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—— Abstract

We study the problem of approximating a center under the Ulam metric. The Ulam metric, defined

over a set of permutations over [n], is the minimum number of move operations (deletion plus insertion)
to transform one permutation into another. The Ulam metric is a simpler variant of the general edit
distance metric. It provides a measure of dissimilarity over a set of rankings/permutations. In the
center problem, given a set of permutations, we are asked to find a permutation (not necessarily
from the input set) that minimizes the maximum distance to the input permutations. This problem
is also referred to as maximum rank aggregation under Ulam. So far, we only know of a folklore
2-approximation algorithm for this NP-hard problem. Even for constantly many permutations, we
do not know anything better than an exhaustive search over all n! permutations.
3 1

In this paper, we achieve a (5 — %)-approximation of the Ulam center in time n

m input permutations over [n]. We therefore get a polynomial time bound while achieving better

2
O(m* In m)’ for

than a 3/2-approximation for constantly many permutations. This problem is of special interest
even for constantly many permutations because under certain dissimilarity measures over rankings,
even for four permutations, the problem is NP-hard.

In proving our result, we establish a surprising connection between the approximate Ulam center
problem and the closest string with wildcards problem (the center problem over the Hamming metric,
allowing wildcards). We further study the closest string with wildcards problem and show that
there cannot exist any (2 — €)-approximation algorithm (for any € > 0) for it unless P = NP. This
inapproximability result is in sharp contrast with the same problem without wildcards, where we
know of a PTAS.
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1 Introduction

Finding a representative of a data set is a classical aggregation task heavily used in data
analysis. Given a set S of points in a metric space, one of the more popular versions asks to
find a point (not necessarily from S) that minimizes the maximum distance to the points in

S, ie.,

i d . 1

min max d(y, z) (1)
Such a point is called a center. The question of finding a center in a metric space dates back
to the nineteenth century [42]. In several applications, it suffices to compute an approzimate
center, i.e., a point in the metric space that approximates the objective value (1). The problem

1 This work was done while the author was a student at IIIT-Delhi
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of finding an (approximate) center has been studied widely both in theory and practice.
Various metric spaces have been considered for the center problem, including Euclidean
(both constant [33] and high dimension [7, 43]), Hamming [19, 29, 32, 30], Hamming with
wildcard [22], the edit metric [36], Jaccard distance [10], rankings [6, 8, 38], etc. A similar
task is to find a median point, which asks to minimize the sum of the distances to the
data points (instead of the maximum distance). The median problem has also been studied
extensively in various metric spaces [15, 40, 18, 1, 24, 41, 13, 34]. Despite being similar,
finding a center is a much harder task than finding a median. For instance, in the Hamming
metric, finding a median is folklore (just take a coordinate-wise majority), whereas finding a
center is NP-hard [19].

In this paper, we primarily focus on approximating the center over the Ulam metric,
which is a close variant of the edit metric. The Ulam metric of dimension n is the metric
space (Sp,d), where S, is the set of all permutations over [n] and d(z,y) is the minimum
number of character moves needed to transform x into y [2].? The importance of studying the
Ulam metric is twofold. First, it is an interesting measure of dissimilarity between rankings.
The problem of finding a consensus ranking on a set of alternatives based on the preferences
of voters arise in many application domains like sports, databases, elections, search engines,
and statistics. A common ranking that best captures the preferences among the alternatives
is often characterized by the center objective function (1) (a.k.a. mazimum rank aggregation).
The second aspect of the Ulam metric is that it captures some of the inherent difficulties of
the edit metric. Thus, any progress in the Ulam metric may provide insights to tackle the
more general edit metric which finds numerous applications in computational biology [21, 37],
DNA storage system [20, 39], speech recognition [26], and classification [31]. The Ulam
metric has also been studied from different algorithmic perspectives [17, 12, 3, 4, 35, 9].

There is a folklore algorithm that finds a 2-approximate center by simply reporting the
best input permutation that minimizes the objective (1). This 2-approximation, in fact,
holds for every metric space. Unfortunately, so far, we do not know any polynomial-time
algorithm that attains better than the folklore 2-approximation, even when the number of
input permutations is constant. For the exact computation (or even to beat the 2-factor),
nothing better than the exhaustive search (over n! permutations) is known, even for constantly
many input permutations. On the hardness side, we only know that it is NP-complete [6].
On the contrary, for the Ulam median problem, very recently, [11] broke below the 2-factor
in polynomial time. [11] also provided a polynomial-time 3/2-approximation algorithm for
constantly many input permutations. It is not difficult to show that the Ulam center is at
least as hard as the Ulam median, even for constantly many inputs (see Appendix A).

Our main result is a deterministic polynomial-time algorithm that breaks below the
3/2-approximation for the Ulam center problem for constantly many inputs.

» Theorem 1. There is a deterministic algorithm that, given as input a set of m permutations

S C Sy, computes a (% - L%ﬂ)—appm:rimate center of S in time pO(m*Inm)

The above running time could be improved by increasing the approximation factor slightly.
1

m)—approxirnate center in

More specifically, for every € > 0, we can compute a (% +€—

time n3m + nO("#*) (see Remark 10). It is straightforward to see that when m is constant,
the algorithm in the above theorem runs in polynomial time and computes a better than
3/2-approximate center. The question of approximating a center for constantly many
ranks/permutations is particularly interesting because even for four inputs, it is known to be
NP-complete with respect to Kendall’s tau distance [18, 8], another often used dissimilarity
measure for rankings [23, 44, 45].

2 One may also consider one deletion and one insertion operation instead of a character move, and define
the distance accordingly [17].
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Nevertheless, we provide a polynomial-time algorithm to solve the (exact) Ulam center
problem for three permutations (Theorem 12). It is worth noting that for Kendall’s tau
distance, it is unknown whether the center problem is in P or NP-complete for three
permutations.

We show our result (Theorem 1) by establishing a surprising connection between the
Ulam center and (a generalization of) the closest string with wildcards problem. We will
explain this connection in the technical overview. In this paper, we further study the closest
string with wildcards problem. In the closest string problem, given a set of n-length strings
over some fixed alphabet ¥, the objective is to find a center (a string from ") under the
Hamming distance. This problem is NP-complete [19], but a PTAS is known [29].

A variant of the closest string problem is the closest string with wildcards. In this variant,
each input string may include any number of a wildcard character *. The wildcard character
can be matched with all the characters of ¥. For two strings s, s’ € (XU {*})", the Hamming

distance between them is defined as dg(s,s") == |{i € [n] | s[i] # §'[i] and s[i] # *, s'[i] # *}|.

Given a set of strings with wildcards, we are asked to find a center string (with no wildcard
character) of length n with respect to the Hamming distance. (Note, if wildcards are allowed
in the center string, the all-wildcard string will trivially become a center.) This problem
is also NP-complete [22]. However, no better than a 2-factor (polynomial-time) algorithm

is known. The parameterized complexity of this problem has also been considered [22, 25].

The Hamming distance with wildcard has been studied widely (e.g. [16, 28, 14]) due to its

numerous applications in computational biology, large scale web searching, database systems.
As we mentioned earlier, for the simpler variant without any wildcard, there is a PTAS.

Can we get a similar PTAS when wildcards are allowed? In this paper, we refute such a
possibility. We show that attaining much better than a 2-approximation factor for the closest
string with wildcards problem (even for a binary alphabet) is not possible unless P = NP.

» Theorem 2. There is no deterministic polynomial-time (2 — €)-approzimation algorithm
(for any € > 0) for the closest string with wildcards problem, unless P = NP.

The above hardness result holds even for a binary alphabet. The above theorem is in sharp
contrast with the (typical) closest string problem for which a PTAS is known [29]. To the
best of our knowledge, this is the first (2 — ¢)-factor inapproximability result for any center
problem defined over a set of strings.

1.1 Technical overview

Approximating the Ulam center. One of our main contributions is a polynomial-time
(better than) 3/2-factor approximation algorithm for the Ulam center problem for constantly
many permutations. Our algorithm runs in nO(m*nm) time for m permutations, and achieves
(% — ﬁ) approximation. For simplicity in exposition, we briefly describe our algorithm
that achieves 3/2-approximation by assuming m is a constant. At the very high level,
we first compute an exact n-length center (not necessarily a permutation) using dynamic
programming and then convert that into a permutation that incurs approximation. The idea
is similar to what was used for the Ulam median problem in [11]. However, the similarity ends
here. The transformation algorithm that converts an n-length center into a permutation is
more intricate, and the analysis is more involved. Another interesting aspect of our algorithm
is that we establish a surprising connection between the approximate Ulam center and a

generalization of the closest string problem. Let us now briefly explain our algorithm.

12:3
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If the optimal center objective OPT is small (bounded by a constant), we can find a
center permutation by performing an exhaustive search up to a small distance from any input.
Thus as long as OPT is at most some constant, in polynomial time, we find an exact center
permutation. So, from now, assume that OPT is at least some constant. Our main algorithm
has two main steps. The first step constitutes a dynamic programming algorithm that returns
an n-length string which maximizes the minimum LCS (Longest Common Substring) with
the input permutations (see Subsection 4.1). This algorithm is essentially a generalization
of [40, 27]. Let x; be the string we get from this step. Note, the metric defined by n — [LCS|
is essentially the Ulam distance over permutations. So our dynamic programming provides
us a center string that minimizes the maximum n — [LCS|. Let us denote this optimum
value as OPT,,. Clearly, n-length center string is a relaxation of center permutation. Thus,
OPT,, < OPT.

If &7 is a permutation, we are done, as we have found an optimal center permutation.
Otherwise, we modify z to get a permutation. Let there be ¢ symbols a;,as,...,as that
appear more than once in x};. For any a;, each occurrence might be part of a LCS with a subset
of input permutations. Now, suppose we delete any one of the occurrences arbitrarily. In
that case, we will increase the distances to the corresponding subset of inputs. Consequently,
we may end up with a string far from a particular input permutation, causing a much worse
objective value than OPT. Thus, we need to delete them in a “balanced” way such that
distances to all the inputs increase in “a uniform manner”. For that purpose, we introduce a
generalization of the closest string problem, which we call matriz bi-coloring. We create a
matrix having ¢ columns, each corresponding to a repeated symbol. Each row of the matrix
corresponds to an input permutation. Thus the number of rows is equal to the number
of inputs. Then for a column (corresponding to a;), we color the entries as follows: If a;
of an input permutation s; is aligned (with respect to some fixed optimal alignment) with
the c-th occurrence of a; in z;, we color the corresponding entry ((¢,7)-th entry) of the
matrix by c. Essentially, for each symbol a;, we have a set of color classes. Each color class
¢ denotes the subset of inputs whose a; aligns with c-th occurrence of ;. There could be
some uncolored entries as well. (See Figure 2 for an example.) Then, we select exactly one

*
ni

color per symbol/column (denoting which occurrence to keep in z) and cover (alternatively,
mark as ted) all the “un-matched” colored entries of that column. Next, we come up with a
“coloring scheme” (i.e., a choice of colors per column) such that after covering (marking as
ted) the un-matched colored entries, the maximum covered (ted) entries per row is minimized.
In general (for an arbitrary colored matrix), there may not exist a coloring scheme leading to
a bounded number of covered (ted) entries per row. (This could happen for “tall” matrices,
with significantly more rows than columns.) Fortunately, that is not the case for us. Since
we have constantly many input permutations and the number of repeated symbols is large
(follows from our large OPT assumption), there will always exist a “good” coloring scheme. If
we keep the occurrences of repeated symbols in z}, according to an optimal coloring scheme,
we end up not increasing the center objective value (maximum distances) by much. It is
possible to find an optimal coloring scheme using another dynamic programming algorithm
(Appendix B). Once we delete all the repeated occurrences, we insert the missing symbols
into x};, again in a balanced manner. In the end, we are left with a permutation z over S,,.

The main point of removing repeated entries and the insertion of missing symbols in a
balanced manner is to keep the distances to each input within a 3/2-factor of the initial
distance. We argue that, in the end, the distance between an input permutation and the
final permutation z will be at most 3/2 times the initial (maximum) distance to x};. Hence,
the center objective value of the output z is at most %OPT,L < %OPT. We refer the reader
to Section 4 for the detailed analysis.
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si=(8 9 10 PAFEIEN 11 12 13 FNE A 14 15 16)
s;=(7 11 12 13 [ EIEN 8 9 10 FIE P 14 15 16)
s3;=(14 15 16 FR I EY 11 12 13 FR 2 EE 8 9 10)
sp=(11 12 13 EIEIEY 14 15 16 BAE A 8 9 10)

=(7 8910 FEIIE] 14 15 16 PN E 11 12 13)
ss=(14 15 16 FIENEY 8 9 10 P @ EI A 11 12 13)

S 2SR 6241 4]3)5) 2017 GR3) 7]

Figure 1 Let n = 16 and m = 6. Each of s1, s2,. .., s¢ is a permutation in Si6.  is a string (not
a permutation) of length 16 over the alphabet [16]. Different occurrences of the same symbol are
colored differently in z. The colored entries of s; also denote an alignment with z (in this example,
LCS(z, si)). Note that min;cjg) [LCS(x, s:)| = 6. Figure 2 shows the colored matrix for this example.

1234567 1 2 3 4 5 6 7

« HHHEE
« HEHENE
-« HEHENE
« HIHNEEE

s1 . red . . red red red
o| EE =~ < HEX
3 . . red red red . .
s . red . . . red red
o mEEEE o o o X
S ..... S6 ..red red red red.

fj1333222 fi 1 3 3 3 2 2 2

Figure 2 (Left) A colored matrix M, corresponding to the example in Figure 1 (here, the number
in each cell simply denotes the color of the cell). (Right) A matrix bi-coloring scheme A of M, where
A=(1,3,1,2,2,1,2). As the maximum number of ted entries in a row is 4, we have MRI(A(M)) = 4.

Inapproximability of the closest string with wildcards. The matrix bi-coloring problem
mentioned earlier is a generalization of the closest string with wildcards problem for a fixed
alphabet 3. To see this, restrict the number of colors per column for the matrix bi-coloring
to the alphabet size. (In the matrix bi-coloring, the number of colors per column could be as
large as the number of rows, and also, the number of colors in two different columns could

be different.) In a simpler version where wildcards are not allowed, we know of a PTAS [29].

So it is quite natural to ask whether we can get a better than 2-factor approximation
(ideally, a PTAS) for the closest string with wildcards problem in polynomial time. In this
paper, we refute the possibility of having one, assuming P # NP. We show that there is no
polynomial-time (2 — €)-approximation algorithm for this problem.

To show our result, we provide a reduction from a variant of the satisfiability (SAT)
problem, namely (1, k, 2k + 1)-SAT introduced by Austrin, Guruswami and Hastad [5]. In
this problem, for any fixed integer k > 1, given a (2k + 1)-CNF formula F, the objective is
to distinguish whether there is a satisfying assignment that satisfies at least k literals per
clause or F is unsatisfiable. For every fixed integer k£ > 1, this problem was shown to be
NP-hard [5].

12:5
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We provide a simple polynomial-time reduction from (1, k,2k + 1)-SAT to the problem
of approximating closest string with wildcards. For an 0 < e < 1, fix k = [1/€]. Given an
instance ((2k 4+ 1)-CNF formula) F of (1,k,2k 4+ 1)-SAT with n variables and m clauses,
for each clause we create an n-length binary string with wildcards ({0,1} U {}). Each bit
position of these strings corresponds to a variable. In a clause, if a variable appears as a
positive literal, we set the corresponding bit position of the corresponding string to be 1; and
if it appears as a negative literal, we set the corresponding bit position of the corresponding
string to be 0. If a variable does not appear in a particular clause, we set the corresponding
bit position to be a wildcard (x).

Thus in the reduced instance, each string contains at most 2k 4+ 1 non-wildcard entries. It
is quite straightforward to see that for a YES instance of the (1, k, 2k + 1)-SAT formula, there
is a satisfying assignment that leads to a center string with objective value at most k + 1.
On the other hand, any center string with an objective value < 2k 4+ 1 gives a satisfying
assignment. (See Section 5 for the details.)

2 Preliminaries

Notations. Let [n] denote the set {1,2,...,n}. We refer to the set of all permutations over
[n] by S,. Throughout this paper we consider any permutation z as a sequence of numbers
(a1, az,...,a,) such that (i) = a;.

The Ulam metric and the problem of finding a center. Given two permutations z,y € S,,,
the Ulam distance between them, denoted by d(z,y), is the minimum number of character
move operations® that is needed to transform x into y. Alternatively, it can be defined as
n — |LCS(x, y)|, where LCS(z,y) denotes a longest common subsequence between z and y.

Given two strings (permutations) « and y of lengths n, and n, respectively, an alignment
g is a function from [n,] to [n,] U {L} which satisfies:

Vi € [ng],if g(i) # L, then z(i) = y(g(7));

Let i € [ng],j € [ng] such that i # j, g(i) # L and g(j) # L. Then i < j < g(i) < g(j)-

For an alignment g between two strings (permutations) x and y, we say g aligns a
character x(7) with some character y(j) if and only if j = ¢g(¢). Thus the alignment g is
essentially a common subsequence between x and y (see Figure 1 for an example).

Given a set S C &, and another permutation y € S,,, we refer to the quantity
max,¢cs d(y,x) by the center objective value of S with respect to y, denoted by 0bj(S,y).

Given aset S C S,,, a center of S is a permutation Z¢en € S, (not necessarily from ) such
that 0bj (S, Teen) is minimized, i.e., Teen = argmin, g 0bj(S,y). We denote 0bj (S, Teen) by
OPT(S). We call a permutation & a c-approximate center (for some ¢ > 0) of S if and only
if 0bj(S,2) < OPT(S) < c¢-0bj(S, ).

3 Matrix Bi-coloring

In this section, we introduce a problem called the matriz bi-coloring problem. Let us start
by defining a colored matrix. We use positive integers to identify a color (except a special
color ted). An m X £ dimensional matrix M is said to be colored if each entry of each column

3 A single move operation in a permutation can be thought of as “picking up” a character from its position
and then “inserting” that character in a different position.
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J € [{] is either assigned a color from the set [f;] (for some positive integer f;), or no-colot
(which is to say it is uncolored). (Multiple entries in the same column may have the same
color.) In other words, the number of distinct colors (other than no-color) that can be seen
in column j is f;. See Figure 2 for a visual depiction of matrix bi-coloring.

Given a colored matrix, our goal is to pick exactly one color ¢; for each column j € [/]
and recolor the matrix. All entries in column j which are colored c¢; retain their color. We
recolor the remaining entries (except the no-color entries) of column j to ved. This is called
a matriz bi-coloring scheme. We now define this formally.

» Definition 3 (Matrix Bi-coloring Scheme). Given an m x £ colored matriz M, a matrix
bi-coloring scheme A for M is an C-tuple (c1,¢2,...,¢0) € [f1] X [fo] X -+ X [fe]-

The ¢-tuple (¢1, o, - . ., ¢¢) produced by the matrix bi-coloring scheme A is used to recolor
the matrix M to produce a final m x £ colored matrix A(M), computed as follows. For every
(i,4) € [m] x [£],

if Mi][j] = no-colot, then A(M)[i][j] = no-colot;

else, if Mi][j] = ¢;, then A(M)[i][j] = ¢;;

else, A(M)[i][j] = ted.

For each row i € [m] of A(M), the red index of the row, denoted as Rl 4 (i), is the

number of ted entries in the i-th row of A(M). (We will drop the subscript A, M when they
are clear from the context.) The mazimum red index of A(M) is defined as

MRI(A(M)) = max RI(7).

i€[m]
Next, consider the following optimization problem.

» Definition 4 (Matrix Bi-coloring Problem). Given an m x £ colored matriz M, find a
matrix bi-coloring scheme A of M with the minimum MRI. This minimum MRI is called the
bi-coloring number of the matriz, denoted by BCN. Formally,

BCN(M) = A mint b MRI(A(M)).
colbrin}]s s%izggmg%rzl_\/l

Thus, designing a matrix bi-coloring scheme essentially means coming up with a color for
each column. We would like to emphasize that the above problem is a generalization of a
certain variant of the center problem under the Hamming metric known as closest string
with wildcards [22] (see Section 5).

We first show an upper bound on BCN(M). Then we provide a dynamic programming
algorithm that, given a colored matrix M, finds BCN(M) exactly.

3.1 An upper bound on the bi-coloring number

We show that for every colored matrix M, there always exists a bi-coloring scheme .4 such
that MRI(A(M)) is not “too large”.

» Theorem 5. Let M be an m x £ colored matriz such that m* < e, where
1
=2 (-5)
jEl] /

Recall that f; is the number of distinct colors in column j € [€] (not counting no-colot). Then

BCN(M) < pu+2+/plnm.

12:7
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An interesting fact about the above theorem is that p depends only on the number of different
colors in each column, regardless of how those colors are placed in M. We prove this theorem
using the probabilistic method.

Proof of Theorem 5. Given a colored matrix M, we randomly pick an ¢-tuple (¢1, co, . . ., ¢f),
by selecting each ¢; independently uniformly at random from [f;]. This leads to a random
bi-coloring scheme A. We then show that the expected MRI of A(M) is at most p. Then by
a simple Chernoff bound, we conclude that there exists a choice of the ¢-tuple for which the
MRI is at most u + 21/ Inm, proving Theorem 5.

More precisely, for each column j € [¢], we pick a color ¢; independently uniformly at
random from [f;]. So,

1
Pr [¢ci=¢=— Vel celfil]. 2
ch[fj][] ] 7 (4], ¢ €[] (2)
Recall, in each column j € [{] of A(M), each entry A(M)[i][j] is either no-color, ¢; or ved.
For all i € [m] and j € [{], let X, ; be an indicator random variable denoting whether
A(M)[i][j] = ved or not, i.e.,

o {1 it A(M)[i][j] = ved;

0 otherwise.

Note, X; ; = 1 if and only if M[i|[j] € [f;] and ¢; # M[i][j]. For all i € [m], let

Xi=> Xij.

jeld

Thus, the random variable X; denotes the number of ved-entries in row ¢ € [m]. The expected
number of ved-entries in row i € [m] is given by

E[X;]=E Z Xi;| = E[X; ;] (Linearity of expectation)
J€ld] ]

Jele

= PriX;; =1]
Jjele

= Y PrX;; =1+ > Pr[X; ; = 1]

JEL): JEe]:
M(i][5]€[f;] M{i][j]=no-colot

= = (A(M)[i][j]=no-col
— Z Pr[Xi,j = 1] +0 4:£M)[£]][%]:nnao_cc;{::)
JE]

MEIGIELS]

= Z Prc; # M[i][j]] (By definition)
JE):
MUG1ELf5]

Z (1 - .]}]) (By Equation 2)

JE[L:
M{d][5]€(f;]

£(-5)»

JE[L]

IA
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Thus for every row i € [m], the expected number of ved-entries in row ¢ is at most u. We
will now show that the event that all of the rows simultaneously have at most u + 2v/uInm
many ted-entries occurs with non-zero probability.

Note that for each fixed row i € [m], the indicator random variables X; 1, X; 2,..., X, ¢
are independent. We set

6 =2/ (Inm)/p.

Since we are given that m* < e*, taking In on both sides and square rooting, we get
2y/(Inm)/p < 1. Thus 0 < 6 < 1. Then it follows from a standard application Chernoff
bound that

Pr(X; > (14 6) - p] < exp <_5Z'“).

By a union bound,

Pr[ﬂie[m]:Xi>(1+6)-u]<m-exp(_63.'u>.

Thus we get,

Pr¥ i € [m]: X; < (140) - ] > 1 — (m.exp (fiu))

~ (2y/@mm/n) - u
3

o (25)

=1-m 3 >0.

=1—|m-exp (Substituting ¢)

Thus, Pr[Vi € [m]: X; < (1+9)-p] > 0. In other words, there is a non-zero probability
that the number of ted-entries in every row i € [m] is at most (1 4 ¢) - u. Therefore, there
exists a bi-coloring scheme A* such that the red index RI(¢) of every row i € [m] satisfies
RI(i) < (14 4) - . Hence,

MRI(A*(M)) = max RI(i)) < (14+6) - p=p+dp=p+ 2/ plnm.

i€[m]

Since BCN(M) < MRI(A*(M)), this completes the proof. <

We can also compute an optimal bi-coloring using a dynamic programming algorithm.

We defer the algorithm to Appendix B.

» Theorem 6. There is a deterministic algorithm FINDBICOLORING that, given an m X £
colored matriz M, finds a matriz bi-coloring scheme A of M with the minimum MRI, in
O(md™*Y) time.

4  Approximation Algorithm for the Ulam Center

In this section, we provide a 3/2-approximation algorithm for the Ulam center problem. In
particular, we prove Theorem 1.

12:9
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We are given a set of permutations S = {s1, 82, -, 8m} C S, as input. Our algorithm
runs two procedures, each producing a permutation (candidate center), and returns the
better of the two (that has smaller value). For any positive integer k and a permutation
s € Sy, let us use the notation By (s) to denote the set of all the permutations at distance at
most k from s, i.e.,

Bi(s) :={z €S, | d(s,z) <k}.

The first procedure BOUNDEDSEARCH performs an exhaustive search up to distance
k, for k = 8m?Inm. More specifically, it considers an input permutation, say s;, and
enumerates over all z € By(s1), and finally returns a permutation x € By(s1) that minimizes
maxg,es d(r, s;). Note, |[Bg(s1)] = O(n?*). Thus the running time of this procedure is
O(mn?*1Inn). (Computing the Ulam distance between two permutations in S,, takes
O(nlnn) time.) Clearly, if the optimum center objective OPT(S) < k, the procedure
BOUNDEDSEARCH outputs an optimum center. So from now, we assume

OPT(S) > 8m?Inm. (3)

The second procedure, referred to as APPROXCENTER, has two main steps. Firstly, it
computes the best center string (not necessarily a permutation) z of length at most n using
a procedure FINDSTRINGCENTER. And secondly, it converts z} to a permutation s* € S,
using a procedure STRINGTOPERMUTATION.

We will show that assuming (3), s* output by APPROXCENTER is a 3/2-approximate
center of S. Below we first describe each of the two main steps of APPROXCENTER in detail.

4.1 Finding a length-restricted center string

This subsection provides a dynamic programming algorithm that given any set of n length
strings computes a center string of length n. More specifically, we design an algorithm that
computes a string (over the alphabet [n]) of length n, which maximizes the minimum longest
common subsequence (LCS) with the input strings. We defer the algorithm to Appendix C.

» Theorem 7. There is a deterministic algorithm FINDSTRINGCENTER that, given m strings
81,82, -+, 5m, each of length n, computes a string x, = arg maxxe[n]n(mini |LCS(x, s;)|), also
of length n, in O(n?*™+12™M) time.

Now let us apply this algorithm to our problem. Recall that we are given a set of
permutations S = {s1,$2,...,Sm} CS,. We apply the procedure FINDSTRINGCENTER on
the input set S to get an n-length string «7. Note that z need not be a permutation. In
the next subsection, we describe how to transform 7 into a permutation.

4.2 Converting a length-restricted center string to a permutation

Let x;, be the n-length string obtained in the previous subsection. If z} is a permutation,
then we are done, as we have an ezact solution to the Ulam center problem. Otherwise,
let R = {a1,as,...,as} be the set of “repeated symbols”, i.e., the symbols that appear at
least twice in x7,. For each a; € R, let freq; denote the number of occurrences of a; in 7.
Also, let M be the set of “missing symbols”, i.e., the symbols that do not appear in z,. To
transform 2}, into a permutation, we need to remove duplicate occurrences of the repeated
symbols (R), and insert all the missing symbols (M).

Our transformation procedure STRINGTOPERMUTATION consists of following two steps
(the pseudocodes for these can be found in Appendix D):
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1. Use a procedure REMOVEDUPLICATE (Algorithm 1) to remove all the duplicate occurrences
of the symbols in R. REMOVEDUPLICATE first computes an (arbitrary) optimal alignment
a; between 2% and s;, for each i € [m]. Next, construct a colored matrix M of dimension
m x £ as follows: For each i € [m] and j € [{], if o; aligns the r-th occurrence (for some
r € [freq;]) of the symbol a; in z7,, set M]i][j] = ; else set M[i][j] = no-color. (As s; is a
permutation, at most one occurrence of a; in z7 can be aligned with the a; in s;.)
Then we use this colored matrix M as an instance of the matrix bi-coloring problem

(defined in Section 3) and find an optimum bi-coloring scheme A for M (using Theorem 6).
(For an illustration, see Figure 1 and Figure 2.) Let the scheme A be the tuple (cy,. .., ¢p).

Then, for each symbol a; € R, we keep the c;-th occurrence of it in z}, and delete all
the remaining occurrences of it. Let & denote the output string. (Note, no symbol in &
appears more than once, and therefore the length of Z might be less than n.)

2. Use a procedure INSERTMISSING (Algorithm 2) to insert all the symbols in M in Z in a
"balanced” manner. Compute an (arbitrary) optimal alignment S8; between z and s;, for
each ¢ € [m]. (Note, §;’s can easily be obtained by updating the a;’s computed before.)
Consider s; and a symbol b € M. Suppose s1[p] = b, for p € [n]. Let g € [n] be the
largest index < p such that s1[¢] = a is aligned by f;.

Then place b just after ¢ in Z, and also update 8, (by aligning the symbol b). Then
remove b from the set M. Next, consider s, and another symbol from M, and insert that
symbol in Z in a similar way. Loop through the input permutations one by one in a cyclic
manner (after s,,, again take s1) and perform the above process of inserting symbols in

M, until there is no symbol left in M. Let us denote the final transformed string z by z.

It is straightforward to see that the final output string z is a permutation in S,,. We claim
that z is a 3/2-approximate center. Recall, we only need to argue for OPT(S) > 8m?Inm
(by Assumption 3).

» Lemma 8. Assuming 3, the final string z output by the procedure STRING TOPERMUTATION

s a (% — %ﬂ)—appmxz’mate center of S.

Before commencing the proof of Lemma 8, we need a simple observation on the size of
M, the set of missing symbols. Since z} is of length n, the number of missing symbols is
equal to the number of repeated occurrences of the symbols in R. More specifically,

M| =" (freq; - 1). (4)

a; ER
Let p = Zﬁzl(l — 1/freq;). Note that
’ 1
"= z; ((freq; — 1)/freq;)) < 3 Z(freqj -1) (Since mjinfreqj > 2)
i= J
< |M|/2. (By Equation 4) (5)

> Claim 9. If g > 41lnm, then for all i € [m],

ILCS(Z, s;)| > |LCS(x), s:)| — % —V2M|Inm.

Proof. Recall, A is an optimum matrix bi-coloring scheme for M (constructed by the
procedure REMOVEDUPLICATE). Z is obtained from z by removing all repeated occurrences
of the symbols in R according to the tuple (¢, ..., ¢s), corresponding to A. Note, u > 4lnm

implies m* < e#. By Theorem 5, MRI(A(M)) < p+ 2v/uInm, where pu = Zﬁ’.:l(l —1/freq;).

12:11
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Consider any s; € S. Note, M was constructed using the alignment «; between s; and
x}. Observe, the number of symbols (initially) aligned by «; that are deleted from z}, to
obtain Z is at most RI(7) (see Section 3 for the definition of RI). Thus, we get

ILCS(Z, s;)| > |LCS(x),, i) — (1 + 24/ p1nm)
> |LCS(a), s:)| — % —V2M|Inm. (By Equation 5)

This completes the proof of Claim 9. <

Proof of Lemma 8. We will argue that for all s; € S, d(z,s;) < (3 — 5=) OPT(S). Let s*

be an optimum center of S under the Ulam metric. So, for all s; € S, d(s*,s;) < OPT(S).
Recall, by definition, d(s*,s;) = n — |LCS(s*, s;)|. Thus,

Vs; €S, |LCS(s™,s;)| > n — OPT(S). (6)
Since z} maximizes the minimum LCS between an n-length string and s; € S, by (6),

Vs; €S, |LCS(x),s;)| > n— OPT(S). (7)
Also, observe that

M < 7= i (1LCS(7,50))

< OPT(S). (mel% (ILCS(x}, s:)]) > n— OPT(S) by Equation 7) (8)

Consider an s; € S. By the procedure INSERTMISSING, among the inserted symbols at

least ||M|/m] symbols will be aligned between the final string z and s; by the alignment
function B;. In particular,

9)

Next, we proceed by considering the two cases depending on the value of p separately.
Let us first argue for 4 < 41lnm. In fact, in this case, we get a solution that is much closer
to the optimum. More specifically, we claim that d(z,s;) < (1 + 1/m?)OPT(S). As 7 is
obtained from z by deleting repeated occurrences of the symbols in R and s; € Sy,

ILCS(z,50)| = |LCS(Z, 5i)| + {MJ

ILCS(Z, s;)| > |LCS(x,, s:)| — L. (Recall, £ = |R]) (10)

Note, the above inequality holds irrespective of the value of pu.
Since freq; > 2 for all j € [¢], we have p = ijl(l — 1/freq;) > £/2. This implies that

OPT(S)

£<2u<8lnm < 5
m

(11)

where the last inequality follows from Assumption (3). Thus,

d(z,s;) =n —|LCS(z, ;)| (By definition)
<n— |LCS(Z, s;)| (By Equation 9)
<n— |LCS(a),s;)|+¢ (By Equation 10)
PT
< OPT(S OPT(S) (By Equation 7, 11)

m2

)+
i+ L) orres)
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So, for pu < 4Inm, we have d(z,s;) < (14 -1z) OPT(S), which is at most (2 — ;L) OPT(S)
for m > 2.

Now, the only remaining case is g > 4lnm. We will use an argument similar to
the previous case. The only difference is that now to lower bound |LCS(Z,s;)|, we will
apply Claim 9 (instead of Equation 10).

ILCS(z,s;)| > |LCS(z, s;)| + “%J (By Equation 9)
> |LCS(z), si)| — % —V2IM|Inm + {%J (By Claim 9)

1 1
> |LCS(x,, si)| — IM| (2_m> —/2M|lnm — 1. (12)
Hence,
d(z,s;) =n —|LCS(z, s;)| (By definition)

<n —|LCS(x}, s;)| + M| (; - ;) +v2[M|lnm+1 (By Equation 12)

1 1 2lnm
< - == 1 i
< OPT(S) + (2 —+ OPT(S)) OPT(S) + (By Equation 7, 8)
3 1 2lnm 1
<(3_ 1 .
< (2 — + SZInm + OPT(S)) OPT(S) (By Assumption (3))
3 1
<(2-— . i
< (2 3m) OPT(S) (By Assumption (3))
This completes the proof of Lemma 8. |

Running time analysis. We now analyze the running time of the overall algorithm. The
procedure BOUNDEDSEARCH takes O(mn?#*11Inn) time (to perform an exhaustive search
up to distance k from an input permutation). Next, we analyze the running time of APp-
PROXCENTER. The first step of it uses Theorem 7 taking O(2™n?™*1) time. The second
step consists of two procedures: REMOVEDUPLICATE and INSERTMISSING. Constructing the
colored matrix M in the procedure REMOVEDUPLICATE takes O(mnlnn) time. (Note, it
only involves m LCS computations. In each of them, one of the strings is a permutation and
thus takes O(nlnn) time per string by using a standard LCS algorithm.) Next, REMOVEDU-
PLICATE invokes the algorithm from Theorem 6 to find an optimal bi-coloring scheme, which
requires O(mn™*1) time (the number of missing symbols is at most n). Once we get the
bi-coloring scheme, generating & takes only O(n) time. The next procedure, INSERTMISSING,
again involves m LCS computations and then updating those alignments according to the
insertion of missing symbols. This takes O(mnlnn) time. So the overall running time is
O(mn2 1 Inn + 2mp2m+l 4 ppm+1y = pO(m*Inm) Ly replacing k = 8m? Inm).

» Remark 10. Let us now comment on how to reduce the running time by increasing the ap-
proximation factor slightly. Recall, after performing the exhaustive search BOUNDEDSEARCH

up to distance k, we remain with the case when OPT(S) > k. When we analyze the approx-

imation factor of our algorithm (in particular, Lemma 8), to attain (% — %) we need to

assume that OPT(9) is at least Q(m?Inm). That is why we set k = 8m? Inm. Our analysis

. N . 81 3_ 1 21 1 .
essentially shows that the approximation factor is max {1 +5 s =+ =+ E} with

12:13

FSTTCS 2021



12:14

Approximating the Center Ranking Under Ulam

the running time O(mn?+!Inn + 2mn?m+1). So we get a trade-off between the approxima-
tion factor and the running time. For instance, if we set kK = 8m, we get an approximation

factor <3 + 4/ 1272’ - 8;) and running time n®), In fact, for any 0 < € < 1, by setting

2
In

k=288m we get a (2 4+ € — L)-approximate center in O(2mn?m+1) 4 nC(28) time.

» Theorem 11. There is a deterministic algorithm that, given an 0 < ¢ < 1 and a set
of m permutations S C S,, computes a (% +€— i)-approm’mate center of S in time

m
ndm 4 p0(28)

4.3 An exact algorithm for three permutations

When the number of input permutations is only three (i.e., m = 3), we can get an exact
polynomial-time algorithm for the Ulam center problem.

» Theorem 12. There is a deterministic polynomial-time algorithm that takes 8 permutations
as input, and outputs their Ulam center.

We will show that given three permutations si, s2, s3 from S,,, it is possible to remove
duplicate symbols and insert missing symbols in a simple and efficient way that converts an
n-length center string for s, sq, s3 to an optimal center permutation for them.

If the 27 computed by our dynamic program is already a permutation, then we are
done. Otherwise, first fix some optimal alignment between z and s; for all i € [3]. We
incrementally update the sting z} by processing the repeated symbols one by one. Take an
arbitrary repeated symbol a in 2}, and a missing symbol b. Note, a appears more than once.
Consider the first occurrence of a in 2}, and do the following:

If (that particular occurrence of) a does not align with any of sy, so, s3, then we delete it
from z}, and insert b at an arbitrary location in z},. Remove b from M. Clearly, this
does not decrease LCS(x}, s;) for any of the three s;’s.

If (that particular occurrence of) a aligns with the symbol a of only one input permutation
(say s1), then delete it from z¥, and insert b in x so that it aligns with the b in s3.

Remove b from M. The length of LCS(z7, s1) is decreased by one for by the deletion of a,

but it is then increased by one by the insertion of b. So |[LCS(z}, s1)| remains the same.

If (that particular occurrence of) a aligns with the symbol a in two of the permutations

(say s1,82), we do nothing.

Only except the last case, each time we process a repeated symbol a, we remove an occurrence
of it from z}. (Note that the number of times we need to process a symbol a is equal to its
number of occurrences in ), minus one.) Since the number of input permutations is exactly
three, at most one occurrence of a can be aligned with that of two input permutations. So
for any repeated symbol in z;, at most once we will be in the last case.

Once we are left with no repeated symbols, we stop. (Since z is always of length n,
there will not be any missing symbols left after we are done with processing all the repeated
symbols.) So, z¥ will eventually become a permutation, and [LCS(x}, s;)| for none of the
three s;’s will decrease. Let us denote the final string by z. By Equation 7, for each i € [3],

n — OPT(S) < |LCS(z},, s;)| = |LCS(z, s4)].

Thus, d(z,s;) < OPT(S). Hence, we conclude that z is an (exact) Ulam center for s, s2, s3.
The running time of the algorithm is clearly polynomial in n, concluding Theorem 12.
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5 Closest String with Wildcards

The matrix bi-coloring problem defined in Section 3 is a generalization of the well-known
closest string with wildcards problem. In this problem, any given string may include wildcard
characters which can be matched with any character of the other strings. Consider any
alphabet X. For any two strings s, s’ € (X U {*})", the Hamming distance between them is
defined as

du(s,s’) = |{i € [n] | s[i] # s'[i] and s[i] # * and s'[i] # }|.

In the closest string with wildcards problem, given a set of m strings si,82...,8m, €

(XU {*})™, the objective is to find a string s € ¥ such that max;e[,,) dg (s, s;) is minimized.

The above problem is a special case of the matrix bi-coloring problem, where the strings
are the rows of the matrix and the wildcards (x) are the no-colot entries in the matrix. If we
restrict f; = |3| (for all j € [n]) in the matrix bi-coloring problem, we get the closest string
with wildcards problem.

So far we do not know of any polynomial-time algorithm for the closest string with
wildcards problem that achieves a (2 — ¢)-factor approximation (for some 0 < € < 1). In this
section, we refute the possibility of getting such an algorithm unless P = NP, even when the
alphabet ¥ is binary. In particular, we prove Theorem 2.

To show the inapproximability result, we start with defining a variant of the satisfiability
(SAT) problem, namely (1, k,2k + 1)-SAT introduced by Austrin, Guruswami & Héstad [5].

» Definition 13 ((1, %k, 2k + 1)-SAT). Let k > 1 be a fized integer constant. Given a (2k+1)-
CNF formula F (i.e., each clause of F' has exactly 2k+1 literals), decide between the following
two cases:

YES: There is an assignment for the variables in F that satisfies at least k literals in

each clause of F'.

NO: F is unsatisfiable.

» Theorem 14 ([5]). For every fized integer k > 1, (1, k, 2k + 1)-SAT is NP-hard.

For k =1, (1, k,2k+1)-SAT is simply 3-SAT. We now provide a polynomial-time reduction
from (1, k,2k + 1)-SAT to (a gap version of) the closest string with wildcards problem.

» Definition 15 (Approximate closest string with wildcards). Consider any alphabet X and an
e > 0. Given a set of m strings si1,82,...,8m € (XU {x}" (where x is a wildcard) and a
positive integer r, decide between the following two cases.

YES: There is a string s € 5™ such that for all i € [m], di(s,s;) <.
NO: For all strings s € ", there exists an i € [m] such that dg(s,s;) > (2 — e)r.

Proof of Theorem 2. Let k = [1/€]. Consider an instance ((2k + 1)-CNF formula) F of
the (1,k,2k + 1)-SAT problem with n variables 1,2, ..., 2z, and m clauses. We create m
strings each of length n over the alphabet {0,1} U {x}. For each clause C;, we create a string
s; as follows: If the literal x; appears in Cj, set s;[j] = 1; else if the literal z; (negation of
x;) appears in C, set s;[j] = 0; else set s;[j] = *. Set r =k + 1.

Suppose F' is a YES instance of (1, k, 2k + 1)-SAT. Take the corresponding satisfying
assignment o (that satisfies at least k literals per clause). Create a string s € {0,1}" by
setting s[j] = 1 if z; is set to TRUE by o, and s[j] = 0 if z; is set to FALSE by o, for all
j € [n]. Note that dg(s,s;) < (2k+1)—k=k+1forall i € [m].
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Now, suppose F' is a NO instance of (1, k, 2k + 1)-SAT. Assume to contrary that there
exists a string s € {0,1}" such that for all i € [m], du(s,s;) < (2—€)(k+1) < 2k + 1 (since
k > 1/e€). Then create an assignment ¢’ by setting x; to TRUE if s[j] = 1, and FALSE if
s[j] =0, for all j € [n]. Note that ¢’ satisfies F, contradicting the fact that F' is unsatisfiable.

The proof follows from Theorem 14. |

6 Conclusion

In this paper, we study the problem of computing a center rank/permutation under the Ulam
metric, which is known to be NP-complete. There is a folklore 2-approximation algorithm
that works for every metric space. No better (polynomial-time) algorithm is known for the
Ulam metric, even when the number of input permutations is constant. Our main result
breaks below the 3/2-approximation for constantly many inputs. An exciting open direction
is to beat the 2-approximation for arbitrarily many inputs (i.e., an algorithm whose running
time is polynomial in both n and m).

In proving our result, we establish a connection between the Ulam center problem and
the closest string with wildcards problem (the center problem under the Hamming metric in
the presence of wildcards). We further show that the latter problem is (2 — ¢)-inapproximable
unless P = NP. This result is in sharp contrast with the PTAS known for the closest string
problem without wildcards.
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Ulam Median reduces to Ulam Center

Here we discuss the idea for

four permutations, which can be generalised to m permutations easily. Given a set P =

{s1, 82, 83, 84} of 4 permutations on [n], we construct a new set Q =

(Zla 22, 23, Z4) of 4

permutations on [4n] by applying s1, sa, 3, sS4 to four partitions of [4n] as follows, such that
the Ulam median for P can be obtained from the Ulam center for Q.

z1 = (s1([1,...,n]),s2([n+ 1,...,2n]), s3([2n + 1, 3n]), s4([3n + 1,4n]))
2o = (s2([1,...,n]), s ([n—l—l,. 2n]), s4([2n + 1,3n]), s1([3n + 1,4n]))
zg = (s3([1,...,n]),sa([n+1,.. ,2n]),51([2n+1,3n]),52([3n+1,4n]))
24 = (84([1,...,n]),s1([n+1,...,2n]),s2([2n + 1,3n]), s3([3n + 1,4n]))

Let cg € 84 be an Ulam center of Q. The following are easy to see.

cgl[l,...,n] does not contain any symbols from [n+1,...,4n];

oln+1,...,2n] does not contain any symbols from [1,...,n]U[2n+1,...,4n];
cg[2n+1,...,3n] does not contain any symbols from [1,...,2n]U[3n+1,...,4n];
cg[3n+1,...,4n] does not contain any symbols from [1,...,3n].
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It is also easy to see that the four permutations are equidistant from cg. That is,
d(cq,z1) = d(cg, z2) = d(cg, z3) = d(cq, 24).

Finally, these facts are sufficient to claim that cg[1,...,n] (or rather any one of the four
partitions of [4n]) is an Ulam median for P. See [8, Theorem 6] for a comprehensive proof.
(Although [8, Theorem 6] talks about the Kendall’s tau distance, the argument could easily
be extended for the Ulam metric.)

B Computing the Bi-coloring Number of a Colored Matrix

Here, we provide a dynamic programming algorithm that given any colored matrix M of
dimension m x ¢, computes BCN(M) in O(mf™*+1) time. More specifically, we prove Theo-
rem 6.

For a clean description, we provide the dynamic program for m = 4, although it works
for every positive integer m. We use C' to denote our dynamic programming table. The cells
of C' store a Boolean value if the value is 1. C has 5 dimensions.

1. Subproblem: Let C[iy,i2, 13,94, k] denotes whether it is possible to leave at most 41,2, i3
and i4 unpicked in rows 1 to 4 respectively by picking colors till column k. If it’s not
possible, the cell will contain a 0(False value). Otherwise it’ll contain a 1(True value)
along with the picked color. We denote the number of colors we can leave unpicked per
row as the picking requirements for the cell in the dynamic program.

2. Computing C: Consider any column k& > 2 and values i1 > 1,i2 > 1,43 > 1 and i4 > 1.
Picking any color in a row indicates, that the number of unpicked colors in all other rows
increase by 1. Thus, (without loss of generality) M7, could only be a feasibly choice if
Cliy — 1,i9,143,14, k — 1] is true. If no choice of color in column k satisfies this property,
then clearly we can’t satisfy the picking requirements of the cell.

3. Recurrence:

Cliy,ia, 13,14, k] = Cliy — 1,49,43,44,k — 1] V Dl[iy, i3 — 1,43, 44,k — 1]
V Cliv,i2,i3 — 1,ig, k — 1]V Cli1, i2,13,14 — 1,k — 1]
C[1,0,0,0,1) =1
C[0,1,0,0,1] =1
C0,0,1,0,1) =
C10,0,0,1,1] =1

4. Order of evaluation: We iterate over k one by one, and then evaluate over the first 4
indices lexicographically. Each cell queries lexicographically smaller cells.

5. Final Answer: Look at all the cells Cliy,ia, 43,14, for all 0 < i3 < £,0 < iy < £,0 <
i3 < £,0 < iy < ¢ for which the cell contains a 1(True value). For each of these cells,
let’s denote the maximum of the quantity i1, 2,73 and i4 as the i,,,, value for this cell.
Output the cell with the minimum 4,,,, value.

There are (£ + 1)* x £ sub-problems and for each cell, we look at 4 different sub-problems.
Generalising to m strings: our dynamic program table has (¢ 4 1)™ x £ cells, and we look at
m different cells to compute the answer for each cell. Thus our dynamic program runs in
m x ({4 1)™ x £ time.
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C

Computing a Length-restricted Center String

For simplicity of exposition, we describe the dynamic programming algorithm FINDSTRING-
CENTER only for three strings s1, s2, s3. However, it can easily be extended to any number
of strings in a natural way. We use D to denote our dynamic programming table. D stores a
string and has 7 dimensions.

1.

Subproblem: Dliy, 2,13, k1, ke, k3, €] = x4, where x4 is an {-length string with the following
properties.

a. LCS(Sl[l, 2, . ,il], SC@) > kl

b. LCS(SQ[I, 2, e ,ig], .CC[) Z kg

C. LCS(Sg[l, 2, v ,ig], JL‘[) > kg

If such a string does not exist, then Dl[iy, s, 13, k1, ka, k3, €] = 0.

. Computing D: Counsider the substrings s1[1,2,...,41],2[1,2,...,42],s3[1,2,...,i3]. The

cases when there exists a string of length at most ¢ satisfying the above three conditions
are listed below.
a. At least one of the following is true.
(l) D[il, iz,’ig, kh kg, kg,g — 1] 7& @
(ii) Dliy — 1,149,143, k1 — 1, ko, k3, €] # 0.
(iii) Dliy, i — 1,43, k1, ko — 1, k3, €] # 0.
(iV) D[il,ig,ig - l,k‘l, kz,kg - 1,5] 7é @
If the first of these four cases is true, then we can extend x,_1 by putting an arbitrary
symbol at the ¢-th position in x,. In the other three cases, x;y remains the same.
b. At least one of the following is true.
(V) If D[il — 1,i2,i3,k‘1 — 1, k27k3,€ — 1] 7é @, then Ty < Ty—1 0 81[7;1].
(Vi) If D[il,ig — 1,i3,k‘1,k‘2 — 1,k3,€ — 1] 7é @, then Ty < Ty—1 0 82[7;2].
(Vii) If D[il,ig,izg — l,kl,k‘g, kg — l,g — 1] 7é @, then Ty < Ty_1 0 83[7;3].
) If D[il — l,ig — 1,i3,k1 — 1,k2 — 1,k3,£ — 1] 75 @ and Sl[il] = 82[7;2], then Ty <
xp—1 0 81[i).
(iX) If D[il,ig — 1,43 — 1, k1, ko — 1, ks — 1,0 — 1] 75 ¢ and Sz[iz] = Sg[ig], then x, +
Tg_1 0 Sais].
(X) If D[Zl — 1,7:271'3 — 1,]'{11 — 1,k2,]€3 — 1,6 — 1] 7é @ and Sl[il] = 53[i3], then Ty <
Tg_1 0 81[i1]-
(Xl) If D[Zl — l,ig — 1,7:3 — 1,]431 — 1,k2 — 1,]433 — 1,67 1] 7& @ and Sl[il] = Sz[ig] = Sg[ig],
then xy < xp_1 0 s1[i1].

(viii

c. None of the above are true.
(Xii) D[il, iz, ’ig, kh kz, k3, E] == (Z)

. Recurrence: The cell Dliy,ia, i3, k1, k2, £] looks at all the possible 12 cases described above

and does as mentioned in the points. The base case is D[0,0,0,0,0,0,0] = ¢ where ¢
denotes the empty string.

. Order of evaluation: We initialize by setting the cell D[0,0,0,0,0,0,0] =} and proceed

in lexicographic order. Note that each cell only queries lexicographically smaller cells.

. Final Answer: Consider only those cells for which D # @. Let the string stored in

each such cell o be denoted by x%. Let LCS™™ be one of the three strings {LCS(z%, s1),
LCS(z%, s2), LCS(z%, s3)}, whichever has the minimum length. Compute LCS™™" for
the cell D[n,n,n, k1, ks, ks,n] for all 0 < k; < n,0 < ko < n,0 < k3 < n (whenever
Din,n,n, ki, ko, k3,n] # 0). Among all these LCSglin strings, output the longest string as
the final answer, denoted by z*. (Note that z* might not be of length n.)

If the final string z* is of length less than n, then we fill in missing symbols from [n]

arbitrarily and make z* an n-length string (denoted by z). Clearly adding more symbols to

1:*

cannot decrease LCS(s;, z*) for any of the s;’s.
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D Pseudocodes from Section 4.2

Algorithm 1 REMOVEDUPLICATE.

Result: Removes duplicate characters from z,
Initialise a; as an arbitrary occurrence of LCS(z%, s;) in s; Vi € [m];
Initialise M as an empty m X ¢ matrix;
For j € [€], a¥ denotes the k*" occurrence of a; in x, Vk € {1,2,.. ., freq;};
for (i,7) € [m] x [¢] do
if aj € 8; then

‘ M]i][j] + k, where k is the unique index such that a} € o
end
else

‘ MTi][j] + no-colotr
end

© ® N o oA W N e

fu
o

11 end

12 A < FINDBICOLORING(M)
13 T4 ¢

14 for i € [n] do

15 if 3j € [(], k € [freq;] such that z};[i] = o} then
16 if k = A[j] then

17 | T zowyi]

18 end

19 end

20 else

21 T+ Touxlli]

22 end

23 end

Algorithm 2 INSERTMISSING.

Result: Inserts missing characters into  so that z € S,

1 Initialise 3; as an arbitrary occurrence of LCS(Z, s;) in s; Vi € [m];
2141
3 while M # () do
4 Pick any b € M
5 | pes;t(b)
6 if Ir € [n] such that r < p, si[r] € 8; then
7 q < max{r € [n] | r <p, si[r] € 8;}
8 j <« 77 a)
0 Z« Z[l..jlopoz[j + 1..len(Z)]
10 end
11 else
12 ‘ T+ box
13 end
14 | M+ M\ {b}
15 i< 14 mod m-+1
16 end
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