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Scalable Biologically-Aware Skeleton
Generation for Connectomic Volumes
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Kálmán Palágyi, Jeff W. Lichtman, and Hanspeter Pfister

Abstract— As connectomic datasets exceed hundreds
of terabytes in size, accurate and efficient skeleton gen-
eration of the label volumes has evolved into a critical
component of the computation pipeline used for anal-
ysis, evaluation, visualization, and error correction. We
propose a novel topological thinning strategy that uses
biological-constraints to produce accurate centerlines from
segmented neuronal volumes while still maintaining bio-
logically relevant properties. Current methods are either
agnostic to the underlying biology, have non-linear run-
ning times as a function of the number of input voxels,
or both. First, we eliminate from the input segmentation
biologically-infeasible bubbles, pockets of voxels incor-
rectly labeled within a neuron, to improve segmentation
accuracy, allow for more accurate centerlines, and increase
processing speed. Next, a Convolutional Neural Network
(CNN) detects cell bodies from the input segmentation,
allowing us to anchor our skeletons to the somata. Lastly,
a synapse-aware topological thinning approach produces
expressive skeletons for each neuron with a nearly one-
to-one correspondence between endpoints and synapses.
We simultaneously estimate geometric properties of neu-
rite width and geodesic distance between synapse and
cell body, improving accuracy by 47.5% and 62.8% over
baseline methods. We separate the skeletonization process
into a series of computation steps, leveraging data-parallel
strategies to increase throughput significantly. We demon-
strate our results on over 1250 neurons and neuron frag-
ments from three different species, processing over one
million voxels per second per CPU with linear scalability.

Index Terms— Skeleton generation, connectomics,
biologically-constrained algorithms.

I. INTRODUCTION

Increased throughput of electron microscopy imaging tech-
niques [1] has enabled nanometer resolution image volumes of
brain tissue exceeding terabytes [1], [2] and even petabytes [3],
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Fig. 1. Neural reconstructions of electron microscopy image stacks
easily exceed billions of voxels in size. Here, we show five different
neurons that span 270 billion voxels. Our block-based synapse-aware
skeleton generation strategy produces expressive skeletons efficiently.
We enlarge three regions to show our generated skeletons that connect
all synapses, represented by black spheres, to the somata.

[4] in size. Since manual reconstruction and synapse annota-
tion is infeasible at this scale, researchers employ automatic
techniques to segment the volumes into individual neurons [5],
[6] and identify synapses [7]. One of the primary goals of
connectomics is to better understand the brain’s computational
workings by analyzing the wiring diagrams extracted from
these large image volumes [8], [9]. In turn, researchers hope
to improve artificial neural networks [10], expand knowledge
of neurological diseases [11], and better understand the brain’s
underlying computational mechanisms [9].
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Fig. 2. Our block-based, topological thinning strategy for generating expressive skeletons leverages domain-specific knowledge of the underlying
biology. Automatic neural reconstruction techniques often produce millions of bubbles in the output segmentation. Uncorrected, these bubbles cause
the skeletons to deviate from the neurite center (inset, top left, without, then with, bubble filling). Since we know that neuronal processes fill the
space enclosed by the cell membrane, we can safely fill these bubbles to produce more exact centerlines. We then identify the cell body (soma) for
each neuron (inset, top right). Masking out the soma for a neuron increases throughput significantly and allows us to anchor the skeletons on the
cell body’s surface. Lastly, we introduce a set of topological thinning rules that guarantee connectivity between all synapses (inset, bottom right).
Our thinning algorithm concurrently produces neurite widths and geodesic distances from synapses to the soma–two physical properties needed
for accurate neural simulation.

Generating accurate skeletons of the segmented neurons has
become a critical component of the connectomic pipeline with
applications in analysis [6], [12], segmentation evaluation [5],
visualization [13], and error correction [14], [15]. Most of
this research uses a variant of the Tree-structure Extraction
Algorithm for Accurate and Robust Skeletons (TEASER) [16],
[17], although some work utilizes topological thinning strate-
gies from the volume processing literature [18]–[20]. The
TEASER algorithm has a set of tunable parameters that offer
a tradeoff between expressivity and simplicity. At the same
time, topological thinning strategies typically require excessive
computation time and memory for large datasets. Furthermore,
both methods are agnostic to the underlying biology and do
not impose restrictions on the generated skeletons.

As the physical volume sizes of reconstructed and proofread
brain samples have approached and even exceeded a cubic
millimeter [4], [6], [21], [22], more research considers the
analysis of the extracted wiring diagrams. Despite the consid-
erable algorithmic improvements along the entire connectomic
pipeline, most of this analysis still occurs at a relatively
coarse level. Current approaches typically construct a graph
where each node corresponds to a neuron, and directed edges
indicate a synaptic connection from one neuron to another [6],
[12]. Weighted edges may indicate perceived synaptic strength,
although these methods typically only consider the number of
synapses between two neurons when assigning edge weights.
Researchers have used these graphical models of the brain
to find motifs [23], i.e., frequently occurring subgraphs with
biological importance, and simulate simple motor responses
to an external stimulus [24]. However, this approximation

of synaptic strength is an oversimplification of the actual
connectivity between two neurons. From cable theory, we
know that the electrical signal transferred from one neuron
to another depends on the geodesic distance between the two
cell bodies (somata) through the synapse and the neurite width
along that path [25]. As an extreme example, two neurons
A and B may have 3 − 4× as many synaptic connections as
neurons A and C, but C could have a stronger connection to A
depending on the synapse locations. These powerful subtleties
are currently missing from the wiring diagram models that
merely count the number of synaptic connections between
two neurons. We can significantly increase the fidelity of
the extracted wiring diagrams by considering these essential
geometric properties from the skeletons to quantify synaptic
strength better. Furthermore, wiring diagrams derived from
synapse-aware skeletons can model interplays between neurite
branches.

Building on our previous work [26], we propose a block-
based, topological thinning approach for generating exact
skeletons of reconstructed neuronal volumes. As opposed to
existing methods [16]–[20], our approach enforces various
biological-constraints on the skeletons and generates rele-
vant geometric information useful for higher-level analysis
(Fig. 1). Current state-of-the-art reconstruction strategies such
as flood-filling networks [5] can create segmentations with
millions of bubbles, i.e., pockets of voxels incorrectly labeled
within a single neuron. Since neuronal processes are solid
volumes, we can safely fill these bubbles to improve the
segmentation quality, generate more accurate neurite widths,
and significantly speed up computation by removing spurious
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Fig. 3. Our method contains three distinct steps to extract biologically-aware skeletons from an input label volume: bubble filling (Sec. III-A), soma
segmentation (Sec. III-B), and synapse-aware topological thinning (Sec. III-C). We subdivide the bubble filling and topological thinning steps into a
series of expensive data-parallel tasks and cheaper operations that require a global scope. Perpendicular lines in an image panel indicate block-
based operations for that computation step. We first identify bubbles in each block by finding the connected components with only one neighbor
component. Since bubbles can span across block boundaries, we link the bubbles across the block boundaries and confirm that only one neuron
encapsulates the entire bubble. After identifying the actual bubbles, we update their value to match the surrounding neuron. Next, we detect and
segment cell bodies using a CNN. In the first part of topological thinning, we attach anchor points to each block’s sides to guarantee that the
skeletons span across blocks. Next, we thin the volumes in each block with a topological thinning approach that maintains connections between all
synapses and anchor points. Lastly, we refine the skeletons in the global scope to attach each neurite’s skeleton to the cell body. Our previous work
focused exclusively on the synapse-aware topological thinning components (bottom right box) and did not contain any parallel processing [26].

surface voxels during thinning (Fig 2, inset, left). We train a
Convolutional Neural Network (CNN) with the familiar U-Net
architecture [27], [28] to segment somata in the volume. We
then anchor our skeletons to the cell body’s surface to create
more accurate geodesic distances between the synapses and
the soma (Fig. 2, inset, top right). The voltage transmitted
to a cell body from an activated neighbor depends on the
distance the signal travels from the synapse to the surface of
the cell body. Finally, we devise a topological thinning strategy
that produces a nearly one-to-one correspondence between
synapses and skeleton endpoints (Fig. 2, inset, bottom right).
We produce accurate width estimates and geodesic distances
to the cell body for each synapse during the thinning process.

We propose three significant extensions on our previous
work [26] that both improve biological fidelity and computa-
tional efficiency. First, we introduce a bubble filling process to
remove the biologically-infeasible voids sometimes produced
by automated segmentation methods. Second, we segment
the somata and mask them from the topological thinning
process to anchor the axon and dendrite skeletons onto the
cell body. These two steps reduce the total computation time
by a factor of 10.58× on a connectome volume that spans over

two hundred billion voxels. Lastly, we now divide each step
of the skeleton generation process into a series of intensive
data-parallel tasks and quick global recombination steps. This
block-based approach allows us to distribute computation over
a large number of CPUs, achieving throughputs over one
million voxels per second per CPU.

II. RELATED WORKS

An increasing amount of connectomics literature focuses
on the use of skeletons for analysis [29], segmentation evalua-
tion [5], [30], visualization [6], [13], and error correction [14],
[15]. Much of this research uses TEASER [16], a general-
purpose skeleton generation approach for biomedical appli-
cations that iteratively finds distant points in the object to
connect to a root voxel, or similar derivatives [17]. However,
TEASER relies on repeated calls to Dijkstra’s algorithm to
find these distant points, a super-linear algorithm that cannot
efficiently handle block sizes over 12803 voxels. Skeletons
are more generally widely applicable in the medical image
community with applications in extracting graphs from blood
vessels [31], among others [32].
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Fig. 4. We illustrate our block-based bubble-filling algorithm on a 2D
example. Using a two-pass connected component labeling algorithm, we
cluster all “background” voxels (i.e., those that do not belong to a neuron)
into components. We label these components with a unique negative
integer. Since a bubble can span across multiple block boundaries (la-
bels−3 and−38), a global agglomeration step links these components
over the entire volume to identify those that are entirely encapsulated
by a single neuron. Components that either share a boundary with two
neurons (label −2) or leave the volume (labels −4, −1, −37, −40)
remain background.

In volume processing, topological thinning approaches re-
move the need for parameters by relying on mathematical no-
tions of curve-endpoints [19], [33] or curve-isthmuses [20] to
reduce skeleton branching. In the volume processing commu-
nity, skeletonization typically refers to reducing the dimension-
ality by one (i.e., to two dimensions). We produce centerlines
or curve skeletons [34], which we interchangeably refer to
as centerlines or skeletons. These strategies gradually erode a
binary label volume’s surface while preserving the topology
using only local context around a given voxel [35]. Generally,
these methods either remove voxels sequentially [20], [36] by
continually verifying the topological correctness before each
new deletion or in parallel [19], [37], [38], where sets of
independent voxels are processed separately. However, these
thinning strategies cannot efficiently process terabyte size
volumes as they require reading the entire voxel space into
RAM. We propose a novel block-based approach that allows
for large label volumes’ rapid skeletonization, leveraging data-
parallel computation strategies.

III. METHODOLOGY

Our method contains three main components to enforce
specific biological properties and improve the accuracy of
the geometric attributes of our generated skeletons. We take
two inputs: a label volume where each neuron is assigned
a unique 64-bit integer, and a list of synapse locations for
each neuron (Fig. 3, top left box). We first fill bubbles in
the input segmentation to correct errors that are common
during automatic segmentation (Fig. 3, top right box). We
divide this process into two data-parallel tasks with a global
recombination step between them. Since neuronal processes
are solid volumes, we can safely identify and correct these
errors without creating additional ones. Next, we downsample
the segmentation and use a modified U-Net to detect the cell
bodies from the input label volumes alone (Fig. 3, bottom
left box). Finally, we thin the neurons using a block-based,
synapse-aware strategy that connects all synapses to the cell
body (Fig. 3, bottom right box). We also divide the topological

thinning process into two data-parallel tasks followed by a
global recombination step. In Fig. 3, the image panels with
perpendicular lines represent block-based computation steps
that are parallelizable. By distributing the most computation-
ally expensive operations over a large number of CPUs, we can
quickly generate skeletons on terabyte datasets. Our previous
work focused exclusively on the synapse-aware topological
thinning component of the pipeline (Fig. 3, bottom right box),
with no parallel processing [26].

A. Bubble Filling

Many current state-of-the-art segmentation algorithms [5],
[39] tend to generate bubbles, i.e., groupings of voxels in-
correctly labeled inside a given neuron, of various shapes
and sizes. For example, membrane detection algorithms oc-
casionally misclassify mitochondria as cell boundaries. These
mislabeled boundaries can cause bubbles in the output during
an agglomeration step that transforms these pixel affinities into
a segmentation. Since we know that neuronal processes are
solid volumes, the segmentation should not contain any of
these bubbles. We define a bubble as a background component
that is entirely encapsulated by a single label. Using the
notation from the volume processing community (Fig. 6), a
bubble is a 6-connected background component within a 26-
connected object.

We divide the task of bubble filling into three steps, the
first and third of which are data-parallel (Fig. 3 top right box).
Since these bubbles in the segmentation can span over multiple
blocks, the second step requires global scope. Fig. 4 illustrates
a simple two-dimensional example of the process with two
blocks of 36 voxels each and two neuron labels (5 and 8).
The white voxels indicate background components that do not
belong to any neuron. First, we identify all 6-connected back-
ground components per block using a modified version of the
two-pass connected component labeling algorithm [40], [41].
In the figure, there are four identified background components
in each block. Each background component receives a globally
unique, decreasing, negative label assigned in raster order. The
labels for background components in the second block begin
with −37 since there are 36 voxels in the first block, and
therefore no background component in that first block could
receive label −37. This labeling method extends to all blocks;
the total number of voxels in all blocks preceding the current
one determines the starting index. This process guarantees
that each discovered background component has a globally
unique label both within and across blocks. The second step
in the bubble filling framework requires global information to
link the background components across block boundaries. We
link together neighboring background components in different
blocks and keep track of the number of neuron neighbors.
By definition, any of these background components that have
more than one neuron neighbor are not bubbles (Fig. 4, label:
−2). Similarly, any background component that leaves the
volume (Fig. 4, labels: −4,−37,−40) are not classified as
bubbles. We finally create a mapping between the background
components that are bubbles and the corresponding neuron
to which it belongs (Fig. 4, labels: −3,−38,−39). With this
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Fig. 5. We compute anchor points on each block surface to guarantee
that the skeletons generated in each block connect across block bound-
aries. For each pair of adjacent block surfaces, we overlay all labels. We
then identify central points using a 2D shrinking strategy for each labeled
component on the overlayed block surfaces. These points are non-
deletable during the forthcoming 3D thinning to guarantee connectivity
across block boundaries.

mapping, we fill the bubbles for each block in parallel across
a distributed system. This algorithm removes all bubbles,
defined as a 6-connected background component within a 26-
connected object, from the input segmentation. Note that this
process does not remove tunnels, i.e., 6-connected background
components entering and leaving the 26-connected object.

B. Soma Segementation

The synaptic strength between two neurons relies heavily
upon the two cell bodies’ geodesic distance through a given
synapse shared by the two neurons. Therefore, precise somata
segmentation is critical for exploring the interplay between
two or more neurons. Furthermore, identifying the cell bodies
can significantly reduce the time for topological thinning as we
can omit the somata’s interior points. On two representative
datasets, the somata account for approximately 65% of all
labeled voxels (Sec. V-B.2). Since somata have various shapes
and sizes, geometry-based segmentation algorithms do not
adequately identify them.

We train a fully convolutional neural (CNN) based on a
slight modification of the U-Net [27] to identify cell bodies in
the input volume. We first downsample the label volume by a
constant factor in x, y, and z. We extract a nine-channel tensor
for each query xy image tile where each channel corresponds
to the four nearest xy tiles in both directions. We find that
using a nine-channel tensor instead of the 3-D U-Net [28]
increases inference throughput while maintaining high accu-
racy. We further increase throughput while maintaining high
accuracy by reducing the number of filters per layer by a factor
of four. For each neuron label in the query tile, we construct
a binary mask for that label as input into our CNN, padding
the input tensor with zeros at the boundaries as needed. The
CNN outputs a proposed segmentation mask for the cell body
for that label. We overlay the outputs for all labels to create a
somata segmentation mask. Since neurons have only one cell
body, we discard all components in the somata segmentation
outside the largest one per neuron.

6-Connected

26-Connected

W
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U

Fig. 6. Topological thinning algorithms rely only on the local neigh-
borhood around a point p to determine deletion (left). N6(p) contains
the point p and the six points labeled U, D, N, S, E, and W. N18(p)
includes the points in N6(p) and the twelve � points. N26(p) is the
set of N18(p) and the eight points marked by . Examples of 6- and
26-connected points (right).

C. Synapse-Aware Topological Thinning
We divide the synapse-aware topological thinning strategy

into three distinct components (Fig. 3, bottom right box). The
computationally-expensive first two steps are data-parallel,
while the final step requires global scope. We elaborate on each
of the three steps in our thinning framework and the methods
for generating geometric attributes about each neurite.

1) Anchor Point Computation: Our generated skeletons need
to be continuous across block boundaries. Therefore, we can-
not thin each block entirely independently. Instead, we need to
ensure that each neuron’s skeleton remains connected across
all blocks. Existing block-stitching approaches fail to connect
the skeletons across blocks since there is no guarantee that
any skeleton points on the block surface will be 26-connected
with the adjacent block’s skeleton points. Furthermore, the
thinned centerline may not even contain any points on the
block surface. Therefore, we identify anchor points along each
block surface that guarantees that each generated skeleton
within a block connects to neighboring blocks (Fig. 5).

To find these anchor points between two blocks, we consider
the adjacent pair of surfaces for the blocks. We intersect these
surfaces to find the set of object points that are 6-connected
across the block boundary (Fig. 5, middle). We calculate these
intersected surfaces for each pair of adjacent blocks in the
volume. Then, we find the center point for each component
on each of the intersected slices in the entire volume. These
center points are the geometric centers of the corresponding
shapes. We compute these center points using a 2D shrinking
approach [42] (algorithm FP-E0). This algorithm guarantees
that the computed anchor points fall within the intersected
component, even for non-convex shapes. If an object’s cross-
section spans more than one surface (e.g., an object leaves a
block at one of the six corners), we locate anchor points on
each surface independently to guarantee continuity across all
neighboring blocks. Although this can introduce loops (Fig. 3),
we eliminate these loops at a later step (Sec. III-C.3).

2) Topological Thinning: We assume as input a series of
binary volumes where the value of ‘1’ is assigned to a voxel
if and only if it belongs to a specific neuron. Thus, we
create a distinct binary volume for every neuron that we thin
independently to produce a centerline. P is the set of object
points in the examined volume; P is the set of background
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Fig. 7. We generate estimates for neurite width during thinning. Initially,
surface voxels have a distance-to-surface value of zero and all interior
voxels∞. When we remove a surface voxel, we update the distance-to-
surface value of neighboring voxels if there is a new shortest path to the
surface through the removed voxel. In this example, a single skeleton
point with a distance of 28 nanometers remains after four thinning
iterations. The neurite width is twice the distance-to-surface value.

points with a value of ‘0’ is assigned to them.
We define three neighborhoods around each point p which

we call N6(p), N18(p), and N26(p) (Fig. 6). N6(p) contains
the six points labeled U, D, N, S, E, and W. N18(p) contains
the points in N6(p) and the twelve � points. Similarly, N26(p)
contains the points in N18(p) and the eight points. A
sequence of distinct points 〈p0, p1, . . . , pm〉 is called a j-path
from p0 to pm in a non-empty set of points X if each point
of the sequence is in X and pi is j-adjacent to pi−1 for
each i = 1, 2, . . . ,m. (Note that a single point is a j-path
of length 0.) Two points are said to be j-connected in a set X
if there is a j-path in X between them. A set of points X is
j-connected in the set of points Y ⊇ X if any two points in
X are j-connected in Y . A j-component in a set of points X
is a maximal (with respect to inclusion) j-connected subset in
X . Under this notation, an object is a maximal set of object
points that are 26-connected, and a background component is
a maximal set of background points that are 6-connected. An
object point p is called a surface point if N6(p) ∩ P 6= ∅.

Simple points are object points whose removal from the set
P does not alter the topology. Malandain and Bertrand [35]
prove the following theorem to determine if an object point p
is simple by examining the set N26(p) (i.e., the simpleness is
a local property):

Theorem 1: A point p ∈ P is simple if and only if all of
the following conditions hold:

1) The set N26(p) ∩ (P \ p) contains exactly one 26-
component.

2) The set N6(p) ∩ P is not empty.
3) Any two points in N6(p)∩P are 6-connected in the set

N18(p) ∩ P .

All simple points are surface points by Condition 2 of
Theorem 1. An endpoint p ∈ P contains exactly one object
point in N26(p). By Theorem 1, every endpoint is also a
simple point. Therefore, successive deletion of simple points
can reduce an object without any bubbles and tunnels, such as
a neuron, to a single point, with no further deletion restrictions.
Therefore, to generate expressive skeletons rather than trivial

single point reductions for such an object, researchers have
introduced a series of additional constraints to Theorem 1.
These additions range from merely preserving endpoints [43]
to defining another class of geometric constraints as non-
simple curve-isthmuses [20]. We differ from these previ-
ous approaches by introducing additional biologically-inspired
constraints that synapse points and somata surface points are
always non-simple and thus non-deletable. As discussed in
Sec. III-C.1, we also preserve all anchor points to guarantee
connectivity across the entire volume. We remove any other
points in each block if they adhere to the three requirements
of Theorem 1. Therefore, our resultant skeleton connects
all synapses to the cell body. At this stage, all skeleton
endpoints are anchor points, synapse points, or points on the
soma surface. This synapse-aware skeleton generation strategy
produces centerlines that are better suited for higher-level
analysis.

We employ a sequential thinning procedure to erode the
surface uniformly in all directions [20] for each block. Each it-
eration consists of six sub-iterations where we consider surface
points for possible deletion whose corresponding neighbor at
location U, N, E, S, W, and D is a background point (Fig. 6,
left). By Condition 2 of Theorem 1, we know that all simple
points must be on the surface. Therefore, we start by collecting
all the surface voxels into a set. We iterate over the set of
surface voxels for each sub-iteration and only consider those
whose neighbor in the proposed direction is a background
point. Note, we do not consider voxels outside the block to be
background points. We create a set of potentially deletable
points (i.e., simple points). After collecting all the simple
points in a given sub-iteration, we begin deleting points in this
set in order if they are still simple. This dual-pass approach
of creating simple points and reconfirming their simplicity is
necessary since a point may lose its simple designation as
we delete its neighbors. After we delete a point, we add any
neighbors now on the surface to the set of surface voxels. Once
we consider all potentially deletable points, we move to the
next sub-iteration. Fig. 7 shows a cross-section of a volume
that requires four thinning iterations to produce a skeleton
point.

We estimate the neurite width at each point along the
centerline during this step. Since our topological thinning
algorithm gradually erodes the surface evenly in all directions,
the output skeleton falls in the neuron’s center. The final
skeleton point itself can vary slightly based on the thinning
order (i.e., the sequence of the sub-iterations: U, N, E, S,
W, and D). In Fig. 7, the two object points immediately
west and south of the skeleton point could have remained
with a different sub-iteration ordering. Thus, we define the
neurite’s width at a given skeleton point as two times the
closest distance between it and the surface. For each object
point, we maintain an estimate for the distance from that point
to the surface. These estimates are initially zero for all surface
voxels and∞ for all interior voxels. When a surface point p is
deleted during a thinning iteration, we look at its neighborhood
N26(p) and update its neighbor’s distance-to-surface estimate
if the distance to p plus the distance estimate at p is less
than its current value. As the surface continues to erode, our
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Fig. 8. Our skeleton refinement step removes any loops in the
skeleton caused by tunnels in the segmentation (circled). This step
also calculates the geodesic distances between every synapse (black
spheres) and the cell body (purple volume).

estimates reflect the distance from a central point to the surface
more accurately. Fig. 7 shows the skeleton point’s final update,
which occurs when we delete its southeastern neighbor.

3) Skeleton Refinement: Although we fill bubbles in the
input volume, tunnels that carve through the surface remain
since the neuron does not entirely encapsulate them. These
tunnels cause loops in the skeleton. Furthermore, our anchor
points can cause loops for segments intersecting a corner or
edge of a block (Fig. 3). Since neuronal processes are acyclic,
these skeleton loops are artifacts of noisy input data and our
block linking methodology. We enforce an acyclic constraint
on the skeleton and simultaneously produce geodesic distance
from each synapse to the cell body during our skeleton
refinement phase. We run Dijkstra’s shortest path algorithm
on the skeleton using the cell body surface as the source.
We remove any skeleton point that does not belong on any
shortest path from a synapse to the cell body (Fig. 8). This
process eliminates all loops since the set of shortest paths
constructed by Dijkstra’s algorithm cannot contain loops. We
further produce the geodesic distances from each synapse to
the surface of the cell body. This refinement step also removes
any endpoints that are not synapses, e.g., anchor points at the
periphery of the volume.

IV. EXPERIMENTS

A. Datasets and Experimental Set Up

We evaluate our methods on three large-scale connectomic
datasets from three different species: rat, fruit fly, and zebra
finch (Table I).1. Neuroscientists manually segmented and
identified the synapses in JWR (rat), the smallest dataset with
34 billion voxels. The Fib-25 (fruit fly) dataset’s segmen-
tation and synapses underwent automatic segmentation and
detection, followed by extensive human proofreading over
the 72 billion voxels. Fully automatic techniques segmented
neurons [5] and identified synapses [7] in the largest dataset,
J0126 (zebra finch), that spans over 165 billion voxels.

1We provide links to each dataset that we evaluated on at the following
URL: https://www.rhoana.org/blockbased synapseaware

We compare our proposed method against two baselines:
TEASER [16] and an isthmus-based topological thinning
approach [20]. We use the Kimimaro implementation of
the TEASER algorithm from the Seung lab with the default
parameters 2. Isthmus (and other topological) thinning meth-
ods are particularly susceptible to surface noise, generating
many spurious endpoints [15], [26]. Therefore, we down-
sample all three datasets for this baseline to a resolution of
100× 100× 100 nm3. Additionally, this downsampling en-
ables us to compare isthmus thinning against all neurons
in our three datasets; without downsampling, CPU memory
constraints limit the total number of realizable skeletons since
these volume processing solutions require one to read all
points into memory. Although we downsample these datasets
to a resolution of 100× 100× 100 nm3, neurons in more
sophisticated species have larger spans and would require more
aggressive downsampling. However, reducing the resolution
even further would eliminate some of the finer morphological
details of neurons [47]. Therefore, most centerline extraction
methods will not scale to the next generation of connectomes
that come from larger mammals [48].

We ran all timing experiments for our ablation studies on an
Intel Core i7-6800K CPU 3.40 GHz with 64GB of RAM. All
code is Python and C++ with Cython wrappers and is freely
available3. We also include in these repositories the weights
for our soma segmentation model. We ran all additional timing
analysis on a cluster of 18 Intel Xeon Platinum 8268 CPUs
running at 2.90GHz with 188GB of RAM.

B. Implementation Details

We train our soma segmentation CNN on 49.6% of the JWR
dataset for 40 epochs. We use stochastic gradient descent with
ADAM optimizer; learning rate 0.001, β1 = 0.9, β2 = 0.999,
and ε = 10−07. We downsample the JWR and J0126 datasets
by a factor of 4 and 8 in each dimension during soma
segmentation.

We test our method on a wide range of block sizes to
evaluate the computational efficiency as a function of the
number of voxels. For the computational tests summarized in
Table III, we use a block size of 896×896×896 voxels, which
is approximately the largest size that could comfortably fit in
the memory constraints of our workstation. Outside of CNN
training and block size selection, our method requires no other
parameters.

C. Evaluation Metrics

We evaluate our results using three metrics. First, we use the
Neural Reconstruction Integrity (NRI) [49] score to evaluate
how well each skeleton generation method maintains the
brain’s underlying wiring diagram. A perfect NRI score of 1.0
indicates that the method preserved all intracellular pathways
between synapses without introducing additional connections.
For us, this metric illustrates the correspondence between
synapses and endpoints. For our baselines, we link synapses

2https://github.com/seung-lab/kimimaro
3https://www.rhoana.org/blockbased synapseaware
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TABLE I
WE EVALUATED OUR METHOD ON THREE DATASETS FROM THREE SPECIES: RAT, FRUIT FLY, AND ZEBRA FINCH. ACROSS ALL DATASETS, WE

GENERATE SKELETONS FOR 1,255 NEURONS AND NEURON FRAGMENTS. NONE OF THE NEURON FRAGMENTS FOR FIB-25 CONTAIN SOMA SINCE

THE CELL BODIES FOR THE FRUIT FLY LIE ON THE BOUNDARY OF THE BRAIN.

Name Species Volume Resolution No. Neurons No. Synapses
JWR [44] Rat 106× 106× 93 µm3 32× 64× 30nm3 85 50,334

FIB-25 [45] Fruit Fly 36× 29× 69 µm3 10× 10× 10nm3 763 84,157
J0126 [46] Zebra Finch 96× 98× 114 µm3 18× 18× 20nm3 407 91,465

TABLE II
WE OUTPERFORM THE BASELINE METHODS ON THE NRI SCORE ON ALL THREE METRICS BY SIGNIFICANT MARGINS. WE IMPROVE THE WIDTH

ESTIMATES BY 67%, 27%, AND 85% OVER THE TEASER ALGORITHM ON THE THREE DATASETS. ALTHOUGH TEASER PRODUCES FEWER

POINTS ON THE JWR AND FIB-25 DATASETS, WE ARE CLOSE TO THEIR VALUES.

Method

Proposed
TEASER

Isthmus Thinning

JWR
NRI ↑ Width ↓ Points ↓
0.9988 43.03 nm 26,752
0.1011 120.69 nm 18,250
0.2574 N/A 1,645,966

FIB-25
NRI ↑ Width ↓ Points ↓
0.9952 14.42 nm 11,755
0.2477 19.78 nm 10,216
0.3158 N/A 39,873

J0126
NRI ↑ Width ↓ Points ↓
0.9997 25.55 nm 25,562
0.1729 171.33 nm 33,022
0.2454 N/A 1,089,923

to endpoints that fall within 1600 nanometers of each other.
Although a cross-section’s width at a given location is not
well-defined, existing TEASER methods produce estimates for
the largest sphere that could fit inside the volume at a given
skeleton point [16], [17]. We thus evaluate the mean absolute
error of our width predictions by finding the closest surface
points to each skeleton point, akin to predicting how well we
estimate a sphere that could fit inside the neuron centered at
that skeleton point. As a measure of simplicity, our final metric
counts the average number of skeleton points per neuron.
All other things equal, we prefer fewer skeleton points [20]
since, among other reasons, this can significantly reduce the
computational costs for algorithms that use the skeletons [14],
[15].

V. RESULTS

A. Benchmark Comparison

Table II summarizes the results on the three datasets of our
method and two baselines.

1) Neural Reconstruction Integrity: Our method achieves
a near-perfect one-to-one correspondence between endpoints
and synapses. By design, each endpoint in our skeleton is a
synapse. However, occasionally, when two synapses are close
together, only one synapse will be a skeleton endpoint as the
skeleton traverses through the other towards the cell body.
Both the TEASER and the isthmus thinning strategies have
significantly lower NRI scores ranging from 0.1011 to 0.3158.
Intuitively, we expect our method to far exceed the existing
state-of-the-art on this metric. We designed our algorithm
to preserve the intracellular pathways between synapses, the
attribute that NRI scores evaluate. Previous works did not
prioritize this preservation, and therefore have significantly
lower NRI scores.

2) Width Estimation: We achieve a mean absolute error
of our width (i.e., twice the distance-to-surface) estimation
of 43.03 nm, 14.42 nm, and 25.55 nm on the JWR, FIB-
25, and J0126 datasets, respectively. The TEASER algorithm
outputs a radius for each point, roughly corresponding to the
largest sphere wholly contained in the volume centered at that

point. The mean absolute error for TEASER’s neurite width
estimate is 120.69 nm, 19.78 nm, and 171.33 nm for the three
datasets, factors of 2.17, 1.37, and 6.71 worse, respectively.
The bubbles in the input segmentation cause TEASER to have
less accurate width estimates. As a first step, the TEASER
algorithm generates a distance boundary from every voxel in
the neuron to the closest background point. With many bubbles
in the input segmentation, many of the interior voxels have
distance estimates significantly less than the truth since there
is a nearby “false” background voxel in a bubble nearby. The
isthmus thinning baseline does not produce width estimates.

3) Skeleton Simplicity: The TEASER algorithm produces
the fewest skeleton points on the JWR and FIB-25 datasets,
while our method has the fewest points on J0126. The isthmus
thinning strategy produces skeletons with many more points
because of the input volumes’ tunnels and bubbles. A refine-
ment step similar to Sec. III-C.3 would significantly simplify
these skeletons.

4) Geodesic Distance Calculation: The geodesic distances
calculated during skeleton refinement produce more accurate
estimates for the distance between a synapse and the cell
body than other baseline approximations such as the euclidean
distance. On average, the geodesic distance between a synapse
and the cell body is 58.50% and 66.16% greater than the eu-
clidean distance on the JWR and J0126 datasets, respectively.
Over the entire dataset, the differences in estimated physical
path length amount to 20 321.96 nm and 17 238.31 nm per
synapse.

5) Computational Complexity: We evaluate the total CPU
time required on our cluster to skeletonize all three datasets
using our method and TEASER on blocks of size 1024 ×
1024 × 1024. Our method generated skeletons in 8.43 h,
38.49 h, and 62.88 h on the JWR, FIB-25, and J0126 datasets.
TEASER took 14.38 h, 35.24 h, and 96.63 h on the JWR, FIB-
25, and J0126 datasets. Our method significantly outperforms
TEASER on the JWR and J0126 datasets (1.71× and 1.54×
quicker) because, in part, the masking of the detected somata
dramatically reduces the number of voxels to process during
thinning. TEASER outperforms our method on FIB-25 (1.09×
quicker), which contains no cell bodies.



MATEJEK et al.: SCALABLE BIOLOGICALLY-AWARE SKELETON GENERATION FOR CONNECTOMIC VOLUMES 9

Fig. 9. Our biologically-aware skeleton generation strategy produces centerlines anchored to the cell bodies that maintain connections between
all synapses. Here, we show one neuron from the JWR dataset and the generated skeleton. The black spheres represent synapses. We see that
the skeleton contains all synapses, leading to the high NRI score, which measures the correspondence between skeleton endpoints and synapses.

6) Qualitative Results: Fig. 9 shows a skeleton generated for
a complete neuron from the J0126 dataset. The black spheres
indicate synapse locations. Our skeleton refinement process
anchors the skeletons to the cell body and removes any self-
loops in the skeletons caused by tunnels through the neuron
surface.

B. Ablation Studies
Here, we discuss the improvements in computational com-

plexity, width estimation, and the number of skeleton points
when adding bubble filling and soma segmentation. The NRI
score minimally varies when removing certain parts of the
pipeline since the thinning algorithm, regardless of input
segmentation (with bubbles, with soma, with neither, etc.),
will create a near-perfect correspondence between synapses
and endpoints.

1) Bubble Filling: Many factors contribute to the number
of bubbles and their relative sizes in a label volume. The
semi-automatic approach used to segment the FIB-25 image
volume produces relatively few bubbles (9,525) at just 0.08%
of the neuron volume. The JWR and J0126 datasets have
117,568 and 24,149,518 bubbles, accounting for 0.51% and
0.80% of the total volume, respectively. In particular, the
flood filling reconstruction algorithm [5] used for J0126 left
millions of tiny bubbles—over 85% of the bubbles in the vol-
ume contain fewer than five voxels. The topological thinning
algorithm described in Sec. III-C.2 forms shells around these
bubbles to preserve the number of background components.
By eliminating these bubbles, we speed up this step in our
pipeline by 11.74%, 1.17%, and 57.16% on the JWR, FIB-
25, and J0126 datasets, respectively. The benefits of bubble
filling are minimal for FIB-25 since there are only 9, 525
total bubbles. Bubble-filling is computationally less expensive
than topological thinning, achieving a throughput of around six
million voxels per second. However, since there are relatively
few bubbles in the JWR and FIB-25 datasets, this extra bubble

filling step increases the total time to skeletonize the volume
by 28.78% and 9.17%, respectively (Table III). On the other
hand, filling the bubbles in the J0126 volume decreases the
total run time by 42.56%, when we also mask the cell bodies
(Table III). For future datasets, one can sample a small section
of the total volume to determine the relative number of bubbles
and the potential value of bubble filling for each specific label
volume.

It is difficult to quantify the effect that bubbles in the
volume have on the width estimates since the bubbles cause
the “centerlines” to divert from the actual middle of the neurite
(Fig. 2, inset, top left). Since the thinning algorithm preserves
all intracellular pathways between synapses, the same neurite
branches will have centerlines regardless of bubbles in the
segmentation. Therefore, we approximate the error introduced
by bubble filling by considering the average skeleton point
width along all neurites (i.e., excluding any skeleton points in
the cell bodies). We find that the average width after bubble
filling is 0.63%, 2.09%, and 26.31% greater than without that
step on the FIB-25, JWR, and J0126 datasets, respectively.
Again, we see a more pronounced effect on the J0126 dataset,
which has a higher incidence of bubbles.

Bubble filling has a negligible effect on the number of
skeleton points on the FIB-25 and JWR datasets, with a
difference of less than 1.5%. However, for J0126, removing
bubbles before masking the cell bodies and running topo-
logical thinning reduced the number of skeletons points by
18.82%. We expect this larger difference since the J0126
dataset contains millions of more bubbles at a higher fill rate
than the other two datasets.

2) Soma Segmentation: Our CNN predicts which voxels
belong to cell bodies with 99.28% accuracy (true positive rate:
99.77%, false positive rate: 0.76%) on the saved testing half
of the JWR dataset. There are no cell bodies in the FIB-25
dataset. We reduce the time for topological thinning by 49.95%
for JWR and 60.21% for J0126 by masking out the detected



10

0 250 500 750 1000 1250 1500 1750 2000

Millions of Voxels

0

5000

10000

15000

20000

25000

S
ke

le
to

ni
za

tio
n 

T
im

e 
(s

ec
on

ds
)

FIB­25
84235.72 voxels / sec (R2 = 0.9725)

0 50 100 150 200 250

Millions of Voxels

0

1000

2000

3000

4000

JWR
73950.01 voxels / sec (R2 = 0.9663)

0 200 400 600 800

Millions of Voxels

0

2000

4000

6000

8000

10000

12000

14000

J0126
64761.97 voxels / sec (R2 = 0.9625)

Fig. 10. Our block-based topological thinning strategy runs linearly with the number of non-zero voxels in the volume. Here, we show the timing
results for the three datasets on various block sizes.

TABLE III
AN ANALYSIS OF THE COMPUTATIONAL IMPROVEMENTS WHILE USING

THE ENTIRE SKELETON GENERATION PIPELINE. ON J0126, ADDING

BUBBLE FILLING AND SOMA SEGMENTATION REDUCES THE TOTAL CPU
TIME BY 10.58×.

Bubble Filling Soma Segmentation JWR FIB-25 J0126
X X 5.19h N/A 45.29h

X 4.03h N/A 78.85h
X 10.37h 33.54h 113.82h

20.56h 30.72h 479.19h

cell bodies, after filling all bubbles (Table III). These cell
bodies contain many voxels (64.46% of the total volume, on
average) and are not structurally interesting for skeletonization
purposes. Removing the cell bodies from the segmentations
before topological thinning significantly reduces the number
of points in the skeletons. On the JWR and J0126 datasets,
masking the somata reduced the number of skeleton points
by 68.42% and 26.87%, respectively. Since the width of
a skeleton point within a cell body is undefined and not
particularly biologically relevant, we do not consider how
soma segmentation affects the average width of skeleton points
in the volume.

3) Synapse-Aware Topological Thinning: Fig. 10 illustrates
the relationship between topological thinning time and the
number of voxels belonging to neurons in a volume. For this
set of experiments, we produced skeletons using varying block
sizes ranging from 512× 512× 512 to 2048× 2048× 2048.
The y-axes only indicate the time for topological thinning. We
achieve an average throughput between 65, 000 and 85, 000
object voxels per second per CPU. These data points consider
the number of voxels belonging to a neuron in a given block,
not the total number of voxels in a block. Typically, 85-95%
of each dataset’s voxels remain unlabeled because neurosci-
entists prioritize the reconstruction and proofreading of spe-
cific neurons. Without bubble filling and soma segmentation,
the end-to-end skeletonization time for the JWR and J0126
datasets increases by a factor of 3.96 and 10.58, respectively
(Table III). The CPU time required to extract centerlines from
the J0126 dataset plummeted from 479.19 h to 45.29 h with the
addition of bubble filling and soma segmentation. Furthermore,
the heaviest computational parts of the algorithm can run in
parallel.

VI. CONCLUSIONS

Rapid skeleton generation of reconstructed neural volumes
has become an increasingly important component in the con-
nectomic pipeline used for analysis, segmentation evaluation,
visualization, and error correction. We propose an efficient,
biologically-aware skeleton generation method that produces
accurate centerlines while maintaining the neurites’ critical
geometric properties for further analysis. Although we fo-
cus our methods on the giga- and tera-voxel datasets in
the connectomics literature, our methods also extend to the
general medical imaging community. Researchers have used
skeletonized representations of blood vessels previously to
extract graphs and determine the health of specific organs,
such as the liver [31]. By adding geometric attributes such
as blood vessel width, we could simulate blood flow in these
organs and detect potential medical issues in a patient.

Our method divides our pipeline into a series of computa-
tionally intensive data-parallel tasks and faster recombination
steps that require a global scope. Our method significantly
improves over existing methods, particularly on automatically
generated segmentations that produce an abundance of bub-
bles. We report over a 10.58× speed up on one of our datasets
over our previous work [26]. Furthermore, we designed our
solution so that the computation-heavy tasks run in parallel
on a distributed system, enabling us to achieve a throughput
of over one million voxels per CPU. Our topological thinning
running time per block is empirically linear to the number
of voxels in the block, allowing us to scale to more massive
datasets without an exploding number of blocks. Our scalable
method can extract biologically-aware skeletons from massive
connectomic volumes by distributing computation across an
array of CPUs.
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