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Abstract
In this work we revisit the Boolean Hidden Matching communication problem, which was the first
communication problem in the one-way model to demonstrate an exponential classical-quantum
communication separation. In this problem, Alice’s bits are matched into pairs according to a
partition that Bob holds. These pairs are compressed using a Parity function and it is promised that
the final bit-string is equal either to another bit-string Bob holds, or its complement. The problem
is to decide which case is the correct one. Here we generalize the Boolean Hidden Matching problem
by replacing the parity function with an arbitrary function f . Efficient communication protocols are
presented depending on the sign-degree of f . If its sign-degree is less than or equal to 1, we show an
efficient classical protocol. If its sign-degree is less than or equal to 2, we show an efficient quantum
protocol. We then completely characterize the classical hardness of all symmetric functions f of
sign-degree greater than or equal to 2, except for one family of specific cases. We also prove, via
Fourier analysis, a classical lower bound for any function f whose pure high degree is greater than
or equal to 2. Similarly, we prove, also via Fourier analysis, a quantum lower bound for any function
f whose pure high degree is greater than or equal to 3. These results give a large family of new
exponential classical-quantum communication separations.
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1:2 Generalized Boolean Hidden Matching Problem

1 Introduction

One of the main aims of the field of quantum information and quantum computation is to
establish the superiority of quantum computers and quantum resources over their classical
counterparts. While in some areas this superiority is based on a belief in the impossibility of
classical computers or classical resources solving particular tasks, e.g. the efficiency of Shor’s
algorithm [25] coming from the belief that there is no efficient classical factoring algorithm,
in other areas like communication complexity one can establish unconditional exponential
separations between classical and quantum performances.

Communication complexity is a model of computation first introduced by Yao [28]. In
this model, two parties (normally called Alice and Bob) hold each a piece of data and want
to solve some computational task that jointly depends on their data. More specifically,
if Alice holds some information x and Bob holds some information y, they want to solve
some function f(x, y) or relational problem with several valid outputs for each x and y. In
order to do so, they will need to communicate between themselves, and their goal is to
solve the problem with minimal communication. The protocol that Alice and Bob employ
could be two-way, where they take turns sending messages to each other; one-way, where
Alice sends a single message to Bob who then outputs the answer; or simultaneous, where
Alice and Bob each pass one message to a third party (the referee) who outputs the answer.
Apart from these different types of communication settings, one is also interested in the
error of a protocol when solving a communication problem: the zero-error communication
complexity is the worst-case communication of the best protocol that gives a correct output
with probability 1 for every input (x, y); the bounded-error communication complexity is
the worst-case communication cost of the best protocol that gives a correct output with
probability 1− ε for every input (x, y), with ε ∈ [0, 1/2).

An interesting extension of the original communication model is the model of quantum
communication complexity [8], also introduced by Yao [29]. In this model, Alice and Bob
each has a quantum computer and they exchange qubits instead of bits and/or make use
of shared entanglement. The use of quantum resources can drastically reduce the amount
of communication in solving some problems in comparison to the classical communication
model.

Exponential quantum-classical separations are known in the two-way (e.g. [22]), one-
way (e.g. [4, 15]) and simultaneous (e.g. [9, 12]) models. Indeed, it is even known that
one-way quantum communication can be exponentially more efficient than two-way classical
communication [14, 23]. However, surprisingly few examples of such exponential separations
are known, compared (for example) with the model of query complexity in which Shor’s
algorithm operates.

The Hidden Matching problem [4] was the first problem to exhibit an exponential
separation between the bounded-error classical communication complexity and the bounded-
error quantum communication complexity in the one-way model. The problem can be
efficiently solved by one quantum message of logn qubits, while any classical one-way
protocol needs to send O(

√
n) bits to solve it. The hardness of the problem is essentially

one-way: it could be efficiently solved by having Bob sent a classical message of logn bits
to Alice. The Hidden Matching problem is a relational problem. In the same paper [4] the
authors proposed a Boolean version of the problem, the Boolean Hidden Matching problem
(which is a partial Boolean function), and conjectured that the same quantum-classical gap
holds for it as well, which was later proven to be true by Gavinsky et al. [15]. Generalizing
this separation is the focus of this work.
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1.1 Hidden matching problems
Throughout the paper, [n] = {1, 2, . . . , n} and given x, y ∈ {−1, 1}n, we denote by x ◦ y
the Hadamard (elementwise) product of x and y, and by x the complement of x, such that
x ◦ x = 1n.

The Hidden Matching (HMα
n) and Boolean Hidden Matching (BHMα

n) problems are
defined with respect to some α ∈ (0, 1]. Alice is given a string x ∈ {−1, 1}n4 and Bob is
given a sequence M ∈Mαn/2 of αn/2 disjoint pairs (i1, j1), (i2, j2), . . . , (iαn/2, jαn/2) ∈ [n]2.
Such a sequence is called an α-matching, andMαn/2 denotes the family of all α-matchings –
i.e. partial matchings of a fixed size in the complete graph on n vertices. Together x and M
induce a string z ∈ {−1, 1}αn/2 defined by the parities of the αn/2 edges, i.e., z` = xi`xj`

for ` = 1, . . . , αn/2. Then the HMα
n and BHMα

n problems are defined as follows.

I Definition 1 (The Hidden Matching problem (HMα
n)). Let n ∈ N be even and α ∈ (0, 1].

Alice receives x ∈ {−1, 1}n and Bob receives M ∈ Mαn/2. Their goal is to output a tuple
〈i, j, b〉 such that (i, j) ∈M and b = xixj.

I Definition 2 (The Boolean Hidden Matching problem (BHMα
n)). Let n ∈ N be even and

α ∈ (0, 1]. Alice receives x ∈ {−1, 1}n and Bob receives M ∈ Mαn/2 and w ∈ {−1, 1}αn/2.
It is promised that z ◦ w = bαn/2 for some b ∈ {−1, 1}. Their goal is to output b.

Given inputs x and M , it is clear that there are many possible correct outputs for the HMα
n

problem (αn/2 correct outputs, actually), making it a relational problem. On the other
hand, the BHMα

n is a partial Boolean function due to the promise statement.
Bar-Yossef et al. [4] gave a simple quantum protocol to solve the HM1

n problem with
just O(logn) qubits of communication5, while proving that any classical protocol needs to
communicate at least Ω(

√
n) bits in order to solve it. Similarly with the BHMα

n problem,
Gavinsky et al. [15] demonstrated the same exponential classical-quantum communication
gap for any α ≤ 1/2 (note that the definition of α they use differs from ours by a factor of 2).
As HMα

n is at least as difficult as BHMα
n, their result implies the same lower bound for HMα

n.
The approach taken by Gavinsky et al. in proving the classical lower bound is particularly
interesting in that it uses the Fourier coefficients inequality of Kahn, Kalai, and Linial [17],
which is proven via the Bonami-Beckner inequality [7, 5]. We also mention that Fourier
analysis had been previously used in communication complexity by Raz [21] and Klauck [18].

A slightly weaker separation (O(logn) vs. Ω(n7/16)) for a closely related problem was
shown in [19] using similar techniques. The BHMα

n problem was generalized by Verbin and
Yu [26] to a problem that they named Boolean Hidden Hypermatching (BHHt

n). In this
problem, instead of having the bits from Alice matched in pairs, they are now matched in
tuples of t elements. In other words, a bit from the final string z is obtained by XORing t
bits from Alice’s string. More precisely, Alice is given a string x ∈ {−1, 1}n and Bob is given
a sequence M ∈Mn/t of n/t disjoint tuples (M1,1, . . . ,M1,t), . . . , (Mn/t,1, . . . ,Mn/t,t) ∈ [n]t
called a hypermatching, whereMn/t denotes the family of all hypermatchings. Both x andM
induce a string z ∈ {−1, 1}n/t defined by the parities of the n/t edges, i.e., z` =

∏t
j=1 xM`,j

for ` = 1, . . . , n/t. The BHHt
n problem is defined as follows.

I Definition 3 (The Boolean Hidden Hypermatching problem (BHHt
n)). Let n, t ∈ N be

such that 2t|n. Alice receives x ∈ {−1, 1}n and Bob receives M ∈Mn/t and w ∈ {−1, 1}n/t.
It is promised that z ◦ w = bn/t for some b ∈ {−1, 1}. Their goal is to output b.

4 Throughout this paper we shall use {−1, 1} instead of {0, 1} for convenience.
5 Their protocol extends easily to the more general HMα

n problem.
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Verbin and Yu proved a classical lower bound of Ω(n1−1/t) communication for every bounded-
error one-way protocol, showing the increasing hardness of the problem with t, as one
should expect since the BHHt

n problem can be reduced from the BHMn problem (we will
show how this is done in detail later). The authors subsequently used this problem to
prove various streaming lower bounds, i.e., lower bounds on the space required of streaming
algorithms (algorithms that read the input from left to right, use a small amount of space,
and approximate some function of the input). However, no efficient quantum protocol was
proposed for solving the BHHt

n problem for t > 2. It was only later that Shi, Wu and
Yu [24] showed that such efficient quantum protocols do not exist. More specifically, they
proved a quantum lower bound of Ω(n1−2/t) communication for every bounded-error one-way
protocol for the BHHt

n problem. Their proof is similar to the ones used in the classical lower
bound, the difference lying in the use of Fourier analysis of matrix-valued functions and the
matrix-valued Hypercontractive Inequality of Ben-Aroya, Regev, and de Wolf [6].

Note that the lower bound of Verbin and Yu does not use an α parameter, unlike the
lower bound of [15]. However, their lower bound requires n/t to be even, otherwise Alice can
just send the parity of her bit-string. (The result of [15] can be extended to hold for any
α < 1 fairly straightforwardly, but achieving a strong lower bound for α = 1 requires some
more work.)

1.2 Our Results
This paper focuses on the study of a broad generalization of the BHHt

n problem. In the
(Boolean) Hidden Matching and Boolean Hidden Hypermatching problems, the task Alice and
Bob want to solve can be viewed as rearranging Alice’s data according to some permutation
that Bob holds, and “compressing” the data to a final bit-string by applying some Boolean
function to the bits. Then Alice and Bob’s goal is to determine some information about this
final bit-string. The way this compression was originally done was via the Parity function, but,
apart from the obvious reason that Parity gives the desired classical-quantum communication
gap and, less obviously, leads to a clear proof, there is no particular need to restrict to this
function in order to arrive at the final bit-string. This observation leads to a generalization
of the Boolean Hidden Hypermatching problem, which we named the f -Boolean Hidden
Partition (f -BHPα,tn ) problem, where f : {−1, 1}t → {−1, 1} is the Boolean function used
to compress Alice’s bits.

Given y ∈ {−1, 1}n, we define by y(j;t) = (y(j−1)t+1, y(j−1)t+2, . . . , yjt) ∈ {−1, 1}t the
j-th block of size t from y, with t|n and j = 1, . . . , n/t. When the size of the block is clear
from the context, we shall simply write y(j).

The f -Boolean Hidden Partition problem is defined as follows. Alice is given a bit-string
x ∈ {−1, 1}n, and Bob is given a permutation σ ∈ Sn and a bit-string w ∈ {−1, 1}αn/t,
where α ∈ (0, 1] is fixed. Given a Boolean function f : {−1, 1}t → {−1, 1}, we can define
the map Bf : {−1, 1}n → {−1, 1}αn/t by Bf (x) =

(
f(σ(x)(1)), . . . , f(σ(x)(αn/t))

)
, where

σ(x)i = xσ−1(i). Hence x and σ induce a bit-string given by Bf (x), each of whose bits is
obtained by applying f to a block of the permuted bit-string σ(x). The f -BHPα,tn problem
can be defined as follows.

I Definition 4 (The f -Boolean Hidden Partition problem (f -HMα,t
n )). Let n, t ∈ N be

such that t|n and α ∈ (0, 1]. Alice receives x ∈ {−1, 1}n and Bob receives σ ∈ Sn and
w ∈ {−1, 1}αn/t. It is promised that there exists b ∈ {−1, 1} such that Bf (x) ◦ w = bαn/t.
The problem is to output b.
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The adoption of the word “Partition” instead of “(Hyper)Matching” from previous works
comes from our decision to view the problem in terms of a hidden partition that Bob holds,
instead of an α-(Hyper)Matching. Bob shuffles Alice’s data according to some permutation,
and then just partitions the resulting data in adjacent blocks of size t and uses f to get the
final bit-string. Obviously both views are equivalent, but we think that the permutation
approach eases the analysis of the problem.

Our aim is to study the f -Boolean Hidden Partition problem in terms of the function f .
It should be clear that for some functions the problem is hard to solve classically, e.g. when f
is the Parity function and we recover the usual Boolean Hidden Hypermatching problem. On
the other hand, for some functions it becomes easily solvable, e.g. when f is the AND function
(Alice needs only to send the position of any 0 in her string). We would like to characterize
for which functions the problem can be efficiently solved classically, i.e., with O(logn) bits of
communication, and for which functions it is hard to solve classically, i.e., requires Ω(na)
bits of communication for some a ∈ (0, 1]. And the same question applies to quantum
communication complexity: we would like to determine for which functions the problem
admits or not an efficient quantum communication protocol. Given this characterization, we
can check for which functions there is an exponential classical-quantum communication gap.

We partially prove that the whole f -BHPα,tn problem can be fully characterized by just
one quantity: the sign-degree of the function f . A polynomial p : {−1, 1}t → R is said to
sign-represent f if f(x) = sgn(p(x)). If |p(x)| ≤ 1 for all x, we say that p is normalized. The
bias of a normalized polynomial p is defined as β = minx |p(x)|. The sign-degree (sdeg(f))
of f is the minimum degree of polynomials that sign-represent it. In Appendix A we prove
the following upper bounds on the classical and quantum communication complexity of the
f -Boolean Hidden Partition problem based on the sign-degree:

I Theorem 5. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If sdeg(f) ≤ 1, then
there exists a bounded-error classical protocol that solves the f -BHPα,tn problem with error
probability ε and O

(
( t
αβ )2 log 1

ε logn
)
bits of communication, where β is the maximal bias

of a polynomial of degree sdeg(f) that sign-represents f .

I Theorem 6. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If sdeg(f) ≤ 2, then
there exists a bounded-error quantum protocol that solves the f -BHPα,tn problem with error
probability ε and O

(
( t
αβ )2 log 1

ε logn
)
qubits of communication, where β is the maximal bias

of a polynomial of degree sdeg(f) that sign-represents f .

Note that the bias β can be very small, but can also be lower-bounded in terms only of
t: indeed, it is shown in [10] that β is lower-bounded by t−O(tsdeg(f)). In this work we will
usually assume that t = O(1), so β = Ω(1). We assume throughout that Alice and Bob
do not have access to shared randomness or entanglement. The classical complexity in the
above theorem can actually be improved to an additive dependence on logn via applying
Newman’s Theorem [20] to a protocol with shared randomness, but at the expense of making
the protocol less intuitive.

The classical upper bound stated above comes from the observation that, if f has a
sign-representing polynomial p of degree 1, it is possible to determine whether f(z) = 1 with
probability > 1/2 by only evaluating f on one uniformly random bit of z, by writing down a
probabilistic procedure whose expectation on z mimics p(z). So Alice sends a few uniformly
random bits to Bob, who matches them to blocks in his partition, and evaluates f on the
corresponding blocks with success probability > 1/2 for each block. Only a few repetitions
are required to determine whether f(x) = w or f(x) = w with high probability.

TQC 2020



1:6 Generalized Boolean Hidden Matching Problem

On the other hand, to obtain the quantum upper bound we use the idea of block-multilinear
polynomials from [1, 2], and some auxiliary results also from [2]. The idea is that Alice sends
a superposition of her bits, and Bob, after collapsing the state onto one of the blocks from his
partition (say block j), applies a controlled unitary operator that describes a block-multilinear
polynomial p̃ of degree 2, which is produced from a sign-representing polynomial p for f of
degree 2. A Hadamard test is used to return an output with probability depending (roughly
speaking) on p̃(σ(x)(j), σ(x)(j)), which in turn is equal to p(σ(x)(j)) according to a theorem
from [2]. The Hadamard test then outputs 1 with probability greater than 1/2 if f(x(j)) = 1
and 0 with probability greater than 1/2 if f(x(j)) = −1.

We remark that both of these protocols actually solve a natural generalization of the
Hidden Matching problem [4] (i.e. they output the result of evaluating f(x(j)) for Bob’s block
j, where j is arbitrary), which is at least as hard as the f -Boolean Hidden Partition problem.
However, unlike the Hidden Matching problem, the output is not correct with certainty, but
only with probability strictly greater than 1/2.

In Section 2 we reduce the f -Boolean Hidden Partition problem from the Boolean
Hidden Matching problem and prove that for almost all symmetric Boolean function f with
sdeg(f) ≥ 2 the f -BHPα,tn problem require at least Ω(

√
n) bits of communication. The only

functions for which the reduction does not work are the Not All Equal functions on an odd
number of bits, i.e., NAE : {−1, 1}t → {−1, 1}, defined by NAE(x) = −1 if |x| ∈ {0, t} and
NAE(x) = 1 otherwise, with t odd.

I Theorem 7. Let f : {−1, 1}t → {−1, 1} be a symmetric Boolean function with sdeg(f) ≥ 2.
If f is not the NAE function on an odd number of bits, then any bounded-error classical
communication protocol for solving the f -BHPα,tn problem needs to communicate at least
Ω(
√
n/(αt)) bits.

Finally, we generalize the Fourier analysis methods from [15, 26, 24] to prove a partial
result on the hardness of the f -BHPα,tn problem, both classically and quantumly. Ideally we
would like to prove that any bounded-error classical and quantum protocols would need to
communicate Ω(n1−1/d) bits and Ω(n1−2/d) qubits, respectively, where sdeg(f) = d. What
we obtained is this result but with d being the pure high degree of f . A Boolean function
f is said to have pure high degree (phdeg(f)) d if f̂(S) = 0 for all |S| = 0, 1, . . . , d − 1,
where f̂(S) = 〈f, χS〉 = 1

2n

∑
x∈{−1,1}n f(x)χS(x) is the Fourier transform of f and χS(x) =∏

i∈S xi, with S ⊆ [n], is a character function. It is possible to prove that phdeg(f) ≤ sdeg(f),
so our result is a step towards proving a lower bound for all functions with sign degree ≥ 2.

I Theorem 8. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If phdeg(f) = d ≥ 2,
then, for sufficiently small α > 0 that does not depend on n, any bounded-error classical
communication protocol for solving the f -BHPα,tn problem needs to communicate at least
Ω(n1−1/d) bits.

I Theorem 9. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If phdeg(f) = d ≥ 3,
then, for sufficiently small α > 0 that does not depend on n, any bounded-error quantum
communication protocol for solving the f -BHPα,tn problem needs to communicate at least
Ω(n1−2/d) qubits.

The above lower bounds are proved in [11]. The classical proof follows the general idea
from [15, 26], but the technical execution was substantially changed by borrowing ideas
from [24]. First, we apply Yao’s minimax principle [27], which says that it suffices to prove a
lower bound for a deterministic protocol under a hard probability distribution on Alice and
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Bob’s inputs. We choose Alice’s input x and Bob’s input σ independently and uniformly over
{−1, 1}n and Sn (the set of all permutations on [n]), respectively. The input distribution is
completed by choosing w = Bf (x) with probability 1/2 and w = Bf (x) with probability 1/2.

Alice sends a message to Bob. If the length of the message sent is c, then the inputs for
which Alice could have sent that specific message define a set A of about 2n−c x’s. From
Bob’s perspective, he knows that the random variable X corresponding to Alice’s bit-string
is uniformly distributed in a set A and he knows his permutation σ, hence his knowledge of
the random variable Bf (X) is described by the distributions

pσ(z) = |{x ∈ A|Bf (x) = z}|
|A|

and qσ(z) = |{x ∈ A|Bf (x) = z}|
|A|

.

It is well known that the best success probability for distinguishing two distributions q1
and q2 with one sample is 1/2 + ‖q1 − q2‖tvd/4. Therefore the bias of the protocol, i.e.,
the protocol’s successful probability minus a half, is equal to the total variation distance
between pσ and qσ. Differently from the approach of [15, 26], and following [24], we directly
upper bound the expectation of the bias over Bob’s permutation. By demanding a small
distributional error, we arrive at the desired communication lower bound. Upper bounding
the bias is done via Fourier analysis, using the inequality of Kahn, Kalai, and Linial [17].

The quantum proof follows the same idea from [24]. Yao’s minimax principle is still
applied and the “hard” input distribution is still uniform on Alice’s input x ∈ {−1, 1}n,
Bob’s input σ ∈ Sn and the function value b ∈ {−1, 1}, which fixes Bob’s second input
w = Bf (x) ◦ bαn/t. The best strategy for Bob in determining b conditioned on his input
(σ,w) is no more than the chance to distinguish between two subsets of Alice’s messages,
where a message corresponds to a quantum state ρx, selected according to b. In other words,
no more than the chance to distinguish between the following ρσ,w0 and ρσ,w1 , each appearing
with probability Pr[b = 0|σ,w] and Pr[b = 1|σ,w], respectively,

ρσ,w0 =
∑
x∈{−1,1}n Pr[x, 0, σ, w]ρx

Pr[x, 0, σ, w] and ρσ,w1 =
∑
x∈{−1,1}n Pr[x, 1, σ, w]ρx

Pr[x, 1, σ, w] .

It is known that any protocol that tries to distinguish two quantum states ρ0 and ρ1 appearing
with probability p and 1− p, respectively, by a POVM has bias at most ‖pρ0− (1− p)ρ1‖tr/2
[16]. The bias is then upper bounded by using Fourier analysis of matrix-valued functions,
in particular by the matrix-valued hypercontractive inequality of Ben-Aroya, Regev, and de
Wolf [6].

The difference between the classical and quantum lower bound proofs was considerably
reduced in our paper, e.g., the classical proof now relies less on the use of the Parseval’s
identity. Still some differences persist. Apart from the obvious generalization of Fourier
analysis to matrix-valued functions, the Fourier analysis in the quantum lower bound proof is
performed directly on the encoding messages and not on the pre-images of a fixed encoding
message, since there is no clear quantum analogue of conditioning on a message. The main
technical difficulty we faced compared to [15, 26] is that the Fourier coefficients of Bob’s
distributions pσ(z) and qσ(z) are not nicely related to just one Fourier coefficient of the
characteristic function of A any more, but instead to a more complicated sum of many
coefficients. This requires us to carefully bound various combinatorial terms occurring in the
proof and to use our freedom to choose α fairly small.

In Section 3 we analyse the limitations of our techniques and show that under the uniform
distribution, which was used as the “hard” distribution during the proof of Theorem 8, we
cannot obtain a lower bound depending on the sign degree instead of the pure high degree.

TQC 2020



1:8 Generalized Boolean Hidden Matching Problem

We finally remark that the one-way communication complexity separations we found
can easily be used to obtain corresponding separations in the streaming model, similarly
to [15, 26].

2 Reductions from the Boolean Hidden Matching problem

As mentioned before, in [15] it was proved that the Boolean Hidden Partition problem using
PARITY on 2 bits (aka the BHM problem) is hard to solve, i.e., R1(BHM) = Ω(

√
n/α).

With this result alone it is possible to prove that the f -Boolean Hidden Partition problem for
almost any symmetric Boolean function with sdeg(f) ≥ 2 is at least as hard to solve. This
can be achieved via a simple reduction from the BHM problem to the f -BHPα,tn problem
with symmetric functions, which we shall show in this section.

For this section, in a slight abuse of notation we define |x| = |{i : xi = −1}| to be the
“Hamming weight” of x. Let s, t ∈ N, with s ≤ t. Consider a symmetric Boolean function
fs : {−1, 1}t → {−1, 1} such that (without loss of generality) fs(1n) = 1 and

fs(x) =
{

+1 if 0 ≤ |x| ≤ θ1 or θ2i < |x| ≤ θ2i+1, i = 1, 2 . . . , bs/2c,
−1 if θ2j−1 < |x| ≤ θ2j , j = 1, 2, . . . , b(s+ 1)/2c,

(1)

where θk ∈ N for k = 1, . . . , s+ 1 and 0 ≤ θ1 < · · · < θs < θs+1 = t and θk+1 − θk ≥ 1 for all
k = 1, . . . , s. The following result from [3] tells us that sdeg(fs) = s.

I Lemma 10. (Lemma 2.6 from [3]) If f is a symmetric function, then sdeg(f) is equal to
the number of times f changes sign when expressed as a univariate function in

∑
i xi.

In order to reduce fs -BHPα,tn from BHM we first need to reduce the function fs from
PARITY, i.e., we want that ∀x′ ∈ {−1, 1}2, ∃x ∈ {−1, 1}t such that fs(x) = PARITY(x′).
The key combinatorial step to achieve this is shown in the next Lemma.

I Lemma 11. Let fs : {−1, 1}t → {−1, 1} be the symmetric Boolean function from Eq. 1
with s ≥ 2 such that either 2|t or θ2 − θ1 < t − 1. Then there exists a, b ∈ N such that
∀x′ ∈ {−1, 1}2, ∃x ∈ {−1, 1}t such that fs(x) = PARITY(x′) and |x| = a|x′|+ b.

Proof. The condition that ∀x′ ∈ {−1, 1}2, ∃x ∈ {−1, 1}t such that fs(x) = PARITY(x′)
and |x| = a|x′|+ b is equivalent to

|x′| = 0 =⇒ fs(b) = 1,
|x′| = 1 =⇒ fs(a+ b) = −1,
|x′| = 2 =⇒ fs(2a+ b) = 1.

(2)

We divide the proof into two cases: either there exists k∗ ∈ {1, . . . , s−1} such that θk∗+1−θk∗
is odd or there does not exist such a k∗. Suppose first that such k∗ exists. Without loss of
generality we can assume that fs(x) = −1 for θk∗ < |x| ≤ θk∗+1, otherwise we just flip the
values of fs. Then we set{

a = (θk∗+1 − θk∗ + 1)/2,
b = θk∗ .

First, a, b ∈ N. Second, a + b = (θk∗+1 + θk∗ + 1)/2, hence θk∗ < a + b ≤ θk∗+1, since
θk∗+1 − θk∗ ≥ 1. And third, 2a+ b = θk∗+1 + 1 ≤ θk∗+2. Therefore all conditions from Eqs.
2 are satisfied.
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Now suppose that for all k = 1, . . . , s−1 we have 2|(θk+1−θk). Define the bit δ = [θ1 6= 0]
and set{

a = (θ2 − θ1 + 2)/2,
b = θ1 − δ.

First, a, b ∈ N (note that δ = 1 =⇒ θ1 > 0). Second, a+ b = (θ2 + θ1 + 2− 2δ)/2, hence
θ1 < a+ b ≤ θ2, since θ2 − θ1 ≥ 2 by hypothesis. And third, 2a+ b = θ2 + 2− δ ≤ t since
θ2 − θ1 < t − 1 and θ2 < t (so that θ2 = t − 1 =⇒ δ = 1). Therefore all conditions from
Eqs. 2 are satisfied. J

If 2 - t and θ2 − θ1 = t− 1, then our conditions give us
b = 0,
0 < a < t,

2a = t,

and we see that the condition 2a = t cannot be fulfilled by a ∈ N. This case corresponds to
the symmetric Boolean function Not All Equal (NAE), defined by NAE(x) = 1 if |x| ∈ {0, t}
and NAE(x) = −1 otherwise, with t odd.

Given the reduction above from PARITY to fs, we can construct our reduction from the
BHM problem to the fs -BHPα,tn problem.

I Theorem 7. Let fs : {−1, 1}t → {−1, 1} be the symmetric Boolean function from Eq. 1
with s ≥ 2 such that either 2|t or θ2 − θ1 < t− 1. Then R1(fs -BHPα,tn ) = Ω(

√
n/(αt)).

Proof. Suppose by contradiction that R1(fs -BHPα,tn ) = o(
√
n/(αt)), i.e., there exists a

protocol Π that solves fs -BHPα,tn with o(
√
n/(αt)) bits of communication. We are going to

show that such protocol would allow Alice and Bob to solve the BHM problem with o(
√
n/α)

bits of communication, which leads to a contradiction.
Let a, b ∈ N be the numbers used in reducing fs from PARITY in Lemma 11. Alice

increases her bit string x ∈ {−1, 1}n as follows: she makes a copies of x, obtaining xa ∈
{−1, 1}an, where xa = xx · · ·x represents x repeated a times. She then adds bn/2 times the
bit 1, obtaining xa1bn/2. Finally, she adds (t− 2a− b)n/2 times the bit −1, to finally obtain
xf = xa1bn/2-1(t−2a−b)n/2. Note that xf ∈ {−1, 1}nt/2.

Bob, on the other hand, increases his permutation σ ∈ Sn to a new permutation σf ∈ Snt/2.
In order to describe how he does this, we ease the notation by referring to the j-th block
(π−1((j − 1)t + 1), . . . , π−1(jt)) of a given permutation π as (Bj,1, . . . , Bj,t). With this
notation, the j-th block (Bj,1, Bj,2) of the permutation σ is mapped to the j-th block(

Bj,1, Bj,2, n+Bj,1, n+Bj,2, . . . , (a−1)n+Bj,1, (a− 1)n+Bj,2,

an+ j, an+ j + n

2 , . . . , an+ j + (t− 2a− 1)n2

)
of the new permutation σf . Note that the new block has t elements, as expected.

Consider the block strings σf (xf )(j;t) ∈ {−1, 1}t and σ(x)(j;2) ∈ {−1, 1}2, with j =
1, . . . , n/2. By construction we have that |σf (xf )(j;t)| = a|σ(x)(j;2)| + b and, according to
Lemma 11, we get fs(σf (xf )(j;t)) = PARITY(σ(x)(j;2)) for all j = 1, . . . , n/2. Hence we see
that every instance of the problem BHM : {−1, 1}n → {−1, 1} is mapped to an instance of
the problem fs-BHPα,tn : {−1, 1}nt/2 → {−1, 1}. Therefore we could map the BHM problem
into the fs -BHPα,tn problem and use the protocol Π in order to solve it with o(

√
n/(αt))

bits of communication, which is impossible. Thus R1(fs -BHPα,tn ) = Ω(
√
n/(αt)). J

TQC 2020



1:10 Generalized Boolean Hidden Matching Problem

3 Limitations of proof technique

Theorem 8 guarantees the classical hardness of the f -BHPα,tn problem if f has pure high
degree ≥ 2, and not sign degree ≥ 2, which would be a stronger result. To arrive at this
result, we used the uniform distribution as a “hard” distribution for Yao’s principle. In this
section we shall prove that under the uniform distribution we cannot obtain a better result.
More specifically, we shall prove that under the uniform distribution there is an efficient
bounded-error classical protocol for solving the f -BHPα,tn problem if phdeg(f) ≤ 1.

I Theorem 12. Under the uniform distribution for Alice and Bob’s inputs, if phdeg(f) ≤ 1
then R1(f -BHPα,tn ) = O

(
t2

α logn
)
.

Proof. Let F = {i ∈ [t] | f̂({i}) 6= 0}. Given that phdeg(f) ≤ 1, this set is non-empty.
Consider the following protocol: Alice picks a subset I ⊆ [n] of indices uniformly at random
using shared randomness, where |I| will be determined later, and sends the indices and
corresponding bitvalues to Bob. Let {xi}i∈I be the bitvalues sent, and let j(i) = dσ(i)/te
and k(i) ≡ σ(i) mod t for all i ∈ I, where σ ∈ Sn is Bob’s permutation. The probability
that none of the indices sent by Alice are matched to a non-zero Fourier coefficient according
to Bob’s permutation, within one of the αn/t blocks he has, is

Prσ[k(i) /∈ F, ∀i ∈ I] ≤
(

1− α |F |
t

)|I|
≤ e−α|I||F |/t

which we can make almost arbitrarily small by choosing |I| to be sufficiently large. (Note that
the first inequality above would be an equality if we chose the elements of I with replacement,
and choosing them without replacement cannot make Pr[k(i) /∈ F, ∀i ∈ I] higher.) Hence
with high probability I ∩ F ∩ [αn/t] 6= ∅. Choose some ` ∈ I ∩ F ∩ [αn/t]. Bob computes
sgn[f̂({k(`)})] · σ(x)(j(`))

k(`) · wj(`): if it is +1, then he outputs that Bf (x) = w, and if it is −1,
then he outputs that Bf (x) = w.

To see why the protocol works, we calculate the probability that sgn[f̂({k(`)})] ·σ(x)(j(`))
k(`)

is equal to f(σ(x)(j(`))).

Pr
x

[
sgn[f̂({k(`)})]σ(x)(j(`))

k(`) = f(σ(x)(j(`)))
]

=

= 1
2 + 1

2t+1

∑
x∈{−1,1}t

sgn[f̂({k(`)})]σ(x)(j(`))
k(`) f(σ(x)(j(`)))

= 1
2 + 1

2 sgn[f̂({k(`)})] · f̂({k(`)})

= 1
2 + 1

2 |f̂({k(`)})|,

which is greater than 1/2 and where we used in the first line that the distribution on Alice’s in-

puts is uniform. Therefore, by a union bound, for sufficiently large |I| = O

(
t
α log 1

|f̂({k(`)})|

)
,

the overall success probability of the protocol (i.e. I ∩ F ∩ [αn/t] 6= ∅ and Bob’s output
equals f) is strictly greater than 1/2. Since |f̂({k(`)})| ≥ 21−t (as it is nonzero and is an
average of 2t ±1’s), this gives us the final overhead of O(t2/α). J
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4 Conclusions

We proposed a very broad generalization of the famous Boolean Hidden (Hyper)Matching
problem, which we called the f -Boolean Hidden Partition (f -BHPα,tn ) problem. Instead
of using the Parity function to arrive at the final bit-string that Alice and Bob wish to
explore, we use a generic Boolean function f . We partially characterize the communication
complexity of the whole problem in terms of one property of f : its sign degree. We proved
that if sdeg(f) ≤ 1, then there exists an efficient bounded-error classical protocol that
solves the f -BHPα,tn with O(logn) bits. Similarly to the classical case, we proved that if
sdeg(f) ≤ 2, then there exists an efficient bounded-error quantum protocol that solves the
f -BHPα,tn with O(logn) qubits. We then pursued a classical-quantum communication gap
by proving classical and quantum lower bounds for cases of the problem where sdeg(f) ≥ 2.
First we noted that the f -BHPα,tn problem is hard for almost all symmetric functions with
sdeg(f) ≥ 2 via a simple reduction from the Boolean Hidden Matching problem. And second
we generalized previous communication complexity lower bounds based on Fourier analysis
to prove that functions with phdeg(f) = d ≥ 2 lead to a classical Ω(n1−1/d) communication
cost and functions with phdeg(f) = d ≥ 3 lead to a quantum Ω(n1−2/d) communication cost
for the f -BHPα,tn problem.

It is known that phdeg(f) ≤ sdeg(f), but our lower bounds are probably not tight for all
functions with sign degree ≥ 2. We proved that this is an inherent limitation of the chosen
distribution for Alice and Bob’s inputs during the proof, since under the uniform distribution
it is possible to solve the problem with O(logn) bits of communication if phdeg(f) ≤ 1. We
then make the following conjectures.

I Conjecture 13. R1
ε (f -BHPα,tn ) = Ω(n1−1/d) if sdeg(f) = d ≥ 2.

I Conjecture 14. Q1
ε(f -BHPα,tn ) = Ω(n1−2/d) if sdeg(f) = d ≥ 3.

A proof of these results would require a non-uniform distribution on Alice and Bob’s inputs.
We hope that these conjectures help motivate the development of necessary quantum

lower bound techniques.
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A Proof of Upper Bounds

In this and the following appendices, denote by R1
ε (P) and Q1

ε (P) the classical and quantum
communication cost of the protocol P in bits and qubits, respectively, and denote by R1

ε (f) =
minP R1

ε (P) and Q1
ε(f) = minP Q1

ε(P) the minimum classical and quantum communication
cost, respectively, over all one-way protocols P without shared randomness that solve a
communication problem f with failure probability 0 < ε < 1/2.

A.1 Classical Upper Bound
Consider the f -BHPα,tn problem for f : {−1, 1}t → {−1, 1} with sdeg(f) ≤ 1. Now let
p : {−1, 1}t → [−1, 1] be a normalized sign-representing polynomial for f . Hence we can
write

p(x) = α0 +
t∑
i=1

αixi

with (αi)ti=0 ∈ R. Let β = minx |p(x)| be the bias of p.

I Theorem 5. R1
ε (f -BHPα,tn ) = O

(
( t
αβ )2 log 1

ε logn
)
if sdeg(f) ≤ 1.

Proof. Consider the following protocol: Alice picksm = O
(
( t
αβ )2 log 1

ε

)
bits from x uniformly

at random (with replacement) and sends them to Bob, together with their indices. Let
I and {xi}i∈I be the indices and bitvalues sent, respectively. Let j(i) = dσ(i)/te and
k(i) ≡ σ(i) mod t for all i ∈ I, where σ ∈ Sn is Bob’s permutation. Define the random
variable X(i) = (αk(i)xi + α0/t)wj(i) if σ(i) ∈ [αn/t] and X(i) = 0 if σ(i) /∈ [αn/t], where
α0 and αk are the zeroth order and xk’s coefficients, respectively, from the sign-representing
polynomial p, and define X =

∑
i∈I X(i). Bob then computes sgn(X). If the sign is 1, then

he outputs Bf (x) = w, and if the sign is −1, then he outputs Bf (x) = w.
To see why the protocol works, we calculate the expectation value of random variable X.

E[X] = m · Ei[X(i)]
= αm · Ei[(αk(i)xi + α0/t)wj(i)]

= αm · Ej
[
Ek[αkσ(x)(j)

k + α0/t]wj
]

= αm · Ej
[
p(σ(x)(j))

t
wj

]

= αm
t

n

n/t∑
j=1

p(σ(x)(j))
t

wj

= αm

n

 ∑
j:wj=1

p(σ(x)(j))−
∑

j:wj=−1
p(σ(x)(j))

 .
If f(σ(x)(j)) = wj , then wj = 1 =⇒ p(σ(x)(j)) ≥ β > 0 and wj = −1 =⇒ p(σ(x)(j)) ≤
−β < 0. Therefore

E[X] ≥ αm

n

 ∑
j:wj=0

β −
∑

j:wj=1
−β

 = αm
β

t
.
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If, on the other hand, f(σ(x)(j)) = −wj , then wj = 1 =⇒ p(σ(x)(j)) ≤ −β < 0 and
wj = −1 =⇒ p(σ(x)(j)) ≥ β > 0. Therefore

E[X] ≤ αm

n

 ∑
j:wj=0

−β −
∑

j:wj=1
β

 = −αmβ

t
.

By using a Chernoff bound [13] of the type Pr[X > E[X] + u],Pr[X < E[X]− u] ≤ e−2u2/m

with u > 0 and setting u = ±E[X] > 0, we can make

Pr[X > 0 | Bf (x) = w], Pr[X < 0 | Bf (x) = w] ≤ ε

by taking m = O
(
( t
αβ )2 log 1

ε

)
. Therefore Alice and Bob can decide if Bf (x) = w or

Bf (x) = w with error probability ε and O
(
( t
αβ )2 log 1

ε logn
)
bits of communication. J

A.2 Quantum Upper Bound
Consider the f -BHPα,tn problem for f : {−1, 1}t → {−1, 1} with sdeg(f) = 2. Let p :
{−1, 1}t → [−1, 1] be a normalized sign-representing polynomial for f . Let β = minx |p(x)|
be the bias of p.

We say that a polynomial q of degree k is block-multilinear if its variables x1, . . . , xN can
be partitioned into k blocks R1, . . . , Rk, such that every monomial of q contains exactly one
variable from each block. As a special case, a block-multilinear polynomial q of degree 2 can
be written as

q(x1, . . . , xn, y1, . . . , ym) =
∑
i∈[n]
j∈[m]

aijxiyj

with variables in the first block labeled as x1, . . . , xn and the variables in the second block
labeled as y1, . . . , ym. Defining the matrix A = (aij)i∈[n],j∈[m], then

q(x, y) = xTAy

for all x ∈ Rn and y ∈ Rm. We say that q is bounded if |q(x, y)| ≤ 1 for all x ∈ {−1, 1}n, y ∈
{−1, 1}m. This translates to

max
x∈{−1,1}n

y∈{−1,1}m

∣∣∣∣∣∣∣∣
∑
i∈[n]
j∈[m]

aijxiyj

∣∣∣∣∣∣∣∣ ≤ 1,

i.e., ‖A‖∞→1 ≤ 1.
In order to prove the quantum upper bound, we will need the following results. In what

comes, define x̃ = (1, x1, . . . , xt).

I Lemma 15 ([2]). Given a m × m complex matrix M , there exists a unitary U (on a
possibly larger space with basis |1〉, . . . , |k〉 for some k ≥ m) such that, for any unit vector
|y〉 =

∑m
i=1 αi|i〉, U |y〉 = M |y〉

‖M‖ + |φ〉, where |φ〉 consists of basis states |i〉, i > m only.

I Theorem 16 ([2]). Let p : {−1, 1}t → [−1, 1] be a sign-representing polynomial for f
with sdeg(f) = 2. Then there is a block-multilinear polynomial p̃ : R2(t+1) → R such that
p̃(x̃, x̃) = p(x) for any x ∈ {−1, 1}t, and |p̃(y)| ≤ 3 for any y ∈ {−1, 1}2(t+1).
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Let p̃ : R2(t+1) → R be the block-multilinear polynomial of degree 2 obtained from the
sign-representing polynomial p of f according to Theorem 16. It can be written as

p̃(x, y) =
∑

i,j∈[t+1]

aijxiyj = xTAy, (3)

where A = (aij)i,j∈[t+1].
With these in hands, we present our upper bound.

I Theorem 6. Q1
ε(f -BHPα,tn ) = O

(
( t
αβ )2 log 1

ε logn
)
if sdeg(f) ≤ 2.

Proof. Consider the following protocol: Alice sends to Bob m = O
(
( t
αβ )2 log 1

ε

)
copies of

the quantum state of O(logn) qubits

|ψA〉 = 1√
n+ n/t

 n∑
i=1

xi|i〉+
n/t∑
i=1
|n+ i〉

 .

Bob measures each of them by using the POVM|n+ j〉〈n+ j|+
jt∑

i=(j−1)t+1

|σ−1(i)〉〈σ−1(i)|


j∈[n/t]

,

where σ ∈ Sn is his permutation, and attaches a qubit in the state |+〉 to each of the final
states. Let I ⊆ [n/t] be the sequence of indices from his measurements. Then his final state
is

|ψB〉 =
⊗
j∈I
|+〉|ψ(j)〉,

where

|ψ(j)〉 = 1√
t+ 1

|n+ j〉+
jt∑

i=(j−1)t+1

xσ−1(i)|σ−1(i)〉

 .

Let A be the (t + 1) × (t + 1) matrix from the representation of p̃ according to Eq. 3.
Lemma 15 guarantees the existence of a unitary Uj such that Uj |ψ(j)〉 = A|ψ(j)〉

‖A‖ + |φ(j)〉,
with 〈φ(j)|ψ(j)〉 = 0. Bob then applies a controlled Uj gate onto each |+〉j |ψ(j)〉 to obtain⊗

j∈I
CUj |ψB〉 =

⊗
j∈I

(
1√
2
|0〉|ψ(j)〉+ 1√

2
|1〉Uj |ψ(j)〉

)
and then performs a Hadamard gate on the first qubit of each of the subsystems I and
measures them. Let mj ∈ {0, 1} be the result of the measurement for block j ∈ I. Define
the random variable X(j) = −(−1)mjwj if j ∈ [αn/t] and X(j) = 0 if j /∈ [αn/t], and define
X =

∑
j∈I X(j). Bob then computes sgn(X): if sgn(X) > 0, he outputs that Bf (x) = w,

and if sgn(X) < 0, he outputs that Bf (x) = w.
To see why the protocol works, first note that the probability of measuring 1 is

Pr[1] = 1
2

(
1 + 〈ψ(j)|U |ψ(j)〉

)
= 1

2

(
1 + 〈ψ

(j)|A|ψ(j)〉
‖A‖

)

= 1
2

1 + p̃(σ̃(x)(j), σ̃(x)(j))
‖A‖(t+ 1)

 = 1
2

(
1 + p(σ(x)(j))
‖A‖(t+ 1)

)
.
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1:16 Generalized Boolean Hidden Matching Problem

The remainder of the argument is similar to the classical upper bound proof. Recalling that
m = |I|, the expectation value of X is

E[X] = m · Ej [X(j)]
= αm · Ej [−(−1)mjwj ]

= αm
t

n

n/t∑
j=1

(Pr[mj = 1]− Pr[mj = 0])wj

= αm
t

n

 ∑
j:wj=1

p(σ(x)(j))
‖A‖(t+ 1) −

∑
j:wj=−1

p(σ(x)(j))
‖A‖(t+ 1)

 .
If f(σ(x)(j)) = wj , then wj = 1 =⇒ p(σ(x)(j)) ≥ β > 0 and wj = −1 =⇒ p(σ(x)(j)) ≤
−β < 0. Therefore

E[X] ≥ αm t

n

1
‖A‖(t+ 1)

 ∑
j:wj=1

β −
∑

j:wj=−1
−β

 = αmβ

‖A‖(t+ 1) .

If, on the other hand, f(σ(x)(j)) = −wj , then wj = 1 =⇒ p(σ(x)(j)) ≤ −β < 0 and
wj = −1 =⇒ p(σ(x)(j)) ≥ β > 0. Therefore

E[X] ≤ αm t

n

1
‖A‖(t+ 1)

 ∑
j:wj=1

−β −
∑

j:wj=−1
β

 = − αmβ

‖A‖(t+ 1) .

By using a Chernoff bound [13] of the type Pr[X > E[X] + u],Pr[X < E[X]− u] ≤ e−2u2/m

with u > 0 and setting u = ±E[X] > 0, we can make

Pr[X > 0 | Bf (x) = w], Pr[X < 0 | Bf (x) = w] ≤ ε

by taking m = O
(
( t
αβ )2 log 1

ε

)
, where we use that ‖A‖ ≤ ‖A‖∞→1 ≤ 3 according to

Theorem 16 (note that ‖Ax‖2
‖x‖2

≤ ‖Ax‖1
‖x‖∞ , and taking maximums over all x on both sides gives

‖A‖ ≤ ‖A‖∞→1). Therefore Alice and Bob can decide if Bf (x) = w or Bf (x) = w with error
probability ε and O

(
( t
αβ )2 log 1

ε logn
)
qubits of communication. J
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