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ABSTRACT

Incomplete labels are common in multi-task learning for biomed-
ical applications due to several practical difficulties, e.g., expen-
sive annotation efforts by experts, limit of data collection, differ-
ent sources of data. A naive approach to enable joint learning for
partially labeled data is adding self-supervised learning for tasks
without ground truths by augmenting an input image and forcing
the multi-task model to return the same outputs for both the input
and augmented images. However, the partially labeled setting can
result in imbalanced learning of tasks since not all tasks are train-
able with ground truth supervisions for each data sample. In this
work, we propose a multi-task curriculum learning method tailored
for partially labeled data. For balanced learning of tasks, our multi-
task curriculum prioritizes less performing tasks during training by
setting different supervised learning frequencies for each task. We
demonstrate that our method outperforms standard approaches on
one biomedical and two natural image datasets. Furthermore, our
learning method with partially labeled data performs better than the
standard multi-task learning methods with fully labeled data for the
same number of annotations.

1. INTRODUCTION

In multi-task learning, a single model learns to perform multiple
tasks at the same time. Current multi-task learning algorithms
mainly use fully-labeled data [1, 2], where all tasks’ ground truths
are available for each data. However, in practice (e.g., biomedical
applications), it is usual to have incomplete labels [3, 4]. Each input
data may only have labels for particular tasks. For example, an
embryo microscopy data might have a ground truth for cell segmen-
tation, but not for pronucleus segmentation as exemplified in the
lower row of Figure 1 (b). The labels are missing mainly because
the annotation by clinicians or experts is costly. Besides, each task
requires a different degree of effort. When humans label ground
truths, there is a labor budget for annotation. For a limited labeling
budget, there are two choices in the annotation. One is to label each
image with full annotations, and the other is to label more images
with partial annotations. If partially labeled data enables better
multi-task learning than fully labeled data, we can reduce number
of required annotations to achieve the same multi-task performance.
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(a) Fully labeled dataset (b) Partially labeled dataset

Fig. 1. Comparison of different settings for multi-task learning of
cell segmentation and pronucleus segmentation. (a) A fully labeled
dataset, in which every image has both annotations for cell segmen-
tation and pronucleus segmentation. (b) A partially labeled dataset,
in which every image has annotations only for partial tasks.

However, researches on incomplete labels have been out of focus in
the multi-task learning literature, e.g., balancing between tasks and
joint training of tasks. Figure 1 compares fully labeled and partially
labeled datasets.

In this paper, we develop a multi-task learning method tailored
for partially labeled data. For each partially labeled data sample, not
all tasks are simultaneously trainable with supervisions due to miss-
ing labels, which can induce different learning speeds between tasks.
In multi-task learning, different learning speeds between tasks can
lead to inferior performance [5]. Increasing model size or sharing
fewer parameters has been known as a general solution, but either is
yet another design choice. Instead, we propose a curriculum learn-
ing, which is applicable to existing multi-task models developed for
fully-labeled data. We compose a sequential learning schedule for
curriculum learning that makes a model to train less performing
tasks more frequently with ground truth supervisions. It can pre-
vent early convergence of quickly learned tasks. In our experiments,
we conduct experiments for a partially labeled embryo dataset [4] in
which each image has partial tasks’ labels. We implement our cur-
riculum learning method upon a baseline multi-task learning model,
MTAN [6], to showcase our learning method’s applicability to ex-
isting multi-task learning models. We demonstrate that our method
improves the baseline on the biomedical dataset. To compare differ-
ent labeling strategies, we simulate the partially labeled setting on
the two natural image datasets, NYU v2 [1] and Cityscapes [2], by



using partial annotations for each image.
We have three major contributions. First, we introduce a

tractable method for multi-task learning on partially labeled data.
Our method can adapt existing models designed for the fully-labeled
setting. Thus, our method will directly benefit from the improvement
in the actively researched fully-labeled setting. Second, we address
the problem of training tasks at different rates using the curriculum
learning by taking into account each task’s learning progress. Third,
we investigate various possible labeling strategies to optimally as-
sign limited labeling budgets for future dataset annotation. We show
that partial annotations are more effective than full annotations.

2. RELATED WORKS

Biomedical Multi-task Learning. Many biomedical applications
use multi-task learning. For skin cancer diagnosis, Coppola et al. [7]
and Chen et al. [8] jointly trained classifiers and a segmentation
model. Multi-task learning is beneficial for CT images. Bragman et
al. [9] made a model to yield segmentation of organs and synthesize
MRI. He et al. [10] developed a multi-task model that segment out
organs while checking the existence of organs in CT images. Shi et
al. [11] had collected CT images with multiple organs and performed
multi-organ segmentation. However, most of them use fully labeled
data, which is expensive to obtain. Shi et al. [11] utilized partially
labeled data, but they still require fully labeled data during training.

Multi-task Learning for Partially Labeled Data. To the best of
our knowledge, there is no multi-task learning work that assumes the
identical setting to our partially labeled data. There are many multi-
label learning algorithms with missing labels [12, 13, 14], but they
focus on complementing missing labels. Semi-supervised multi-
task learning is closest to our problem setting [15, 16, 17]. Chen
et al. [16] developed a semi-supervised method that uses fully la-
beled data and totally unlabeled data, whereas we assume missing
labels in each sample. He et al. [17] addressed partial input data
instead of partial labels, where the model knows the ground truth
labels in all tasks, but only partial input features. Liu et al. [15] pre-
dicted only one type of label, e.g., like or dislike of artwork, and
treated classification on each dataset, e.g., each user, as a single task.
Therefore, it is hard to apply these methods to multi-modal predic-
tion tasks (e.g., segmentation and classification) or add upon existing
multi-task methods (e.g., MTAN [6]).

Curriculum Learning. Curriculum learning [18] optimizes the
learning order of data in training. It started from the observation that
human learns faster when the learning difficulty gradually increases
compared to learning randomly. Pentina et al.’s method [19] is the
closest to our multi-task curriculum learning. They determine the
learning order of tasks to learn highly related tasks sequentially.
However, curriculum learning focuses on which sample to learn
first while our method optimizes which task to learn with priority.
Also, no curriculum learning method takes into account the learning
frequencies of each task.

3. OUR METHOD

We first introduce a multi-task model’s learning objective modified
for partially labeled data and then propose a curriculum learning
method that enables balanced learning of tasks.

Fig. 2. Self-supervised learning. We first apply augmentation to an
input image xi to generate an augmented input image ϕ(xi). We
feed both images into a model. We compute a loss for a labeled
task LA as well as absolute difference losses between outputs from
unlabeled tasks Lself

B and Lself
C . We can calculate a loss LA using

either an original input or an augmented one for a labeled task.

3.1. Learning Objective for Partially Labeled Data

For a given set of tasks, a multi-task model M optimizes its parame-
ters θ by minimizing all tasks’ losses L1, . . . ,LT , where T indicates
the number of tasks. For a fully labeled data sample, the learning ob-
jective is the sum of all tasks’ losses. However, in a partially labeled
dataset, each input sample is available to optimize only tasks with
ground truths. We can formulate its learning objective as

min
θ

∑
t∈Ti

wtLt(M(xi, θ)t,yi,t), (1)

where wt denotes a weight for task t, yi,t is a task t’s ground truth
for input xi, and Ti is a set of tasks with available ground truths for
the sample xi. Based on the loss function (1), we update the model’s
parameters by

θ∗ = θ − α
∑
t∈Ti

wt∇Lt(M(xi, θ)t,yi,t), (2)

where α is a tunable step size parameter. Thus, gradients through
tasks with no ground truths are not available, which can induce un-
stable learning, e.g., imbalanced learning speeds or negative trans-
fers between tasks.

Self-supervised learning can be a natural solution to address
this issue, which makes unlabeled tasks trainable. Recently, there
have been intensive researches in unsupervised and semi-supervised
learning [20, 21, 22]. The key idea is to apply an augmentation to
an input image and make a model to yield the same outputs for the
original and augmented inputs. Inspired by this, we augment an in-
put image and make a model return the same outputs for the input
and augmented images, as shown in Figure 2. In this way, we can
train both labeled and unlabeled tasks.

We first apply augmentation ϕ(·) to an input image xi to obtain
an augmented image ϕ(xi) and feed them into a model. For the orig-
inal and augmented images, we represent their intermediate features
fed into the prediction layers for task t as M̂(xi)t and M̂(ϕ(xi))t,
respectively. Then, we define a loss for self-supervised learning as

Lself
t (xi) =

∣∣∣M̂(xi)t − M̂ (ϕ(xi))t

∣∣∣ (3)



By adding it to the supervised loss, Lt, the final loss function be-
comes ∑

t∈Ti

Lt(xi) + λ
∑

t∈Ti
∁

Lself
t (xi), (4)

where λ is a parameter controlling the weights to the self-supervised
loss. The final loss enables gradients to flow from all tasks even they
are partially labeled.

3.2. Multi-task Curriculum Learning

Based on the loss function (4), a multi-task model for partially la-
beled data learns tasks in Ti with ground truth supervisions and the
rest with self-supervisions. As such, determining which tasks to
learn with supervisions at each iteration can differ the performance
of the multi-task model. In this work, we define curriculum learning
as a problem of determining what tasks to learn with supervisions at
each iteration in every epoch. In other words, curriculum learning
determines each task’s learning frequency with supervisions, called
supervised learning frequency, within each epoch. An adequate cur-
riculum can maximize positive transfers between tasks by balancing
their learning speeds.

As a baseline learning curriculum, one may train the model us-
ing the uniform curriculum, in which tasks take turn to get a super-
vision. At iteration k, the uniform curriculum determines a task with
supervision τ(k) as mod (k, T )+1, where mod (·, ·) is a mod-
ulo operator. However, the uniform curriculum can induce negative
transfers between tasks, where sharing features leads to performance
degradation due to task imbalance. If the model learns a task notably
faster than other tasks, the model’s multi-task performance can be
underachieving at the end of training [5]. Widely used solutions to
address the rate imbalance are sharing fewer parameters across tasks
and training a bigger network to allow more flexibility in parameter
sharing. However, these solutions are yet another design choices.

Instead, we propose a novel curriculum learning method, which
is applicable to existing multi-task learning algorithms. We assign
different supervised learning frequencies for each task based on the
learning progress of each task. To estimate each task’s learning
progress, we measure relative performance gains after every epoch
on a validation set by comparing validation scores to ones from pre-
trained single-task models. We define a score gain as

∆st = st/ŝt, (5)

where st and ŝt are performances on a validation set for task t of a
multi-task model and the single-task model, respectively. Note that
the single-task model is pretrained, and its final performance is used
as ŝt. If ∆st is lower than 1, it means a multi-task model is inferior
to a single-task model. For metrics that lower values indicate better
performance, we use the inverse of this score instead.

As different learning speeds between tasks can result in the
underachievement of multi-task learning, we prioritize worse-
performing tasks over better-performing ones by training the earlier
with supervisions more frequently. To compose a curriculum, we
define a frequency of learning task t with a supervision at each
epoch as

f(t) = N · exp(−∆st/σ)∑
i exp(−∆si/σ)

, (6)

where σ is a temperature and N is the number of iterations per
epoch. The temperature controls the influence of the performance
gains in determining the supervised learning frequency of each task.
If the temperature is huge, our curriculum becomes a uniform se-
quential learning, which has the same supervised learning frequen-
cies for all tasks.

Table 1. Comparison of our method with different settings to MTAN
on the embryo test dataset [4]. We add the self-supervised learn-
ing (SL) and multi-task curriculum learning (CL) to MTAN one at a
time. All scores are higher better. The best result is boldfaced.

Stage Cell Pronucleus Overall
Method Accuracy mAP mAP mean ∆st
Single Task 80.14 69.95 67.37 1
MTAN 80.21 68.55 65.51 0.984
MTAN + SL (Ours) 79.89 69.74 66.14 0.992
MTAN + CL (Ours) 82.37 70.32 66.49 1.007
MTAN + SL + CL (Ours) 81.84 70.59 66.86 1.008

Based on the supervised learning frequencies, we schedule a
training curriculum for the next epoch, i.e., we determine a task to
sample at each iteration, τ(k), using the tasks’ supervised learning
frequencies, f(1), . . . , f(T ). To prevent excessive imbalances be-
tween tasks in a single epoch, we maximize the number of alterna-
tions of tasks in the learning curriculum. We update the learning
frequencies every epoch and compose a learning curriculum accord-
ingly.

4. EXPERIMENTS

As baseline multi-task learning methods, we chose Cross-Stitch [23]
and MTAN [6] to showcase our method’s efficacy, as they are well-
acknowledged in the field [24, 25] and highly reproducible. For
the baseline methods, we exploit a uniform curriculum learning, in
which all tasks have the same frequency for supervised learning.
When possible, we compose a batch with samples from different
tasks to train the baselines to cover tasks maximally. We benchmark
our method on the embryo dataset [4]. We also evaluate our method
on NYU v2 [1] and Cityscapes [2], which are the standard bench-
mark datasets for multi-task learning, to show our method’s general-
izability and simulate different experimental settings. We will make
our code publicly available, including architectural details, augmen-
tation policies, training information, and detailed benchmark results.

4.1. Embryo Light Microscopy Dataset

Visual analysis of embryos is necessary for in vitro fertilization. We
define a multi-task learning problem that aims at addressing the three
tasks introduced in the recent embryo analysis work [4]. The three
tasks are stage classification, cell instance segmentation, and pronu-
cleus instance segmentation.

The embryo dataset [4] consists of partially labeled data. Stage
classification aims at classifying the developmental status of an em-
bryo, which is one of 13 classes. The purpose of cell instance seg-
mentation is to segment cell instances. A goal of pronucleus in-
stance segmentation is to detect and segment pronuclei, which only
appear in embryos at 1 cell stage. Stage classification performance
is accessed using classification accuracy. We measure mean average
precision (mAP) for the cell and pronucleus instance segmentation
tasks. Finally, we report a mean ∆st, which is an average of score
gains across tasks, to assess multi-task models’ overall performance.
We believe the mean ∆st is more important than the task-wise met-
rics, as it measures overall performance.

To build a multi-task model, we incorporate MTAN [6] to Mask
R-CNN [26]. Due to the large memory requirement from Mask R-
CNN, Cross-Stitch [23], a soft parameter sharing model, was not
usable. For stage classification, we apply a global average pool-



Fig. 3. Multi-task prediction results on the embryo dataset [4]. From
the top to the bottom, each row presents input images, ground-truths
(partially labeled), and our prediction results, respectively.

ing and a fully-connected layer to the Mask R-CNN’s backbone fea-
ture. For cell and pronucleus instance segmentation, we use Mask
R-CNN’s prediction heads, such as RPN, classification and bound-
ing box heads, and segmentation head. The model has 117M param-
eters. We set σ and λ as 0.02 and 0.1, respectively.

Table 1 compares our multi-task curriculum learning with the
MTAN baseline. Our method (MTAN + SL + CL) improves the
baseline (MTAN) by 2.4%. Moreover, our method outperforms the
baseline across all tasks. It demonstrates that applying our learn-
ing strategy to an existing multi-task learning method can lead to a
performance increase. Figure 3 shows the qualitative results of our
multi-task curriculum learning.

Cumulative Effects. To show the efficacy of our multi-task curricu-
lum learning, we conduct ablation studies. We add self-supervised
learning (SL) and multi-task curriculum learning (CL) one at a time
to the baselines. Table 1 includes the results with the different
model settings. While the self-supervised learning (MTAN + SL)
marginally increases the performance by 0.8%. Our curriculum
learning (MTAN + CL) improves the baseline by 2.3%. By adding
the curriculum learning to the self-supervised learning (MTAN + SL
+ CL), we achieve the best performance across tasks.

4.2. Applications for Natural Images

Our subsequent interest is the comparison between various labeling
budget assignment strategies. The majority of multi-task datasets
have their data either fully labeled or labeled separately without any
overlap. We are interested in how creating some subset of fully la-
beled data influences the performance of our method.

Since our biomedical dataset has limited annotation overlap be-
tween tasks, we use two standard datasets for multi-task learning in-
stead: NYU v2 [1] and Cityscapes [2]. Both datasets consist of fully
labeled data, i.e., each image has annotations for all tasks. Hence,
we can partially omit ground truths to simulate datasets with dif-
ferent task overlaps. We define three settings, 0%, 50%, and 100%

Table 2. Results on the NYU v2 [1] and Cityscapes [2] evalua-
tion sets. We set three types of task overlaps. Each entry shows
mean±std. The better results are boldfaced for each comparison.

Task mean ∆st
Overlap Method NYU v2 Cityscapes

Single Task 1 1
100% Cross-Stitch 1.051±0.026 0.686±0.02

MTAN 1.080±0.015 0.962±0.04
Single Task 1 1
Cross-Stitch 1.105±0.029 0.651±0.01

50% Cross-Stitch + Ours 1.130±0.045 0.697±0.02
MTAN 1.094±0.015 0.924±0.05
MTAN + Ours 1.142±0.014 1.050±0.09
Single Task 1 1
Cross-Stitch 1.041±0.048 0.981±0.25

0% Cross-Stitch + Ours 1.072±0.066 0.991±0.09
MTAN 1.066±0.016 1.372±0.36
MTAN + Ours 1.130±0.007 1.419±0.39

task overlaps. If the overlap ratio is 0%, task labels are mutually
exclusive; each image has a label only for one of the tasks. In con-
trast, if the overlap ratio is 100%, a training set becomes a fully
labeled dataset; every image has labels for all the tasks. We set the
same labeling budget, a total number of labels, for all overlap ratios.
NYU v2 [1] consists of indoor images and their corresponding an-
notations for semantic segmentation, depth estimation, and surface
normal estimation. Cityscapes [2] contains street-view images and
their corresponding annotations for semantic segmentation and in-
verse depth estimation. For evaluation, we follow the benchmarking
method used in MTAN [6]. As an overall metric, we use a mean
∆st. We run the multi-task learning methods five times and report
their mean and standard deviation.

Table 2 compares ours to the baselines on NYU v2 and Cityscapes.
We report results with 100%, 50%, and 0% task overlaps. Our
method improves the two baseline methods and the single-task mod-
els across all three tasks. We observe that our method with 50% and
0% task overlaps yield better performance than the baseline methods
do with 100% task overlap.

Performance Comparison. While our method provides a moder-
ate performance increase in embryo analysis, it significantly im-
proves the baselines on the natural image datasets. We conjecture
this comes from the differences between the datasets. While the
natural image datasets are diverse and complex, the embryo images
have limited diversity. It may imply that our method performs better
when labeling is expensive, and data varies a lot. Our future works
include follow-up research to analyze this phenomenon.

Labeling Budget. We note that our performance on 50% overlap
is better than both on 0% and 100%. Hence, we believe it is possi-
ble to achieve a higher multi-task learning performance by partially
labeling the data with an overlap instead of full annotations.

5. CONCLUSIONS

We have introduced a multi-task learning method for partially la-
beled data. Our problem setting is realistic, as collecting all labels
for every image may not be possible. This is especially serious when
labeling is extremely expensive, e.g., biomedical labels. Since our
multi-task curriculum learning is a simple add-on for any multi-task
framework, it could be a basic technique for partially labeled data.
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