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—— Abstract

Dagstuhl Seminar 20051 on Computational Metabolomics is the third edition of seminars on
this topic and focused on Cheminformatics and Machine Learning. With the advent of higher

precision instrumentation, application of metabolomics to a wider variety of small molecules, and
ever increasing amounts of raw and processed data available, developments in cheminformatics
and machine learning are sorely needed to facilitate interoperability and leverage further insights
from these data. Following on from Seminars 17491 and 15492, this edition convened both
experimental and computational experts, many of whom had attended the previous sessions and
brought much-valued perspective to the week’s proceedings and discussions. Throughout the
week, participants first debated on what topics to discuss in detail, before dispersing into smaller,
focused working groups for more in-depth discussions. This dynamic format was found to be
most productive and ensured active engagement amongst the participants. The abstracts in
this report reflect these working group discussions, in addition to summarising several informal
evening sessions. Action points to follow-up on after the seminar were also discussed, including
future workshops and possibly another Dagstuhl seminar in late 2021 or 2022.

Seminar January 26-31, 2020 — http://www.dagstuhl.de/20051

2012 ACM Subject Classification Applied computing — Life and medical sciences

Keywords and phrases bioinformatics, chemoinformatics, computational mass spectrometry,
computational metabolomics, machine learning

Digital Object Identifier 10.4230/DagRep.10.1.144

Edited in cooperation with Adelene Lai

1 Executive Summary
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Corey Broeckling (Colorado State University — Fort Collins, CO, US)
Emma Schymanski (University of Luzembourg, LU)
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Mass spectrometry is the predominant analytical technique for detection, identification, and
quantification in metabolomics experiments. Technological advances in mass spectrometry
and experimental workflows during the last decade enabled novel investigations of biological
Except where otherwise noted, content of this report is licensed

37 under a Creative Commons BY 3.0 Unported license
Computational Metabolomics: From Cheminformatics to Machine Learning, Dagstuhl Reports, Vol. 10, Issue 1,

pp. 144-159
Editors: Sebastian Bocker, Corey Broeckling, Emma Schymanski, and Nicola Zamboni

\\v pacsTupL Dagstuhl Reports
rReporTs  Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


http://www.dagstuhl.de/20051
http://dx.doi.org/10.4230/DagRep.10.1.144
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Sebastian Bocker, Corey Broeckling, Emma Schymanski, and Nicola Zamboni

systems on the metabolite level. Metabolomics started as the study of all metabolites in a
living cell or organism; in comparison to transcriptome and proteome, the metabolome is
a better proxy of metabolic activity. Emerging fields including personalized medicine and
exposomics have expanded the scope of metabolomics to “all” small molecules, including
those of non-biological origin. Advances in instrumentation plus rapid increase in popularity,
throughput and desired compound coverage has resulted in vast amounts of both raw and
processed data; the field is in desperate need for further developments in computational
methods. Methods established in other -omics fields are frequently not transferable to meta-
bolomics due to the structural diversity of small molecules. This third Dagstuhl Seminar on
Computational Metabolomics (following Seminars 15492 and 17491) focused on cheminform-
atics and machine learning. The seminar was less structured than previous seminars, forming
break-out sessions already from Monday afternoon, then collecting participants back into
plenary sessions at regular intervals for discussions and further topic exploration. The major
topics launched on Monday included cheminformatics, genome mining and autoencoders,
which were developed throughout the day. Other topics discussed throughout the week
included biosynthesis and gene clusters, confidence and compound identification, spectral
versus structural similarity, statistical integration, collision cross section (CCS) and ion
mobility separation (IMS), benchmarking data, open feature file format, exposomics, data
processing and acquisition. Several evening sessions were also held, including retention time,
Bioschemas, MassBank, ethics and philosophy of software development, open biological
pathways, mass spec health check, Jupyter notebooks, a mini decoy session and a session on
coding tips. The excursion, breaking with previous Christmas Market traditions, was to the
Volklingen steelworks. Finally, the entire seminar was wrapped up with a discussion on the
future of untargeted metabolomics on Friday — time will tell what the future Computational
Metabolomics Seminars will bring. A further seminar in the series may be considered for the
end of 2021 or in 2022.
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3 Break-Out Group and Plenary Discussions

3.1 Spectral vs. Structural Similarity

Oliver Alka (Universitat Tibingen, DE), Adelene Lai (University of Luxembourg, LU), and
Justin van der Hooft (Wageningen University, NL)
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Spectral similarity underpins many of our analyses, like the use of spectral similarity in
library matching and molecular networking. This break-out group tried to reconcile spectral
and structural similarity — on a fundamental level, can we equate two molecules structurally
if their spectra are considered similar? Feedback collected from the group showed that cosine
similarity was the most-used and perhaps well-known measure of spectral similarity because
of how easy it is to calculate and wide availability in various vendor software, but that it is
an imperfect measure not least because it is hard to test how it works. Further options for
measuring spectral similarity discussed include Hybrid (considering fragment and losses),
All Mass Differences, and performing both Forward and Reverse comparisons. The impact
of different instruments and their respective vendors and options (e.g. ramped collision
energy, stepped) on spectra was also discussed, with some suggestions to merge or derive an
average spectrum. This could be improved using mass difference in the scoring by creating a
hybrid score for example. Some concrete ideas on implementing graph-based extraction of
(relevant) mass differences from spectra and using those to calculate a similarity score were
also discussed.

Regarding structural similarity, Tanimoto was regarded by many as inadequate, and
other methods were discussed, including fingerprint comparison, maximum common edge
subgraph, and DICE. On evaluation, chemical classes predicted from spectra were proposed
as alternatives to fingerprints.

3.2 Data Processing in Metabolomics
Nikiforos Alygizakis (Environmental Institute — Kos, SK)

License ) Creative Commons BY 3.0 Unported license
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Data processing pipelines consist of discrete steps (centroiding, chemical noise removal,
peak picking, retention time alignment, grouping of features, componentization of isotopes,
adducts and in-source fragments). Even though there is a multitude of software (both open-
source and commercial) for each step of the pipeline, there is still space for improvement.
Peak picking is an area with great potential for improvement and is a crucial step in
metabolomics workflows. It must be highlighted that there are commercial peak pickers
(e.g. Genedata Expressionists) that may also be worth implementing as open-source tools
and benchmarked against established peak pickers. Little margin for improvement exists
for grouping of peaks across samples and retention time alignment. Componentization and
especially accurate detection of adducts in MS1 full-scan spectra is a topic that needs further
investigation. Adduct formation heavily depends on the mobile phases of chromatography
and physicochemical properties of the analytes. This topic has not been addressed and
current mass spectral libraries rarely store MS1 spectra. Instrumental developments such as
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high-resolution (R>500,000) and recording of profile data motivate the need of improved
componentization software that can improve annotation in metabolomics workflows. Existing
software should be parallelized and new software with sophisticated computational approaches
can now be applied, since computer power is readily available. Software developments should
take into account the application of strong quality assurance and quality control during
metabolomic experiments (e.g. QC charts, spiking of internal standards, standard operational
procedures for all parts of the analysis) that needs to be implemented in all analytical
laboratories. High-quality data in combination with advanced software tools can significantly
improve data processing in metabolomics.

3.3 MS/MS Spectrum Quality and Instrument Control
Corey Broeckling (Colorado State University — Fort Collins, CO, US)

License @@ Creative Commons BY 3.0 Unported license
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MS/MS Spectrum quality for small molecules has historically depended on spectral similarity
to library entries. Computational interpretation tools have opened the possibility to explore
spectrum information content in a library independent manner. There is little rigorous
description of what constitutes a high quality spectrum for small molecules, particularly in
the absence of a library search. In the proteomics field, descriptors for spectrum quality have
been suggested and might be adapted to metabolomics. This has yet to be experimentally
and statistically determined. In general, it seems that the fragments in the middle between
the minimum m/z and the precursor hold the most information, and more fragments are
better than few. In addition, using different fragmentation methods, such as CID and

HCD, seem not to hold additional information about quality and metabolite identification.

Experimental methods offering real-time instrument control could improve the quality by
using multiple collision energies or ramps, or refining collision energy on a feature-by-feature

basis. The isolation window (MS1), as well as the time of sampling seem to be important.

The conclusion is that spectral quality assessment needs more experimental evaluation to
find valid descriptors and validate these for different experimental setups

3.4 Exposomics

Xiuzia Du (University of North Carolina — Charlotte, NC, US), Kati Hanhineva (University
of Kuopio, FI), and Augustin Scalbert (IARC — Lyon, FR)
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The exposome encompasses all environmental exposures including chemical, physical, and
biological stressors, as well as lifestyle and social environments, from conception through
adulthood (https://hhearprogram.org/). Despite tremendous efforts that have been made
by researchers in diverse areas including environmental sciences, metabolomics, nutritional
sciences, etc, enormous challenges remain. One of these challenges concerns the tremendous
efforts currently required to annotate exposome data. More than half of the session time was
spent on discussing the causes of this challenge and potential ways to address it.
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The causes include: (1) the huge chemical space that the exposome covers and further
biotransformations of the compounds in this space; (2) fragmentation of available resources;
(3) onerous efforts required to deposit data in repositories; (4) shortage of reference spectra
for assigning spectra to compounds; (5) lack of reference exposome; and (6) shortage of
training data to build automated computational tools for annotating the exposome.

This challenge can be addressed from different angles simultaneously. For example,
the detected compounds can be prioritized for suspect screening based on metadata that
are collected from: (1) specific experiments (e.g. curated in Metabolomics workbench,
MetaboLights or GNPS), or (2) literature sources with data eventually curated in existing
databases (e.g. HMDB, PubChem, FooDB, Phenol-Explorer, Exposome-Explorer).

Furthermore, additional resources and informatics capabilities would be needed to fa-
cilitate exposome annotation. These include: (1) data mining tools to collect information
scattered in the literature, mainly in pdf files; (2) training data for priority scoring in
annotation (e.g. CRISPR-CAS9, artificial guts, etc); (3) tools for more efficient and rapid
annotation and suspect screening in metabolic profiles largely done manually so far; (4)
sharing analytical /spectral data from samples and reference compounds to speed up the
annotation of the exposome through a community effort; (5) better integration of different
types of data from various databases (e.g. links to spectra in PubChem); and (6) resources
to support deposition curation and warrant sustainability of databases.

Finally, we discussed how to further address the challenge. We asked Dr. David Wishart
to lead an effort to coordinate future research and development activities by researchers. As
an actionable item, Dr. Wishart will plan to host a workshop in Edmonton or the Rocky
mountain parks (Canmore) in the summer of 2020.

3.5 Mass Spectrometry Coding Standards

Laurent Gatto (University of Lowvain, BE) and Ewy Mathé (Ohio State University — Colum-
bus, OH, US)
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During this discussion about guidelines on how to share code related to computational
mass spectrometry, we decided to remain programming language agnostic, and focus on
community-level goals. It was highlighted that for such contributions to be helpful, they
need to contain software or code, and at least some testing data and documentation. The
extent and “quality” of these elements, especially the latter, should however be regarded as
flexible for two main reasons, the first one being that less seasoned contributors shouldn’t be
barred from disseminating their work due to arbitrarily strict requirements. Second, there is
a difference between publishing a method or a (computational) solution to a specific problem
and a “finished” software product, and it is important to appreciate the value (novelty or
engineering quality, for example) of both of these outputs. Hence the importance for these
guidelines to emanate from the community at large to enable/facilitate important goals, and
should not become rigid requirements.

We have identified three important end goals that should be highlighted when contributing
and disseminating code, namely (1) reproducibility, (2) usability and (3) learnability. Each
of these will require code, documentation and test data, albeit to different extents. In some
cases, small test data and a README file will suffice to install and reproduce some scripts
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implementing a novel method. On the other hand, finalised software products will have to
provide more in-depth documentation (function-, software-level documentation, how-to’s, etc.)
and comply with additional (language-specific) software requirements, hence the importance
for the contributors to accurately describe the type and scope of the code deliverables they
share with the community.

3.6 Cheminformatics for Users

Marcus Ludwig (Friedrich-Schiller-Universitit Jena, DE), Steffen Neumann (IPB — Halle,
DE), and Egon Willighagen (Maastricht University, NL)

License @@ Creative Commons BY 3.0 Unported license
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Cheminformatics is the use of computer and informational techniques applied to a range of
problems in the field of chemistry [1]. In the context of Computational Metabolomics we
represent metabolites as molecular structures, but due to the uncertainty in annotation, we
need to be able to represent partially characterised structures. Representation of partial
information can be distinguished into two different applications: (1) Listing the occurrence
of defined substructures (fingerprint) of the measured molecule or categorizing molecules
into classes, and (2) the estimation of the biggest core structure which is supported by the
measured data. We concentrated on the estimation of core structures in this discussion. Since
the 2017 Dagstuhl Seminar 17491 [2] methods have been developed (e.g. ChemAxon Extended
SMILES (CxSMILES), Markush Structures), and examples were now created during an
evening session. Discussion topics included how different layers of information provide
different pieces of structural evidence, and that CxSMILES provides many solutions, but is
limited. For example, for uncertainty of double bond locations in lipid tails, CxSMILES does
not have a satisfactory solution. Therefore, the molecular formula and shortlists of specific
compounds remain complementary. The need for open source tools to derive a common
CxSMILES, depict CxSMILES, and enumerate structures starting with an CxSMILES was
established. The Chemistry Development Kit is being explored for this. Another area of
cheminformatics is structure generation required to identify metabolites not yet in compound
databases. Existing approaches cover a continuum from unconstrained structure generation, to
combinatorial decoration of frameworks or backbones and biochemical expansion of structure
databases. There are cross-links to the session on autoencoders of chemical structures, which
can generate structures, ideally with constraints from prior or experimental knowledge.

References

1 Wikipedia contributors. Cheminformatics — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=Cheminformatics&oldid=909899401, Online; accessed 3-
February-2020.

2 Dagstuhl seminar 17491 contributors. Computational Metabolomics: Identification, Inter-
pretation, Imaging. https://www.dagstuhl.de/17491, Online; accessed 3-February-2020.

151

20051


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/w/index.php?title=Cheminformatics&oldid=909899401
https://en.wikipedia.org/w/index.php?title=Cheminformatics&oldid=909899401
https://www.dagstuhl.de/17491

152

20051 — Computational Metabolomics: From Cheminformatics to Machine Learning

3.7 The mzFeature File Format to Bridge Processing and Annotation
in Untargeted Metabolomics

Tytus Mak (NIST — Gaithersburg, MD, US), Oliver Alka (Universitit Tibingen, DE),
Sebastian Bocker (Friedrich-Schiller-Universitit Jena, DE), Pieter Dorrestein (University of
California — San Diego, CA, US), Markus Fleischauer (Friedrich-Schiller-Universitit Jena,
DE), Oliver Kohlbacher (Universitit Tibingen, DE), Marcus Ludwig (Friedrich-Schiller-
Universitit Jena, DE), Louis-Feliz Nothias-Scaglia (University of California — San Diego,
CA, US), and Tomas Pluskal (Whitehead Institute — Cambridge, MA, US)
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While there are open formats for mass spectrometry data (e.g. mzML) and downstream
annotation (i.e. mzTab-M), there is currently no existing file interoperable format to bridge
the gap between processing and structure annotation tools in non-targeted LC-MS/MS data
processing. This proposal aims at designing an intermediate “mzFeature” open file format
that would hierarchically store information on the detected spectral features that have been
extracted via peak picking/feature finding algorithms (e.g. XCMS, MZmine, OpenMS).
Feature objects are storing centroided spectral information (mass traces, associated MS2
spectra, MSn etc.), along with m/z and retention time statistics (i.e. peak apex, peak
start /end). These are usually extracted on a file basis and Features of the same file can be
grouped as a FeatureMap. The Features can be linked into FeatureGroups across multiple
mass spectrometry files, which may consist of an adduct type, isotopologues, and in-source
fragments that originate from the same molecule. Ambiguities are accounted for via multiple
mappings, such as an MS2 spectrum being assigned to multiple feature objects. The format
should accommodate the inclusion of metadata that are specific to various instrument and
processing tools.

3.8 Benchmark Data
Ewy Mathé (Ohio State University — Columbus, OH, US)
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Benchmarking datasets are needed to test new methods. These data should be well understood
and well characterised. One specific area of need is multi-omics datasets. When collecting
these data, the proper meta-information (on samples and metabolites) needs to be included.
There needs to be a balance between incorporating appropriate meta-information and the
difficulty /time required for collecting/inputting that info.

There are multiple complementary efforts for doing this: 1) MANA SODA: community-
driven input of data and software; 2) NIH Metabolomics Workbench: well curated datasets
collected for benchmarking; 3) a previous Dagstuhl conference had started a similar effort
for Proteomics [1]. Incentivizing data generators and software developers to submit their
work (e.g. publications, advertisements, recommendations, etc.) is key to the success of these
efforts. Also defining use cases, where what people want data for is defined, is important.
Benchmarking data could be comparison of existing data or may require the generation of
new data. The task of this session will be to define such use cases and best approaches to
collecting benchmarking datasets and to make them useful to the larger community.
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References
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3.9 Mining Metabolome and Genome
Ewy Mathé (Ohio State University — Columbus, OH, US)
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Many resources are available for supporting the integrated analysis of genomes and meta-
bolomes. However, these resources are largely fragmented and mostly lack interoperability.
Computational expertise is most often a requirement to piece together resources for appropri-
ate interpretation of integrated metabolome-genome data. There is thus a need for defining
common meta-data/controlled vocabulary, and for automating the process of deriving detailed
meta-data for samples and analyte (metabolites, genes).

The task of this group was to define user cases and guidelines on how to use and integrate
resources to meet user needs. Guidelines will include defining quantitative metrics to use
these databases properly (e.g. FDR confidence, being able to detect discrepancies between
different sources), and unit tests for data integration. The steps in integrating resources are
modular. Limitations of each module were defined, so that users can then piece together
different modules to meet their needs.

3.10 Confidence and Compound Identification
Hunter Moseley (University of Kentucky — Lexzington, KY, US)

License @@ Creative Commons BY 3.0 Unported license
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This session explored how to quantify confidence in compound identification. Three major
types of confidence metrics were identified: confidence categories, (continuous) confidence
scores, and probabilistic scores. Different types of probabilistic scores were covered, especially
probabilistic scores that take into account false discovery. Inaccuracy in estimating low
false discovery rates (FDR) in the context of MS/MS-based compound identification was
discussed. An alternative or complementary method is to estimate compound identification
ambiguity from assignment and dataset specific decoy generation. The supplementation of
richer spectral data to improve assignment was mentioned. Using identification confidence
and/or ambiguity to limit deposited annotations was discussed. The general consensus
was that more assignment annotations with deposition would allow broader data reuse and
improve interpretation.
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3.11 MassBank: Status Meeting
Steffen Neumann (IPB — Halle, DE)
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MassBank was the first open source, open data spectral library. Currently, there are sites
in Japan, Europe, and the US (MoNA). In Dagstuhl there was the opportunity to discuss
current and future developments among users, developers and related resources. These
included the quality assurance in spectral library creation, an upcoming REST interface and
opportunities to interchange data with other sites.

3.12 Autoencoders

Jamie Nunez (Pacific Northwest National Lab — Richland, WA, US) and Michael Andrej
Stravs (Eawag — Dibendorf, CH)
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Methods of generating potentially novel compounds was first covered, which included com-
binatorics, reactions, rule-based construction, experimental data-driven generation, and
autoencoders. Autoencoders were covered in more detail, first describing their general set
up and the use of latent space (a compressed version of the data input to the autoencoder
which is then interpreted by the decoder). An example of structure-to-structure designs was
examined, along with the considerations of its advantages and disadvantages, how training
was done, and what latent space truly represents at the end. Other potential designs were
then discussed, such as fingerprint-to-structure to generate candidates from experimental
data and reactions-to-reactions. It is important to also keep in mind that decoders can often
produce invalid output, which has to be checked, showing a need to carefully interpret the
real meaning of the output and (non)continuity of latent space.

3.13 Collision Cross Section and lon Mobility Spectrometry
Tomas Pluskal (Whitehead Institute — Cambridge, MA, US)

License ) Creative Commons BY 3.0 Unported license
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Ton mobility spectrometry (IMS) is a technique for separating molecules in a neutral gas
phase based on their drift time (time spent in the IMS chamber), which is proportional to the
collision cross section (CCS) of the molecule. IMS can be conveniently combined with mass
spectrometry for better separation and identification of molecules. Significant progress has
been made in predicting CCS values of molecules using deep learning and quantum chemistry
calculations. However, IMS presently suffers from relatively poor support in data processing
tools and packages. During the session, various hardware approaches for IMS separation were
introduced and specific needs for data processing tools were discussed. There was general
consensus that IMS has great potential, but the current hardware and software capabilities
are limited. In particular, a lack of a good algorithm for 4D (chromatography retention time,
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IMS drift time, m/z, and intensity) feature detection was identified as a major bottleneck in
the field. Development of new visualization tools and CSS distribution databases was also
encouraged.

3.14 Jupyter Notebooks for #FAIR Data Science
Stacey N. Reinke (Edith Cowan University — Joondalup, AU)
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The Jupyter Notebook is an open-source interactive coding tool that launches in a web
browser. It contains cells for descriptive text and live code; outputs of executed code cells
(tables, visualisations) are then displayed immediately below the code cell. This framework
was developed to enable transparent sharing of code and workflows, therefore promoting
FAIR data science in the scientific community. More recently, the launch of the Binder
deployment service has allowed researchers to share their Jupyter Notebooks in the cloud
with a url link. This session provided a description of Jupyter Notebooks and Binder, as
well as their practical utility in workflow sharing and education.

3.15 Statistical Integration
Stacey N. Reinke (Edith Cowan University — Joondalup, AU)
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Metabolomics data can be integrated with other types of data, such as other omics or clinical
data, to enable a more comprehensive understanding of the biological system. This session
aimed to identify and discuss different approaches for data integration of two or more matrices,
one being metabolomics data. Three different approaches were identified. Network-driven
integration approaches require a priori biological knowledge. They can include mathematical
models of individual biological processes or pathway mapping. Pathway mapping often suffers
from lack of interpretability due to the high level of metabolic interconnection. Dimension
reduction integration aims to reduce the metabolic feature space prior to downstream pathway
analysis; however, testing has shown lack of robustness with respect to pathway definition.
Data-driven integration approaches include methods such as correlation and multivariate
analyses. These approaches can enable the identification of novel biology; however, they are
limited by lack of usability and interpretability. The outcome of this session included a list
of tools for achieving data integration and also an acknowledgement that this is a developing
field which needs to be further developed prior to large scale implementation.
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3.16 Biosynthesis, Gene Clusters, and Predicting Natural Products
from the Genome

Justin van der Hooft (Wageningen University, NL) and Simon Rogers (University of Glasgow,
GB)
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Metabolite identification of natural products can be accelerated by linking information gained
from genome sequences. This breakout group started with a short historical perspective on
using structural information from the genome to inform structural elucidation which started
back in 2005 with the first natural product being predicted from the genome of Streptomyces
coelicolor. The major questions the group addressed were what structural and quantitative
information can be predicted from genomes? And how do Biosynthetic Gene Clusters
help? A list of resources included the PRISM and antiSMASH ecosystems that sparked the
development of tools that link genome and metabolome data. Listed examples are GNP and
NRPQuest and RiPPQuest that show relative successful examples for modular structures like
peptides and some polyketide classes. The Dorrestein lab developed peptidogenomics and
glycogenomics workflows that link the genome and metabolome by predicting amino acid and
sugar moieties, respectively, that can be searched for in mass spectrometry data through mass
differences and neutral losses. The group then discussed the next steps. Linking genomes
directly to structures is a (very) hard problem; linking the genome to spectra is still challenging
but can be regarded as “ranking problem”. In the genome, gene domains are mainly used
to translate the genome into structural information — through (predicted) enzyme activity.
In the metabolome/metabolomics, once annotated, structural elements (substructures) can
be exploited, for example by using chemical fingerprints. However, spectral patterns on
themselves could be used as well to link to specific genetic elements. This could be helpful in
prioritizing candidate spectra — gene links found by correlation approaches (based on strain
presence/absence). Finally, the group discussed how prioritization of candidate structures
could be improved by allowing to select groups of metabolites from one organism or — more
widely — from natural products — or even more generic — from molecules that could be found
in nature — which could include pesticides. Altogether, accelerating natural product discovery
through linking the genome to the metabolome is a promising field!

3.17 Bioschemas
Egon Willighagen (Maastricht University, NL)
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Bioschemas (https://bioschemas.org/) is an extension of the schema.org standard used by
major search engines like Google and Bing to recognize information or metadata they want
to use in their indexing. Bioschemas has an annotation type for the life sciences, like Protein
and MolecularEntity, but also types for Tool (e.g. software) and TrainingMaterial (like
tutorials). It is supported by the EU ELIXIR community as an interoperability layer and is
used in a variety of their projects. In this session we discussed what it is and is not (e.g. it is
not an ontology), looked at various annotation types (called “profiles”), and what information
one can add to it. We looked at various solutions people have found to use Bioschemas
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in their project. For example, we looked at how Bioconductor package vignettes can be

extended. Additionally, we looked at how ChEMBL uses Bioschemas on their HTML pages.

The Bioschemas website has a page with live deployments. The meeting was concluded
with hacking on Bioschemas annotation of Bioconductor packages itself, continuing a patch
initiated at a computational metabolomics meeting in Wittenberg, DE in April 2019.

3.18 Open Biological Pathways with WikiPathways
Egon Willighagen (Maastricht University, NL)
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WikiPathways (https://wikipathways.org/) is a free, online, community-driven, curated
knowledgebase of biological pathways. Comparable and complementary to other databases
like KEGG and Reactome, WikiPathways has a semantic representation of biological processes,
resulting from past and current collaborations with research communities like WormBase,
LIPIDMAPS, NetPath, EJP-RD, and many, many more. The WikiPathways Portals reflect
this community embedding. The focus has always been on interoperability and semantic
meaning which was discussed in the session. The semantic web format and SPARQL
application programming interface were also discussed. We walked through a number of
further integrations, such as EuropePMC linking to pathways for articles that are cited by
that pathway (LabLinks), Wikidata, and named resources that include the WikiPathways,
such as RAMP. Finally, we looked at how pathways are drawn with PathVisio, extended
with CyTargetLinked in Cytoscape with transcription factors, miRNAs, and drugs (-lead)
from DrugBank and ChEMBL. Questions around the underlying GPML format and RDF
export were discussed, in addition to the curation process, and how all this is used in systems
biological pathway and network enrichment analyses.

3.19 Retention Time
Michael Anton Witting (Helmholtz Zentrum — Minchen, DE)
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Retention times represent an interesting orthogonal information for metabolite identification.
However, they are less standardized compared to other parameters and represent a property
of the metabolite and the employed chromatographic system in comparison to mass, which
is a molecular property. In this session we discussed the current state of the art in retention
time prediction and how it can be integrated with e.g. analysis of tandem MS data. An
approach for prediction of retention orders developed by Juho Rouso and Sebastian Bocker
was discussed and what kind of additional data is required to further develop it.
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3.20 Conclusion: The Future of Computational Metabolomics
Sebastian Bocker (Friedrich-Schiller-Universitit Jena, DE)
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In this plenary discussion, we tried to identify upcoming research questions in computational
metabolomics, but also identify new possibilities that computational methods will provide for
metabolomics in general. Computational methods for, say, small molecule annotation have
evolved greatly in recent years, as demonstrated by CASMI contests [1]; how can we continue
with method development in this speed, and how do we best utilize the developed methods?
One particular topic of discussion was how to attract experts from machine learning to work
on metabolomics problems. Here, it is of utmost importance to lower the barrier to enter
the field for scientists from machine learning; e.g., to formalize problem(s) and to describe
them in terms that machine learning scientists can understand (graph theory, optimization,
etc). We will try to use the Kaggle platform (https://www.kaggle.com/) to attract ML
experts; we identified some topics such as anomaly detection in clinical environments (i.e.
high cholesterol) and retention time/order prediction as topics where this may be possible.
Another topic of discussion was the disruptive changes of MS and computational technology:
Where do we expect them to be, and what impact will these changes have? Discussed
topics included prediction accuracy, quantum computing, the use of GPUs, and substantial
increase in annotation rates. A third topic of discussion was metabolic modelling and stable
isotope labelling experiments: these can lead to improved biological insight, with or without
stable isotope labeling. We discussed the potential to use existing and new datasets that link
metabolomics, transcript, genomics, or proteomics to improve interpretability; the importance
of FAIR data was mentioned in this context. Finally, improved annotation can produce
better metabolic/system modelling and allow us to generate new biological hypotheses.

References
1 Schymanski, Emma L., et al. Critical Assessment of Small Molecule Identification 2016:
automated methods. Journal of Cheminformatics, 9.1 (2017): 22.
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