checker. If a device state index parameter is used for reading

or writing into this buffer according to some ES-CFG basic

block’s DSOD, ES-Checker verifies whether this index falls

outside the buffer’s range. If it does exceed this range, a buffer

overflow is identified by ES-Checker.

Indirect jump check strategy examines cases where an

indirect jump is utilized to go to an unauthorized address.

During the ES-CFG construction process, SEDSpec retains

information about indirect jump types and the mapping be-

tween the indirect jumps’ target addresses and the ES-CFG’s

basic block. This information is implicitly utilized by the ES-

Checker to implement the indirect jump check strategy. The

strategy focuses on indirect jumps initiated by callbacks to a

function pointer parameter within the device state, examining

whether the target of the jump can correspond to a legitimate

ES-CFG basic block. This strategy, however, does not consider

indirect jumps propelled by ‘ret’ and other function pointer

callbacks.

Conditional jump check strategy is performed during

transitions from one ES-CFG basic block to another based

on the NBTD of the preceding one. During actual executions

of emulated devices, certain branches are never traversed

under normal device operations. In contrast, the control flows

induced by attacks on emulated devices frequently encompass

numerous corner cases. A basic block associated with NBTD

leads to only one subsequent basic block in the ES-CFG,

indicating that either a taken or not-taken branch is absent.

Upon encountering such an untraversed branch at runtime, the

ES-Checker identifies this as an anomaly.

B. Working Modes.

We design two working modes for ES-Checker: protection

mode and enhancement mode, each catering to different levels

of false positive tolerance in various scenarios. Protection

mode is for scenarios with higher security requirements and

false positive tolerance. In this mode, ES-Checker halts the

emulated device and virtual machine execution when it detects

any anomaly. Anomalies detected by the parameter check

strategy are directly related to vulnerability exploitation and

do not cause false positives. However, anomalies detected by

other strategies may be false positives due to corner cases

that are not covered by the training samples. To address

this, we provide enhancement mode for scenarios with higher

availability requirements and lower false positive tolerance for

emulated devices. In this mode, ES-Checker halts the execu-

tion of the device and virtual machine only upon detecting

anomalies by the parameter check strategy. Concurrently, the

remaining two check strategies, upon identifying anomalies,

alert warnings without interrupting execution.

VII. EXPERIMENTS AND EVALUATIONS

A. Experiment Setup

We construct execution specifications and deploy SEDSpec

on an x86 architecture server with Intel PT support. We

set up a full-fledged virtualization environment using KVM

and QEMU. The experimental environment consists of a host

machine and a guest virtual machine. The host machine runs

Ubuntu 18.04 LTS on an Intel® Core™ i9-10900X CPU (10

cores, 3.70GHz, and 20MB cache) and 64GB RAM. The

guest virtual machine runs Ubuntu 18.04 LTS with 4 vCPUs

and 8GB RAM. During experiments, ES-Checker is the only

SEDSpec component that affects the security and performance

of emulated devices.

B. Security Evaluation

We evaluate the effectiveness of SEDSpec by generating and

deploying execution specifications for five different devices:

FDC, USB EHCI, PCNet, SDHCI, and SCSI. These devices

are emulated by QEMU and represent various types of device

controllers for managing floppy disks, USB devices, network

adapters, SD cards, and storage devices, respectively. Our

selection of these five devices is motivated by three major

considerations. First, they are common and representative

storage devices and network devices that can demonstrate the

generality of SEDSpec. Second, they have a large number and

variety of vulnerabilities, which enable us to select diverse

vulnerabilities for case studies to validate the effectiveness of

SEDSpec. Last, these devices include all the devices used in

Nioh’s experiments, allowing for comparisons with Nioh.
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TABLE II
FALSE POSITIVES OVER TIME

Device 10 hours 20 hours 30 hours
FDC 1 2 5

USB EHCI 3 3 3
PCNet 1 5 6
SDHCI 4 7 7
SCSI 1 3 4

To evaluate the effectiveness of SEDSpec, we carry out

two distinct types of experiments. First, we test whether the

execution specifications generated by SEDSpec can maintain

the normal operation of devices under both long-term and

multi-dimensional device interactions. Second, we perform

case studies where the vulnerability exploitations are simu-

lated to breach the execution specifications. This allows us

to demonstrate SEDSpec’s effectiveness in defending against

such exploitations. Additionally, we analyze and explain the

underlying mechanism of how the relevant check strategy can

identify vulnerability exploitation.

1) Ensuring Normal Operation: We classify the devices

with execution specifications into two categories: storage de-

vices and network devices. The former includes FDC, USB

EHCI, SDHCI, and SCSI, which perform read and write

operations on files. The latter includes PCNet, which performs

read and write operations on network packets.

To evaluate the functionality of these devices, we devise a

test program in the guest OS that interacts with the emulated

device using device drivers. This test program is utilized to

conduct a long-term and multi-dimensional interaction with

the device to ascertain whether the execution specification

generated by SEDSpec can ensure the normal operation of

the device.

We set three different interaction modes: sequential, ran-

dom, and random with delay. In sequential mode, the test

program follows a predetermined order of read and write

operations to interact with the device. In the random mode,

the test program randomly chooses read and write operations

to interact with the device. In the random with delay mode,

the test program randomly chooses read and write operations

to interact with the device and introduces a random delay

between each operation. The volume of data in each test case

varies randomly, ranging from thousands to tens of thousands

of I/O sequences. Utilizing test cases that encompass a sub-

stantial volume of data enables a more nuanced identification

of the false positive rate. Conversely, if the test samples were

limited to only a single or a few I/O sequences, albeit with

a large number of such samples, the resulting false positives,

while potentially numerous, would seem inconsequential when

compared against an extensive baseline. This scenario would

lead to an apparent false positive rate for all devices nearing

zero. We apply each interaction mode to each device for 10

hours, 20 hours, and 30 hours.

We manually analyze the samples that SEDSpec identifies

as abnormal and determine whether they are false positives

generated by SEDSpec. Furthermore, we quantified the inci-

dence of these false positives across various time intervals, as

detailed in Table II. The calculation of the false positive rate

is shown in the following formula.

FPR =
NL

NT

In this formula, FPR is the false positive rate, NL is the

number of legal test cases reported as abnormal by SEDSpec,

and NT is the total number of test cases for the device. We

test and calculate the false positive rates for each emulated

device. Table III shows the false positive rate of SEDSpec.

The false positive rates of SEDSpec for FDC, USB EHCI,

PCNET, SDHCI, and SCSI are 0.14%, 0.10%, 0.11%, 0.09%

and 0.17%, respectively.

In our assessment of SEDSpec, we focused on the cover-

age metric pertaining to legitimate behaviors across various

devices. SEDSpec aims to encompass a comprehensive range

of legitimate device behaviors, with effective coverage being

determined by the ratio of code paths covered in a given

device’s codebase relative to the totality of paths representing

all legitimate behaviors. Empirical evidence suggests that

while it is time-consuming for fuzzing techniques to cover

and reach exceptional control flows, they are notably efficient

at accessing the most common control flows within a brief

period. Our experiments revealed that the coverage rates for

different devices began to converge approximately after one

hour of testing. Consequently, we employ fuzzing to approx-

imate the coverage path of legitimate behavior by running it

on a device for one hour, thereby calculating the effective

coverage rate of each device. The results from this process

are summarized as shown in Table III: which presents the

effective coverage rates for the devices evaluated as follows:

95.9%, 97.3%, 96.2%, 93.5%, and 93.8% respectively.

2) Preventing Execution Specification Violations: To eval-

uate the security enhancement of emulated devices by SED-

Spec, we use one-day vulnerabilities from the CVE [2] list to

construct the I/O data stream and conduct case studies. We use

different versions of QEMU in the experiment, depending on

the CVE vulnerabilities that affect the emulated device. The

I/O data stream contains proof-of-concepts for at least one

vulnerability targeting the emulated device. We measure the

accuracy of SEDSpec in detecting anomalies by comparing

its execution outcome with the ground truth. We configure

SEDSpec to operate in protection mode, which halts QEMU

execution upon detecting anomalies in emulated devices. To

show the effectiveness of different check strategies, we activate

only one check strategy for each experiment. It’s important to

note that a single vulnerability could induce multiple forms of

anomalies, which may in turn trigger different check strategies.

We conducted case studies on 8 vulnerabilities and suc-

cessfully prevented their exploitation in 5 devices, as shown in

Table III. We selected these vulnerabilities for our case studies

for two primary reasons. Firstly, it enables a comparison

with typical works such as Nioh, which tests the same cases.

Secondly, these cases exhibit diverse causes and exploitation
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TABLE III
THE MAIN RESULT OF SEDSPEC EXPERIMENTS.

Device CVE ID QEMU Version Check Strategies False Positive Rate Effective CoverageParameter
Check

Indirect Jump
Check

Conditional
Jump Check

FDC CVE-2015-3456 v2.3.0
√ √

0.14% 95.9%
USB EHCI CVE-2020-14364 v5.1.0

√ √
0.10% 97.3%

PCNet
CVE-2015-7504 v2.4.0

√
0.11% 96.2%CVE-2015-7512 v2.4.0

√ √
CVE-2016-7909 v2.6.0

√
SDHCI CVE-2021-3409 v5.2.0

√
0.09% 93.5%

SCSI
CVE-2015-5158 v2.4.0

√
0.17% 93.8%

CVE-2016-4439 v2.6.0
√

processes, thereby testing the effectiveness of SEDSpec’s

check strategies.

Nioh experiment tested 5 vulnerabilities (CVE-2015-3456,

CVE-2015-5158, CVE-2016-4439, CVE-2016-7909, CVE-

2016-1568), and SEDSpec detected all except CVE-2016-

1568, which results from the Use-After-Free (UAF) causing by

missing data initialization in certain cases. The unpatched code

lacks the initialization code, so the execution specification does

not include the relevant state transition, raising a mis-detection

by SEDSpec. The other four vulnerabilities stem from input

data that disrupts the device operation, causing an internal

anomaly that violates the execution specification involved in

the conditional jump check strategy.

CVE-2015-3456, aka Venom, is a vulnerability collected in

the FDC, which can be detected by both conditional jump

check and parameter check. The vulnerability stems from the

fact that the data_pos variable in data structure FDCtrl
is incremented indefinitely without being reset, resulting in

an out-of-bounds access to the buffer pointed by the fifo
variable. The parameter check strategy prevents this issue by

checking whether the data_pos variable exceeds the size of

the fifo buffer.

SEDSpec successfully detected the exploitation of CVE-

2020-14364, a vulnerability that affects the emulated USB

EHCI. The exploitation for CVE-2020-14364 creates a

USBDevice structure with a value for setup_len that

exceeds the size of data_buf. This overwrites the variables

behind data_buf and ultimately alters the control flow. It

is worth noting that the exploitation involves two instances

of out-of-bounds access. The first instance occurs when the

setup_len is larger than the setup_buf. The second

instance occurs when the overwritten variable setup_index
is set to a negative integer. The variables above the data_buf
can be overwritten because the data_buf is indexed by the

setup_index. The parameter check strategy detected both

instances in the experiment. Moreover, the indirect jump check

strategy revealed the vulnerability when the handler pointer in

the fake irq was invoked as a function.

We tested SEDSpec on the PCNet using the PoCs of CVE-

2015-7504 and CVE-2015-7512, both of which resulted from

out-of-bounds buffer access in the PCNetState structure.

In CVE-2015-7504, the out-of-bounds access to the buffer

relies on a temporary pointer variable unrelated to device

state parameters. Therefore, the parameter check approach

fails to detect the anomaly caused by the vulnerability. In the

exploitation for CVE-2015-7504, the irq variable adjacent

to the buffer is overwritten and tampered with by writing

4 bytes beyond the allowed range. The indirect jump check

strategy discovered the vulnerability before the handler pointer

variable is invoked by another function. In CVE-2015-7512,

when the variable xmit_pos in data structure PCNetState
is larger than 4092 in the pcnet_receive_function, the

buffer would be written as out-of-bounds. The parameter check

revealed the vulnerability when an out-of-bounds writing oc-

curred since xmit_pos is linked to the buffer index variable.

The attack for CVE-2015-7512 is identical to that of CVE-

2015-7504, which was also discovered by the indirect check

strategy.

CVE-2021-3409 is a vulnerability of the SDHCI that occurs

when the blksize is changed during an ongoing data

transformation, which also causes out-of-bounds access issues.

The exploitation changes the value of the blksize to be

less than the data_count, triggering the vulnerability. The

value of the expression (blksize - data_count) raises

an unsigned integer overflow, which is successfully detected

by the parameter check strategy.

C. Performance Evaluations

To evaluate the performance of SEDSpec, we conduct

the comparison experiment for devices of both storage and

network. For the storage devices, USB EHCI, SDHCI, and

SCSI are designed as the interfaces for USB storage, SD

card, and disk respectively. In practice, the performance is

evaluated by measuring the additional overhead of modifying

the interface. We use iozone [30], a file system benchmarking

tool, to measure the read and write throughput and latency of

storage devices. For the network devices, PCNet serving as

a typical device is treated as the objective of measurement,

which can be measured by the bandwidth (obtained by iperf
[31]) and latency (obtained by ping).

In the storage device benchmark, we normalize the results

according to the ranges of throughput and latency. The iozone
tool offers different sizes of blocks for measuring the read and

write throughput and latency of storage devices. We normalize

the throughput and latency of the original emulated device

to 1 and then compute the normalized value of the updated
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Fig. 3. Normalized throughput results of storage devices.
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Fig. 4. Normalized latency results of storage devices.

emulated device based on the iozone results. Generally, due

to the extra overhead brought by SEDSpec, the throughput

decreases, and the latency increases.

The normalized throughput and latency are illustrated in

Figures 3 and 4, respectively. It is crucial to note that the

FDC’s capacity is only 2.88 MB, so we can only evaluate its

performance using blocks smaller than its limitation. Based

on the experimental results, we can conclude that SEDSpec

incurs a performance loss of both throughput and latency with

less than 5 percent.

For the PCNet benchmark, we set up the user-mode network

environment in QEMU and configured the host forwarding

port for iperf communication before booting. After that,

we executed iperf in either server mode or client mode to

communicate with the iperf running on the server, where the

bandwidth for both upstream and downstream is obtained.

Such bandwidth is also measured in the TCP and UDP

communication. In addition, we assessed the network latency

by pinging the user-mode IP address, which is transformed

from the host IP address using Network Address Translation

(NAT).

The results of the PCNet bandwidth benchmark are shown

in Figure 5. SEDSpec reduces bandwidth by 6.9%, 7.3%,

5.7%, and 6.6% for TCP upstream, TCP downstream, UDP

upstream, and UDP downstream, respectively. During 100 ping
times of tests, the average PCNet latency is 0.65 milliseconds,

while that of PCNet with SEDSpec is 0.71 milliseconds,

resulting in only a 9.2% increase in overhead.

VIII. DISCUSSION

Anomaly Defence. SEDSpec halts the virtual machine or

issues warnings when detecting any anomalies in the emulated
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Fig. 5. PCNet bandwidth benchmark

devices. The main objective of SEDSpec is to detect the

anomalies rather than to defend them, so it uses a straightfor-

ward processing method in the current stage. In future work,

several avenues can be employed to handle the anomalies. For

example, using rollback to restore the virtual machine state

to a previous point before the exploitation, directly terminate

the anomalous process in the virtual machine, and classify the

alert levels based on different check strategies.

False Positive and Remedy. Due to limitations in acquiring

an exhaustive collection of test samples, the generation of

false positives by SEDSpec is an inevitable outcome. Our

analysis of these instances indicates that they are exclusively

linked to exceedingly rare device commands. Such commands

fall outside the realm of standard operational procedures and

necessitate the manual input of specific commands alongside

particular I/O sequences for activation. As a result, the occur-

rence of false positives has a negligible impact on SEDSpec’s

practical functionality and its operational efficacy. To further

mitigate the incidence of false positives, an approach involves

distributing SEDSpec among device developers and testers.

This strategy enables the utilization of extensive test cases to

formulate precise execution specifications, thereby enhancing

SEDSpec’s accuracy and reliability.

Limitation. SEDSpec’s capability is confined to detecting

anomalies associated with the device state during runtime

protection. Since the device state is generated upon the device

control structure, the variables out of the control structure, e.g.,

temporary variables and global variables beyond SEDSpec’s

scope for checking and protection. Despite this limitation,

SEDSpec’s external inspection mechanism for emulated de-

vices ensures its high compatibility with a range of security

mechanisms, such as canary, ASLR, CFI, AppArmor, and

seccomp. This compatibility facilitates SEDSpec’s seamless

integration with these security mechanisms, thereby mitigating

its inherent limitations and enhancing overall security.

IX. CONCLUSION

This paper introduces a novel approach to identifying

anomalies caused by vulnerabilities in emulated devices along

with a newly developed prototype system named SEDSpec.

Unlike existing methods that rely on predefined device speci-

fications, our approach is devised upon execution information
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of emulated devices under benign I/O interactions through

process tracing and program instrumentation. Correspondingly,

specific execution specification is built by capturing the device

state and control flow data under different I/O interactions. The

execution specification supports us in predicting the emulated

device behavior and state changes for a given I/O data stream.

We also devise three strategies to detect violations induced by

vulnerability exploitations and misuse based on the execution

specification. Furthermore, we implement the ES-Checker

module to monitor the emulated device execution. We evaluate

our approach and system on various versions of QEMU with

five constructed execution specifications. The experimental

results show that SEDSpec can effectively identify anomalies

caused by certain emulated device vulnerabilities with a low

runtime overhead.
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