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—— Abstract

An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree at most d. By
the classical theorem of Erdds and Gallai from 1959, every graph of degeneracy d > 1 contains a
cycle of length at least d + 1. The proof of Erdés and Gallai is constructive and can be turned
into a polynomial time algorithm constructing a cycle of length at least d + 1. But can we decide
in polynomial time whether a graph contains a cycle of length at least d + 27 An easy reduction
from HAMILTONIAN CYCLE provides a negative answer to this question: Deciding whether a graph
has a cycle of length at least d 4+ 2 is NP-complete. Surprisingly, the complexity of the problem
changes drastically when the input graph is 2-connected. In this case we prove that deciding whether
G contains a cycle of length at least d + k can be done in time 2°®|V(G)|°M. In other words,
deciding whether a 2-connected n-vertex G contains a cycle of length at least d + logn can be done
in polynomial time. Similar algorithmic results hold for long paths in graphs. We observe that
deciding whether a graph has a path of length at least d + 1 is NP-complete. However, we prove
that if graph G is connected, then deciding whether G contains a path of length at least d + k can
be done in time 29" n°M) . We complement these results by showing that the choice of degeneracy
as the “above guarantee parameterization” is optimal in the following sense: For any € > 0 it is
NP-complete to decide whether a connected (2-connected) graph of degeneracy d has a path (cycle)
of length at least (1 + ¢)d.
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1 Introduction

The classical theorem of Erdés and Gallai [11] says that

» Theorem 1 (Erdés and Gallai [11]). Every graph with n vertices and more than (n — 1)¢/2
edges (£ > 2) contains a cycle of length at least £ + 1.

Recall that a graph G is d-degenerate if every subgraph H of G has a vertex of degree at
most d, that is, the minimum degree §(H) < d. Respectively, the degeneracy of graph G, is
dg(G) = max{6(H) | H is a subgraph of G}. Since a graph of degeneracy d has a subgraph
H with at least d - |V(H)|/2 edges, by Theorem 1, it contains a cycle of length at least
d+ 1. Let us note that the degeneracy of a graph can be computed in polynomial time, see
e.g. [28], and thus by Theorem 1, deciding whether a graph has a cycle of length at least
d+ 1 can be done in polynomial time. In this paper we revisit this classical result from the
algorithmic perspective.

We define the following problem.

LONGEST CYCLE ABOVE DEGENERACY

Input: A graph G and a positive integer k.
Task: Decide whether G contains a cycle of length at least dg(G) + k.

Let us first sketch why LONGEST CYCLE ABOVE DEGENERACY is NP-complete for k = 2
even for connected graphs. We can reduce HAMILTONIAN CYCLE to LONGEST CYCLE ABOVE
DEGENERACY with k = 2 as follows. For a connected non-complete graph G on n vertices,
we construct connected graph H from G and a complete graph K, _1 on n — 1 vertices as
follows. We identify one vertex of G with one vertex of K,,_;. Thus the obtained graph H
has |[V(G)| + n — 2 vertices and is connected; its degeneracy is n — 2. Then H has a cycle
with dg(H) + 2 = n vertices if and only if G has a Hamiltonian cycle.

Interestingly, when the input graph is 2-connected, the problem becomes fixed-parameter
tractable being parameterized by k. Let us recall that a connected graph G is (vertex)
2-connected if for every v € V(G), G — v is connected. Our first main result is the
following theorem.

» Theorem 2. On 2-connected graphs LONGEST CYCLE ABOVE DEGENERACY is solvable
in time 20) . nO1)

Similar results can be obtained for paths. Of course, if a graph contains a cycle of length
d+ 1, it also contains a simple path on d + 1 vertices. Thus for every graph G of degeneracy
d, deciding whether G contains a path on dg(G) + 1 vertices can be done in polynomial time.
Again, it is easy to show that it is NP-complete to decide whether G contains a path with
d + 2 vertices by a reduction from HAMILTONIAN PATH. The reduction is very similar to the
one we sketched for LONGEST CYCLE ABOVE DEGENERACY. The only difference that this
time graph H consists of a disjoint union of G and K,,_;. The degeneracy of H is d = n — 2,
and H has a path with d 4+ 2 = n vertices if and only if G contains a Hamiltonian path. Note
that graph H used in the reduction is not connected. However, when the input graph G is
connected, the complexity of the problem changes drastically. We define
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LONGEST PATH ABOVE DEGENERACY

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with at least dg(G) + k vertices.

The second main contribution of our paper is the following theorem.

» Theorem 3. On connected graphs LONGEST PATH ABOVE DEGENERACY is solvable in
time 20F) . O

Let us remark that Theorem 2 does not imply Theorem 3, because Theorem 2 holds only
for 2-connected graphs.

We also show that the parameterization lower bound dg(G) that is used in Theorems 2
and 3 is tight in some sense. We prove that for any 0 < € < 1, it is NP-complete to decide
whether a connected graph G contains a path with at least (1 + €)dg(G) vertices and it
is NP-complete to decide whether a 2-connected graph G contains a cycle with at least
(1+ &)dg(Q) vertices.

Related work. HAMILTONIAN PATH and HAMILTONIAN CYCLE problems are among the
oldest and most fundamental problems in Graph Theory. In parameterized complexity the
following generalizations of these problems, LONGEST PATH and LONGEST CYCLE, were
heavily studied. The LONGEST PATH problem is to decide, given an n-vertex (di)graph G
and an integer k, whether G contains a path of length at least k. Similarly, the LONGEST
CYCLE problem is to decide whether G contains a cycle of length at least k. There is
a plethora of results about parameterized complexity (we refer to the book of Cygan at
al. [9] for the introduction to the field) of LONGEST PATH and LONGEST CYCLE (see, e.g.,
4, 5,7, 6,12, 14, 22, 23, 24, 32]) since the early work of Monien [29]. The fastest known
randomized algorithm for LONGEST PATH on undirected graph is due to Bjorklund et al. [4]
and runs in time 1.657% - n®(1) . On the other hand very recently, Tsur gave the fastest known
deterministic algorithm for the problem running in time 2.554% . n©(1) [31]. Respectively
for LONGEST CYCLE, the current fastest randomized algorithm running in time 4% . n©)

was given by Zehavi in [33] and the best deterministic algorithm constructed by Fomin et al.

in [13] runs in time 4.884% - n©().

Our theorems about LONGEST PATH ABOVE DEGENERACY and LONGEST CYCLE
ABOVE DEGENERACY fit into an interesting trend in parameterized complexity called
“above guarantee” parameterization. The general idea of this paradigm is that the natural
parameterization of, say, a maximization problem by the solution size is not satisfactory if
there is a lower bound for the solution size that is sufficiently large. For example, there always
exists a satisfying assignment that satisfies half of the clauses or there is always a max-cut
containing at least half the edges. Thus nontrivial solutions occur only for the values of the
parameter that are above the lower bound. This indicates that for such cases, it is more

natural to parameterize the problem by the difference of the solution size and the bound.

The first paper about above guarantee parameterization was due to Mahajan and Raman [26]
who applied this approach to the MAX SAT and MAX CuUT problem. This approach was
successfully applied to various problems, see e.g. [1, 8, 16, 17, 18, 19, 20, 25, 27].

For LONGEST PATH, the only successful above guarantee parameterization known prior
to our work was parameterization above shortest path. More precisely, let s, ¢ be vertices of
an undirected graph G. Clearly, the length of any (s, t)-path in G is lower bounded by the

shortest distance, d(s,t), between these vertices. Based on this observation, Bezdkova et al.

in [3] introduced the LONGEST DETOUR problem that asks, given a graph G, two vertices
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s,t, and a positive integer k, whether G has an (s, t)-path with at least d(s,t) 4+ k vertices.
They proved that for undirected graphs, this problem can be solved in time 2°®*) . n©1) On
the other hand, the parameterized complexity of LONGEST DETOUR on directed graphs is
still open. For the variant of the problem where the question is whether G has an (s, t)-path
with ezactly d(s,t) + k vertices, a randomized algorithm with running time 2.746* - n©™)
and a deterministic algorithm with running time 6.745% - n®™) were obtained [3]. These
algorithms work for both undirected and directed graphs. Parameterization above degeneracy
is “orthogonal” to the parameterization above the shortest distance. There are classes of
graphs, like planar graphs, that have constant degeneracy and arbitrarily large diameter. On
the other hand, there are classes of graphs, like complete graphs, of constant diameter and
unbounded degeneracy.

Our approach. Our algorithmic results are based on classical theorems of Dirac [10], and
Erdds and Gallai [11] on the existence of “long cycle” and “long paths” and can be seen as
non-trivial algorithmic extensions of these classical theorems. Let §(G) be the minimum
vertex degree of graph G.

» Theorem 4 (Dirac [10]). Every n-vertex 2-connected graph G with minimum vertex degree
§(G) > 2, contains a cycle with at least min{2§(G),n} vertices.

» Theorem 5 (Erdds and Gallai [11]). Ewery connected n-vertex graph G contains a path with
at least min{2§(G) + 1,n} vertices.

Theorem 4 is used to prove Theorem 2 and Theorem 5 is used to prove Theorem 3.

We give a high-level overview of the ideas used to prove Theorem 2. The ideas behind the
proof of Theorem 3 are similar. Let G be a 2-connected graph of degeneracy d. If d = O(k),
we can solve LONGEST CYCLE ABOVE DEGENERACY in time 29%) . n©(1) by making use of
one of the algorithms for LONGEST CYCLE. Assume from now that d > ¢- k for some constant
¢, which will be specified in the proof. Then we find a d-core H of G (a connected subgraph
of G with the minimum vertex degree at least d). This can be done in linear time by one of
the known algorithms, see e.g. [28]. If the size of H is sufficiently large, say |V (H)| > d + k,
we use Theorem 4 to conclude that H contains a cycle with at least |V (H)| > d + k vertices.

The most interesting case occurs when |V (H)| < d 4+ k. Suppose that G has a cycle of
length at least d + k. It is possible to prove that there is also a cycle of length at least d + k
that hits the core H. We do not know how many times and in which vertices of H this cycle
enters and leaves H, but we can guess these terminal points. The interesting property of the
core H is that, loosely speaking, for any “small” set of terminal points, inside H the cycle
can be rerouted in such a way that it will contain all vertices of H.

A bit more formally, we prove the following structural result. We define a system of
segments in G with respect to V/(H), which is a family of internally vertex-disjoint paths
{P1,...,P.} in G (see Figure 1). Moreover, for every 1 < i < r, every path P; has at least 3
vertices, its endpoints are in V/(H) and all internal vertices of P; are in V(G) \ V(H). Also
the union of all the segments is a forest with every connected component being a path.

We prove that G contains a cycle of length at least k + d if and only if

either there is a path of length at least k +d — |V (H)| with endpoints in V(H) and all

internal vertices outside H, or
there is a system of segments with respect to V(H) such that the total number of vertices
outside H used by the paths of the system, is within the interval [k +d — |V (H)|,2- (k +

d—|[V(H)])]-



F.V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi

Figure 1 Reducing LONGEST CYCLE ABOVE DEGENERACY to finding a system of segments
Pi,..., P-; complementing the segments into a cycle is shown by dashed lines.

The proof of this structural result is built on Lemma 8, which describes the possibility of
routing in graphs of large minimal degree. The crucial property is that we can complement
any system of segments of bounded size by segments inside the core H to obtain a cycle that
contains all the vertices of H as is shown in Figure 1.

Since |V(H)| > d, the problem of finding a cycle of length at least k+d in G boils down to
one of the following tasks. Either find a path of length ¢’ - k with all internal vertices outside
H, or find a system of segments with respect to V/(H) such that the total number of vertices
used by the paths of the system is ¢’ - k, here ¢’ and ¢’ are the constants to be specified in the
proof. In the first case, we can use one of the known algorithms to find in time 2°®) . pO1)
such a long path. In the second case, we can use color-coding to solve the problem.

Organization of the paper. In Section 2 we give basic definitions and state some known
fundamental results. Sections 3—4 contain the proof of Theorems 3 and 2. In Section 3 we
state structural results that we need for the proofs and in Section 4 we complete the proofs.
In Section 5, we give the complexity lower bounds for our algorithmic results. We conclude
the paper in Section 6 by stating some open problems.

2 Preliminaries

We consider only finite undirected graphs. For a graph G, we use V(G) and E(G) to denote
its vertex set and edge set, respectively. Throughout the paper we use n = |V(G)| and
m = |E(G)|. For a graph G and a subset U C V(G) of vertices, we write G[U] to denote
the subgraph of G induced by U. We write G — U to denote the graph G[V(G) \ U]J; for a
single-element set U = {u}, we write G — u. For a vertex v, we denote by Ng(v) the (open)
neighborhood of v, i.e., the set of vertices that are adjacent to v in G. For a set U C V(G),
Ng(U) = (Uyey Na(v)) \ U. The degree of a vertex v is dg(v) = [Ng(v)|. The minimum
degree of G is 6(G) = min{dg(v) | v € V(G)}. A d-core of G is an inclusion maximal induced
connected subgraph H with 6(H) > d. Every graph of degeneracy at least d contains a
d-core and that can be found in linear time (see [28]). A vertex u of a connected graph G
with at least two vertices is a cut vertex if G — u is disconnected. A connected graph G is
2-connected if it has no cut vertices. An inclusion maximal induced 2-connected subgraph
of G is called a biconnected component or block. Let B be the set of blocks of a connected
graph G and let C' be the set of cut vertices. Consider the bipartite graph Block(G) with
the vertex set BUC, where (B, C) is the bipartition, such that B € B and ¢ € C are adjacent
if and only if ¢ € V(B). The block graph of a connected graph is always a tree (see [21]).
A path in a graph is a self-avoiding walk. Thus no vertex appears in a path more than
once. A cycle is a closed self-avoiding walk . For a path P with end-vertices s and t, we
say that the vertices of V(P) \ {s,t} are internal. We say that G is a linear forest if each
component of G is a path. The contraction of an edge xy is the operation that removes the
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vertices x and y together with the incident edges and replaces them by a vertex u,, that
is adjacent to the vertices of Ng({x,y}) of the original graph. If H is obtained from G by
contracting some edges, then H is a contraction of G.

We summarize below some known algorithmic results which will be used as subroutines
by our algorithm.

» Proposition 6. LONGEST PATH and LONGEST CYCLE are solvable in time 20F) . n@1)

We also need the result about the variant of LONGEST PATH with fixed end-vertices. In
the (s,t)-LONGEST PATH, we are given two vertices s and ¢ of a graph G and a positive
integer k. The task is to decide, whether G has an (s, t)-path with at least k vertices. Using
the results of Bezakova et al. [2], we immediately obtain the following,.

» Proposition 7. (s,t)-LONGEST PATH is solvable in time 20%) . n©1),

3 Segments and rerouting

In this section we define systems of segments and prove structural results about them. These
combinatorial results are crucial for our algorithms for LONGEST PATH ABOVE DEGENERACY
and LONGEST CYCLE ABOVE DEGENERACY.

The following rerouting lemma is crucial for our algorithms.

» Lemma 8. Let G be an n-vertex graph and k be a positive integer such that §(G) >
max{bk —3,n — k}. Let {s1,t1},...,{sr,tr}, ¥ < k, be a collection of pairs of vertices of
G such that (i) s;,t; & {sj,t;} for alli # j, 1,5 € {1,...,r}, and (ii) there is at least one
index i € {1,...,r} such that s; # t;. Then there is a family of pairwise vertex-disjoint paths
P ={Pi,...,P.} in G such that each P; is an (s;,t;)-path and \J,_, V(P;) = V(Q), that is,
the paths cover all vertices of G.

Proof. We prove the lemma in two steps. First we show that there exists a family P’ of
pairwise vertex-disjoint paths connecting all pairs {s;,t;}. Then we show that if the paths of
P’ do not cover all vertices of G, it is possible to enlarge a path such that the new family of
paths covers more vertices.

We start by constructing a family of vertex-disjoint paths P’ = {P,..., P} in G such
that each P; € P’ is an (s;,t;)-path. We prove that we can construct paths in such a
way that each P; has at most 3 vertices. Let T' = |J,_,{s;,t;} and S = V(G) \ T. Notice
that |S| > n — 2k > §(G) + 1 — 2k > 3k — 2. We consecutively construct paths of P’ for
ie{l,...,r}. If s; =t;, then we have a trivial (s;,¢;)-path. If s; and ¢; are adjacent, then
edge s;t; forms an (s;,t;)-path with 2 vertices. Assume that s; # t; and s;t; ¢ E(G). The
already constructed paths contain at most r — 1 < k — 1 vertices of .S in total. Hence, there
is a set S’ C S of at least 2k — 1 vertices that are not contained in any of already constructed
paths. Since 6(G) > n — k, each vertex of G has at most k — 1 non-neighbors in G. By
the pigeonhole principle, there is v € S” such that s;v,¢;v € E(G). Then we can construct
the path P; = s;vt;.

We proved that there is a family P’ = {P,..., P.} of vertex-disjoint (s;,t;)-paths in
G. Among all such families, let us select a family P = {Py,..., P} covering the maximum
number of vertices of V(G). If |J;_, V(P;) = V(G), then the lemma holds. Assume that
|Ui_, V(P)] < [V(G)|. Suppose |U;_, V()| < 3k — 1. Since s; # t; for some 4, there
is an edge uv in one of the paths. Since n > §(G) + 1 > 5k — 2, there are at least 2k — 1
vertices uncovered by paths of P. Since §(G) > n — k, each vertex of G has at most k — 1
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non-neighbors in G. Thus there is w € V(G) \ (Ui, V(P;)) adjacent to both u and v. But
then we can extend the path containing uv by replacing uv by the path uwwv. The paths of
the new family cover more vertices than the paths of P, which contradicts the choice of P.

Suppose ||J;_; V(P;)| > 3k. Because the paths of P are vertex-disjoint, the union of
edges of paths from P contains a k-matching. That is, there are k edges ujvy, ..., ugvg of
G such that for every i € {1,...,k}, vertices u;,v; are consecutive in some path from P
and u; # uj, u; # v; for all non-equal i,j € {1,...,k}. Let w € V(G) \ (U;—; V(F;)). We
again use the observation that w has at most k£ — 1 non-neighbors in G and, therefore, there
is j € {1,...,k} such that u;w,v;w € E(G). Then we extend the path containing u;v; by
replacing edge u;v; by the path u;wv;, contradicting the choice of P. We conclude that the
paths of P cover all vertices of G. <

Let G be a graph and let T C V(G) be a set of terminals. We need the following
definitions.

» Definition 9 (Terminal segments). We say that a path P in G is a one-terminal T-segment
if it has at least two vertices, exactly one end-vertex of P is in T and other vertices are
not in T'. Respectively, P is a two-terminal T-segment if it has at least three vertices, both
end-vertices of P are in T and internal vertices of P are not in T.

For every cycle C' hitting H, removing the vertices of H from C' turns it into a set of
two-terminal T-segments for T'= V(H). So here is the definition.

» Definition 10 (System of T-segments). We say that a set {Py,...,P.} of paths in G is a
system of T-segments if it satisfies the following conditions.

(i) For each i€ {1,...,r}, P; is a two-terminal T-segment,
(ii) Pi,..., P are pairwise internally vertex-disjoint, and
(iii) the union of Py, ..., P, is a linear forest.

Let us remark that we do not require that the end-vertices of the paths {Py,...,P.}
cover all vertices of T'. System of segments will be used for solving LONGEST CYCLE ABOVE
DEGENERACY.

For LONGEST PATH ABOVE DEGENERACY we need to modify the definition of a system
of T-segments to include the possibility that path can start or end in H.

» Definition 11 (Extended system of T-segments). We say that a set {Pi,..., P.} of paths
in G is an extended system of T-segments if the following holds.

(i) At least one and at most two paths are one-terminal T-segments and the others are
two-terminal T-segments.

(ii) P1,..., P, are pairwise internally vertex-disjoint and the end-vertices of each one-
terminal segment that is in V(G)\ T is pairwise distinct with the other vertices of the
paths.

(iii) The union of Py,..., P, is a linear forest and if { P, ..., P.} contains two one-terminal
segments, then the vertices of these segments are in distinct components of the forest.

The following lemma will be extremely useful for the algorithm solving LONGEST PATH
ABOVE DEGENERACY. Informally, it shows that if a connected graph G is of large degeneracy
but has a small core H, then deciding whether G has a path of length k 4+ d can be reduced
to checking whether G has an extended system of T-segments with terminal set T = V(H)
such that the total number of vertices used by the system is O(k).
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» Lemma 12. Let d,k € N. Let G be a connected graph with a d-core H such that d > 5k —3
and d > |V(H)| — k. Then G has a path on d + k vertices if and only if G has an extended
system of T-segments {Py, ..., P.} with terminal set T = V(H) such that the total number
of vertices contained in the paths of the system in V(G)\V(H) isp=d+k— |V (H)|.

Proof. We put T'= V(H). Suppose first that G has an extended system {P,..., P.} of
T-segments and that the total number of vertices of the paths in the system outside T is
p=d+k—|T|. Let s; and ¢; be the end-vertices of P; for i € {1,...,r} and assume without
loss of generality that for 1 <4 < j < r, the vertices of P; and P; are pairwise distinct with
the possible exception ¢; = s; when i = j — 1. We also assume without loss of generality that
Py is a one-terminal segment and ¢t; € T and if {Py, ..., P.} has two one-terminal segments,
then the second such segment is P, and s, € T'. Note that because |V (H)| > d, we have that
p=d+k—|V(H)| <k.

Suppose that { Py, ..., P.} contains one one-terminal segment P;. Let s,.+1 be an arbitrary
vertex of T\ (J;_; V(F;)). Notice that such a vertex exists, because [T N (U,_, V(P))| <
2p—1 < 2k—1and |T| > d+1 > 5k — 3. Consider the collection of pairs of vertices
{t1,s2},{t2,83},...,{tr,sr+1}. Notice that vertices from distinct pairs are distinct and
t. # $r+1. By Lemma 8, there are vertex-disjoint paths P[,..., P/ in H that cover T such
that P! is a (t;, 8i4+1)-path for ¢ € {1,...,r}. By concatenating Pi, P, Ps,...,P., P, we
obtain a path in G with |T| 4+ p = d + k vertices.

Assume now that {P,..., P.} contains two one-terminal segments P; and P,. Consider
the collection of pairs of vertices {t1, $2},...,{tr—1, 8 }. Notice that vertices from distinct
pairs are distinct and there is ¢ € {2,...,r} such that t;_1 # s; by the condition (iii) of the
definition of an extended system of segments. By Lemma 8, there are vertex-disjoint paths
P|,...,P/_; in H that cover T such that P/ is a (¢;, s;+1)-path for i € {1,...,r —1}. By
concatenating Py, Py,...,P/_,, P, we obtain a path in G with |T'| + p = d + k vertices.

To show the implication in the opposite direction, let us assume that G has an (z, y)-path
P with d + k vertices. We distinguish several cases.

Case 1: V(P)NT = 0. Consider a shortest path P’ with one end-vertex s € V(P) and
the second end-vertex ¢t € T. Notice that such a path exists, because G is connected.
Denote by P, and P, the (s, ) and (s, y)-subpaths of P respectively. Because d > 5k — 3,
[V(P,)| > k or |[V(Py)| > k. Assume that |V(P,)| > k. Then the concatenation of P’
and P, is a path with at least k& + 1 vertices and it contains a subpath P” with the
end-vertex ¢t with p + 1 vertices. We have that {P’} is an extended system of T-segments
and P” has p vertices outside T

Case 2: V(P)NT # D and E(P)YNE(H) =0. Let S =V(P)NT. Since H is an in-
duced subgraph of G and E(P)NE(H) =0, |V(P)\ S| > (d+k)/2—1>3k—5/2>
3p—5/2 > 2p — 2. Then for every ¢ € S, either the (¢, z)-subpath P, of P contains at
least p vertices outside 7" or the (¢, y)-subpath P, of P contains at least p vertices outside
T. Assume without loss of generality that P, contains at least p vertices outside T'.
Consider the minimal subpath P’ of P, ending at ¢ such that |V (P’) \ T| = p. Then the
start vertex s of P’ is not in T. Let {t1,...,t.} = V(P’)NT and assume that ¢1,...,t,
are ordered in the same order as they occur in P’ starting from s. In particular, ¢, = t.
Let tg = s. Consider the paths P,..., P. where P; is the (t;_1,t;)-subpath of P’ for
i €{1,...,r}. Since k > p, r < k. We obtain that {Py,..., P} is an extended system of
T-segments with p vertices outside T

Case 3: E(P)N E(H) # 0. Then there are distinct s,t € T NV (P) such that the (s, )-
subpath of P lies in H. Since P has at least p vertices outside T', there are s',t' € V(P)\T
such that the (s, ¢')-subpath P’ of P is a subpath with exactly p vertices outside T with
s,t € V(P'). Let Py,..., P, be the family of inclusion maximal subpaths of P’ containing
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the vertices of V' (P’) \ T such that the internal vertices of each P; are outside T. Observe
that since s # t, the union of these paths is a linear forest with at least two components.
We conclude that the set {Py,..., P.} is a required extended system of T-segments. <

The next lemma will be used for solving LONGEST CYCLE ABOVE DEGENERACY.

» Lemma 13. Let d,k € N. Let G be a 2-connected graph with a d-core H such that
d>5k—3andd > |V(H)| — k. Then G has a cycle with at least d + k vertices if and only
if one of the following holds (where p=d+ k — |V (H)|).
(i) There are distinct s,t € V(H) and an (s,t)-path P in G with all internal vertices
outside V(H) such that P has at least p internal vertices.
(ii) G has a system of T-segments {P1, ..., P.} with terminal set T =V (H) and the total
number of vertices of the paths outside V(H) is at least p and at most 2p — 2.

Proof. We put T' = V(H). First, we show that if (i) or (ii) holds, then G has a cycle with
at least d 4+ k vertices. Suppose that there are distinct s,t € T and an (s,t)-path P in G
with all internal vertices outside T' such that P has at least p internal vertices. By Lemma 8,
H has a Hamiltonian (s,t)-path P’. By taking the union of P and P’ we obtain a cycle with
at least |T'| + p = d + k vertices.

Now assume that G has a system of T-segments {Py, ..., P.} and the total number of
vertices of the paths outside T is at least p. Let s; and t; be the end-vertices of P; for
1€ {l,...,r} and assume without loss of generality that for 1 < i < j <r, the vertices of P,
and P; are pairwise distinct with the possible exception ¢; = s; when i = j — 1. Consider
the collection of pairs of vertices {t1,s2}, ..., {tr—1, s}, {t+, s1}. Notice that vertices from
distinct pairs are distinet and ¢, # s;. By Lemma 8, there are vertex-disjoint paths Py, ..., P!
in H that cover T such that P/ is a (t;, s;+1)-path for ¢ € {1,...,r — 1} and P/ is a (¢, s1)-
path. By taking the union of Pj,..., P. and P{,..., P, we obtain a cycle in G with at least
|T| +p = d+ k vertices.

To show the implication in the other direction, assume that G has a cycle C' with at least
d + k vertices.

Case 1: V(C)NT = 0. Since G is a 2-connected graph, there are pairwise distinct vertices
s,t € T and z,y € V(C) and vertex-disjoint (s,z) and (y,t)-paths P, and P, such
that the internal vertices of the paths are outside T'U V(C). The cycle C contains an
(z,y)-path P with at least (d+ k)/2+ 1 > p vertices. The concatenation of Py, P and P,
is an (s, t)-path in G with at least p internal verices and the internal vertices are outside
T. Hence, (i) holds.

Case 2: |[V(C)NT|=1. Let V(C)NT = {s} for some vertex s. Since G is 2-connected,
there is a shortest (x,t)-path P in G — s such that x € V(C) and t € T. The cycle C
contains an (s, x)-path P’ with at least (d + k)/2 + 1 > p vertices. The concatenation of
P’ and P is an (s,t)-path in G with at least p internal vertices and the internal vertices
of the path are outside T'. Therefore, (i) is fulfilled.

Case 3: |[V(C)NT| > 2. Since |V(C)| > d and |T| < d, we have that V(C)\ T # 0.
Then we can find pairs of distinct vertices {s1,t1} ..., {se, t¢} of TNV(C) and segments
Py,..., P, of C such that (a) P; is an (s;,t;)-path for ¢ € {1,...,¢} with at least one
internal vertex and the internal vertices of P; are outside T', (b) for 1 <i < j < ¢, the
vertices of P; and P; are distinct with the possible exception t; = s; if ¢ = j — 1 and,
possibly, ¢, = s1, and (c) Ji_, V(B)\ T = V(C) \ T. If there is i € {1,...,/} such that
P; has at least p internal vertices, then (i) is fulfilled.
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Now assume that each P; has at most p — 1 internal vertices; notice that p > 2 in this case.
We select an inclusion minimal set of indices I C {1,...,¢} such that [{J,c; V(P;) \ T| > p.
Notice that because each path has at most p — 1 internal vertices, |{J;c; V(P) \T| < 2p — 2.
Let I = {é1,...,4,} and i; < ... < 4,. By the choice of P;,,..., P; , the union of P; ..., P;.
is either the cycle C or a linear forest. Suppose that the union of the paths is C. Then
I={1,...,¢0}, £ <pand |V(P)NT| = ¢ Note that because |V(H)| > d, we have that
p=d+k—|V(H)| < k. We obtain that C has at most (2p—2)+p <3p—2<3k—2<d+k
vertices (the last inequality follows from the fact that d > 5k — 3); a contradiction. Hence,

the union of the paths is a linear forest. Therefore, {P;,,..., P; } is a system of T-segments
with terminal set T'= V(H) and the total number of vertices of the paths outside T is at
least p and at most 2p — 2, that is, (ii) is fulfilled. <

We have established the fact that the existence of a long (path) cycle is equivalent to
the existence of an (extended) system of T-segments for some terminal set 7" with at most
p < k vertices from outside T. Towards designing algorithms for LONGEST PATH ABOVE
DEGENERACY and LONGEST CYCLE ABOVE DEGENERACY, we define two auxiliary problems
which can be solved using well known color-coding technique.

SEGMENTS WITH TERMINAL SET
Input: A graph G, T C V(G) and a positive integers p and 7.

Task: Decide whether G has a system of segments {Pi,..., P} w.r.t. T such
that the total number of internal vertices of the paths is p.

EXTENDED SEGMENTS WITH TERMINAL SET

Input: A graph G, T C V(G) and a positive integers p and r.

Task: Decide whether G has an extended system of segments { Py, ..., P} w.r.t.
T such that the total number of vertices of the paths outside T is p.

» Lemma 14 (x). ! SEGMENTS WITH TERMINAL SET and EXTENDED SEGMENTS WITH
TERMINAL SET are solvable in time 2°®) . nO1),

4  Putting all together: Final proofs

Proof of Theorem 3. Let G be a connected graph of degeneracy at least d and let k be a
positive integer. If d < 5k — 4, then we check the existence of a path with d +k < 6k — 4
vertices using Proposition 6 in time 2°®*) . n©(1) " Assume from now that d > 5k — 3. Then
we find a d-core H of GG. This can be done in linear time using the results of Matula and
Beck [28]. If |V(H)| > d + k, then by Theorem 5, H, and hence G, contains a path with
min{2d + 1, |V(H)|} > d + k vertices. Assume that |V (H)| < d + k. By Lemma 12, G has a
path with d 4+ k vertices if and only if G has paths Py,..., P. such that {P;,..., P.} is an
extended system of T-segments for 7' = V(H) and the total number of vertices of the paths
outside T'is p = d + k — |T|. Since the number of vertices in every graph is more than its
minimum degree, we have that |T'| > d, and thus p < k. For each r € {1,...,p}, we verify
if such a system exists in time 29%*) . n©(1) by making use of Lemma 14. Thus the total
running time of the algorithm is 20(*) . nO),

! Proofs of results marked with (x) are omitted in this extended abstract.
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Proof of Theorem 2. Let G be a 2-connected graph of degeneracy at least d and let k € N.
If d < 5k — 4, then we check the existence of a cycle with at least d + k < 6k — 4 vertices
using Proposition 6 in time 2°®) . (1) Assume from now on that d > 5k — 3. Then we
find a d-core H of G in linear time using the results of Matula and Beck [28].

We claim that if |[V/(H)| > d+k, then H contains a cycle with at least d+ k vertices. If H
is 2-connected, then this follows from Theorem 4. Assume that H is not a 2-connected graph.
By the definition of a d-core, H is connected. Observe that |[V(H)| >d+1> 5k —2 > 3.
Hence, H has at least two blocks and at least one cut vertex. Consider the block graph
Block(H) of H. Recall that the vertices of Block(H) are the blocks and the cut vertices of H
and a cut vertex c is adjacent to a block B if and only if ¢ € V(B). Recall also that Block(H)
is a tree. We select an arbitrary block R of H and declare it to be the root of Block(H).
Let S = V(G) \ V(H). Observe that S # (), because G is 2-connected and H is not. Let
Fi,..., F; be the components of G[S]. We contract the edges of each component and denote
the obtained vertices by u,...,us. Denote by G’ the obtained graph. It is straightforward
to verify that G’ has no cut vertices, that is, G’ is 2-connected. For each i € {1,...,(},
consider u;. This vertex has at least 2 neighbors in V(H). We select a vertex v; € Ngs(u;)
that is not a cut vertex of H or, if all the neighbors of u; are cut vertices, we select v; be
a cut vertex at maximum distance from R in Block(H). Then we contract u;v;. Observe
that by the choice of each v;, the graph G obtained from G’ by contracting uyv1, ..., ueve is
2-connected. We have that G” is a 2-connected graph of minimum degree at least d with at
least d + k vertices. By Theorem 4, G” has a cycle with at least min{2d, |V (G")|} > d+ k
vertices. Because G is a contraction of G, we conclude that G contains a cycle with at least
d + k vertices as well.

From now we can assume that |V(H)| < d + k. By Lemma 13, G has a cycle with d + k
vertices if and only if one of the following holds for p = d + k — |T'| where T = V (H).

(i) There are distinct s,¢ € T and an (s,t)-path P in G with all internal vertices outside
T such that P has at least p internal vertices.

(ii) G has a system of T-segments {Pi,...,P.} and the total number of vertices of the
paths outside T is at least p and at most 2p — 2.

Notice that p < k (because d — |T'| < 0). We verify whether (i) holds using Proposition 7.

To do it, we consider all possible choices of distinct s,¢. Then we construct the auxiliary

graph G4 from G by the deletion of the vertices of T'\ {s,¢} and the edges of E(H).

Then we check whether Gg; has an (s, t)-path of length at least p + 1 in time 20(k) . o)
applying Proposition 7.

Assume that (i) is not fulfilled. Then it remains to check (ii). For every r € {1,...,p},
we verify the existence of a system of T-segments {P;,..., P.} in time 20(k) . nOM) ysing
Lemma 14. We return the answer yes if we get the answer yes for at least one instance of
SEGMENTS WITH TERMINAL SET and we return no otherwise.

5 Hardness for Longest Path and Cycle above Degeneracy
In this section we complement Theorems 3 and 2 by some hardness observations.

» Proposition 15 (x). 2 LONGEST PATH ABOVE DEGENERACY is NP-complete even if
k = 2 and LONGEST CYCLE ABOVE DEGENERACY ¢s NP-complete even for connected
graphs and k = 2.

2 Proposition 15 and its proof was pointed to us by Nikolay Karpov.
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Recall that a graph G has a path with at least dg(G) + 1 vertices and if dg(G) > 2,
then G has a cycle with at least dg(G) + 1 vertices. Moreover, such a path or cycle can
be constructed in polynomial (linear) time. Hence, Proposition 15 gives tight complexity
bounds. Nevertheless, the construction used to show hardness for LONGEST PATH ABOVE
DEGENERACY uses a disconnected graph, and the graph constructed to show hardness for
LoNGEST CYCLE ABOVE DEGENERACY has a cut vertex. Hence, it is natural to consider
LONGEST PATH ABOVE DEGENERACY for connected graphs and LONGEST CYCLE ABOVE
DEGENERACY for 2-connected graphs. We show in Theorems 3 and 2 that these problems
are FPT when parameterized by k in these cases. Here, we observe that the lower bound
dg(G) that is used for the parameterization is tight in the following sense.

» Proposition 16. For any 0 < € < 1, it is NP-complete to decide whether a connected graph
G contains a path with at least (1 + €)dg(G) vertices and it is NP-complete to decide whether
a 2-connected graph G contains a cycle with at least (1 4 )dg(G) vertices.

Proof. Let 0 < e < 1.

First, we consider the problem about a path with (1 + £)dg(G) vertices. We reduce
HAMILTONIAN PATH that is well-known to be NP-complete (see [15]). Let G be a graph
with n > 2 vertices. We construct the graph G’ as follows.

Construct a copy of G.

Let p = 2(%1 and construct p pairwise adjacent vertices uq, ..., u,.

For each v € V(G), construct an edge vu;.

Let g=[(14+¢)(p—1) — (n+p)]. Construct vertices w1, ...,w, and edges ujwi, wqus

and w;_jw; for i € {2,...,q}.

Notice that ¢ = [(1+&)(p—1) —(n+p)] = [2e[Z] —n—-1—-¢] > [n—1—¢] > 1 as
n > 2. Observe also that G is connected. We claim that G has a Hamiltonian path if and
only if G’ has a path with at least (1 + €)dg(G’) vertices. Notice that dg(G’) =p —1 and
V(G| =n+p+q=[(1+¢)dg(G")]. Therefore, we have to show that G has a Hamiltonian
path if and only if G’ has a Hamiltonian path. Suppose that G has a Hamiltonian path P with
an end-vertex v. Consider the path @ = vujw; ... wqugus ... u,. Clearly, the concatenation
of P and @ is a Hamiltonian path in G’. Suppose that G’ has a Hamiltonian path P. Since
u is a cut vertex of G, we obtain that P has a subpath that is a Hamiltonian path in G.

Consider now the problem about a cycle with at least (1 + €)dg(G) vertices. We again
reduce HAMILTONIAN PATH and the reduction is almost the same. Let G be a graph with
n > 2 vertices. We construct the graph G’ as follows.

Construct a copy of G.

Let p = 2[ 2] and construct p pairwise adjacent vertices uy,. .., up.

For each v € V(G), construct edges vu; and vus.

Let ¢g=[(1+¢)(p—1) — (n+p)]. Construct vertices wn,...,w, and edges usws, wyus

and w;_qw; for i € {2,...,q}.

As before, we have that ¢ > 1. Notice additionally that p > 3, i.e., the vertex ug exists. It is
straightforward to see that G’ is 2-connected. We claim that G has a Hamiltonian path if and
only if G’ has a cycle with at least (1 + £)dg(G’) vertices. We have that dg(G') = p — 1 and
[V(G")| = [(14+¢)dg(G’)]. Hence, we have to show that G has a Hamiltonian path if and only
if G’ has a Hamiltonian cycle. Suppose that G has a Hamiltonian path P with end-vertices
z and y. Consider the path @ = zusw; ... wyusus ... upy. Clearly, P and @ together form a
Hamiltonian cycle in G’. Suppose that G’ has a Hamiltonian cycle C. Since {uy,us} is a cut
set of G’, we obtain that C contains a path that is a Hamiltonian path of G. <
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6 Conclusion

We considered the lower bound dg(G) + 1 for the number of vertices in a longest path or
cycle in a graph G. It would be interesting to consider the lower bounds given in Theorems 4
and 5. More precisely, what can be said about the parameterized complexity of the variants
of LoNG PATH (CYCLE) where given a (2-connected) graph G and k € N, the task is to
check whether G has a path (cycle) with at least 20(G) + k vertices? Are these problems
FPT when parameterized by k? It can be observed that the bound 26(G) is “tight”. That is,
for any 0 < ¢ < 1, it is NP-complete to decide whether a connected (2-connected) G has a
path (cycle) with at least (2 + €)d(G) vertices. See also [30] for related hardness results.
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