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Although the human visual system is remarkable at perceiving
and interpreting motions, it has limited sensitivity, and we can-
not see motions that are smaller than some threshold. Although
difficult to visualize, tiny motions below this threshold are impor-
tant and can reveal physical mechanisms, or be precursors to
large motions in the case of mechanical failure. Here, we present
a “motion microscope,” a computational tool that quantifies
tiny motions in videos and then visualizes them by producing
a new video in which the motions are made large enough to
see. Three scientific visualizations are shown, spanning macro-
scopic to nanoscopic length scales. They are the resonant vibra-
tions of a bridge demonstrating simultaneous spatial and tem-
poral modal analysis, micrometer vibrations of a metamaterial
demonstrating wave propagation through an elastic matrix with
embedded resonating units, and nanometer motions of an extra-
cellular tissue found in the inner ear demonstrating a mecha-
nism of frequency separation in hearing. In these instances, the
motion microscope uncovers hidden dynamics over a variety of
length scales, leading to the discovery of previously unknown
phenomena.

visualization | motion | image processing

Motion microscopy is a computational technique to visual-
ize and analyze meaningful but small motions. The motion

microscope enables the inspection of tiny motions as optical
microscopy enables the inspection of tiny forms. We demonstrate
its utility in three disparate problems from biology and engineer-
ing: visualizing motions used in mammalian hearing, showing
vibration modes of structures, and verifying the effectiveness of
designed metamaterials.

The motion microscope is based on video magnification (1–4),
which processes videos to amplify small motions of any kind in
a specified temporal frequency band. We extend the visualiza-
tion produced by video magnification to scientific and engineer-
ing analysis. In addition to visualizing tiny motions, we quantify
both the object’s subpixel motions and the errors introduced by
camera sensor noise (5). Thus, the user can see the magnified
motions and obtain their values, with variances, allowing for both
qualitative and quantitative analyses.

The motion microscope characterizes and amplifies tiny local
displacements in a video by using spatial local phase. It does this
by transforming the captured intensities of each frame’s pixels
into a wavelet-like representation where displacements are rep-
resented by phase shifts of windowed complex sine waves. The
representation is the complex steerable pyramid (6), an over-
complete linear wavelet transform, similar to a spatially local-
ized Fourier transform. The transformed image is a sum of basis
functions, approximated by windowed sinusoids (Fig. S1), that
are simultaneously localized in spatial location (x , y), scale r ,
and orientation θ. Each basis function coefficient gives spatially

local frequency information and has an amplitude Ar,θ(x , y) and
a phase φr,θ(x , y).

To amplify motions, we compute the unwrapped phase differ-
ence of each coefficient of the transformed image at time t from
its corresponding value in the first frame,

∆φr,θ(x , y , t) := φr,θ(x , y , t) − φr,θ(x , y , 0). [1]

We isolate motions of interest and remove components due to
noise by temporally and spatially filtering ∆φr,θ . We amplify the
filtered phase shifts by the desired motion magnification factor to
obtain modified phases for each basis function at each time t . We
then transform back each frame’s steerable pyramid to produce
the motion-magnified output video (Fig. S2) (3).

We estimate motions under the assumption that there is a
single, small motion at each spatial location. In this case, each
coefficient’s phase difference, ∆φr,θ , is approximately equal to
the dot product of the corresponding basis function’s orienta-
tion and the 2D motion (7) (Relation Between Local Phase Dif-
ferences and Motions). The reliability of spatial local phase varies
across scale and orientations, in direct proportion to the coeffi-
cient’s amplitude (e.g., coefficients for basis functions orthogonal
to an edge are more reliable than those along it) (Fig. S3 and
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Fig. 1. A comparison of our quantitative motion estimation vs. a laser
vibrometer. Several videos of a cantilevered beam excited by a shaker were
taken with varying focal length, exposure times, and excitation magnitude.
The horizontal, lateral motion of the red point was also measured with a
laser vibrometer. (A) A frame from one video. (B) The correlation between
the two signals across the videos vs. root mean square (RMS) motion size
in pixels (px). Only motions at the red point in A were used in our analysis.
More results are in Fig. S4.

Low-Amplitude Coefficients Have Noisy Phase). We combine
information about the motion from multiple orientations by solv-
ing a weighted least squares problem with weights equal to the
amplitude squared. The result is a 2D motion field. This pro-
cessing is accurate, and we provide comparisons to other algo-
rithms and sensors (Fig. 1, Synthetic Validation, and Figs. S4
and S5).

For a still camera, the sensitivity of the motion microscope is
mostly limited by local contrast and camera noise—fluctuations
of pixel intensities present in all videos (5). When the video
is motion-magnified, this noise can lead to spurious motions,
especially at low-contrast edges and textures (Fig. S6). We mea-
sure motion noise level by computing the covariance matrix of
each estimated motion vector. Estimating this directly from the
input video is usually impossible, because it requires observing
the motions without noise. We solve this by creating a simu-
lated noisy video with zero motion, replicating a static frame
of the input video and adding realistic, independent noise to

A B C

D E

Fig. 2. Exploring the mechanical properties of a mammalian tectorial membrane with the motion microscope. (A) The experimental setup used to strobo-
scopically film a stimulated mammalian tectorial membrane (TectaY1870C/+). Subfigure Copyright (2007) National Academy of Sciences of the United States
of America. Reproduced from ref. 12. (B) Two of the eight captured frames . (Movie S1, data previously published in ref. 13). (C) Corresponding frames from
the motion-magnified video in which displacement from the mean was magnified 20×. The orange and purple lines on top of the tectorial membrane in B
are warped according to magnified motion vectors to produce the orange and purple lines in C. (D) The vertical displacement along the orange and purple
lines in B is shown for three frames. (E) The power spectrum of the motion signal and noise power is shown in the direction of least variance at the magenta
and green points in B.

each frame. We compute the sample covariance of the esti-
mated motion vectors in this simulated video (Fig. S7 and Noise
Model and Creating Synthetic Video). We show analytically, and
via experiments in which the motions in a temporal band are
known to be zero, that these covariance matrices are accurate
for real videos (Analytic Justification of Noise Analysis and Figs.
S8 and S9). We also analyze the limits of our technique by com-
paring to a laser vibrometer and show that, with a Phantom
V-10 camera, at a high-contrast edge, the smallest motion we can
detect is on the order of 1/100th of a pixel (Fig. 1 and Fig. S4).

Results and Discussion
We applied the motion microscope to several problems in biol-
ogy and engineering. First, we used it to reveal one component of
the mechanics of hearing. The mammalian cochlea is a remark-
able sensor that can perform high-quality spectral analysis to dis-
criminate as many as 30 frequencies in the interval of a semitone
(8). These extraordinary properties of the hearing organ depend
on traveling waves of motion that propagate along the cochlear
spiral. These wave motions are coupled to the extremely sensitive
sensory receptor cells via the tectorial membrane, a gelatinous
structure that is 97% water (9).

To better understand the functional role of the tectorial mem-
brane in hearing, we excised segments of the tectorial membrane
from a mouse cochlea and stimulated it with audio frequency
vibrations (Movie S1 and Fig. 2A). Prior work suggested that
motions of the tectorial membrane would rapidly decay with dis-
tance from the point of stimulation (10). The unprocessed video
of the tectorial membrane appeared static, making it difficult to
verify this. However, when the motions were amplified 20 times,
waves that persisted over hundreds of micrometers were revealed
(Movie S1 and Fig. 2 B–E).

Subpixel motion analysis suggests that these waves play a
prominent role in determining the sensitivity and frequency
selectivity of hearing (11–14). Magnifying motions has provided
new insights into the underlying physical mechanisms of hearing.
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Ultimately, the motion microscope could be applied to see and
interpret the nanoscale motions of a multitude of biological
systems.

We also applied the motion microscope to the field of modal
analysis, in which a structure’s resonant frequencies and mode
shapes are measured to characterize its dynamic behavior (15).
Common applications are to validate finite element models and
to detect changes or damage in structures (16). Typically, this
is done by measuring vibrations at many different locations on
the structure in response to a known input excitation. However,
approximate measurements can be made under operational con-
ditions assuming broadband excitation (17). Contact accelerom-
eters have been traditionally used for modal analysis, but densely
instrumenting a structure can be difficult and tedious, and,
for light structures, the accelerometers’ mass can affect the
measurement.

The motion microscope offers many advantages over tradi-
tional sensors. The structure is unaltered by the measurement,
the measurements are spatially dense, and the motion-magnified
video allows for easy interpretation of the motions. While only
structural motions in the image plane are visible, this can be mit-
igated by choosing the viewpoint carefully.

We applied the motion microscope to modal analysis by film-
ing the left span of a suspension bridge from 80 m away (Fig.
3A). The central span was lowered and impacted the left span.
Despite this, the left span looks completely still in the input video
(Fig. 3B). Two of its modal shapes are revealed in Movie S2 when
magnified 400× (1.6 Hz to 1.8 Hz) and 250× (2.4 Hz to 2.7 Hz).
In Fig. 3 C and D, we show time slices from the motion-magnified
videos, displacements versus time at three points, and the esti-
mated noise standard deviations. We also used accelerometers
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Fig. 3. The motion microscope reveals modal shapes of a lift bridge. (A) The outer spans of the bridge are fixed while the central span moves vertically.
(B) The left span was filmed while the central span was lowered. A frame from the resulting video and a time slice at the red line are shown. (C) Displacement
and noise SD from the motion microscope are shown for motions in a 1.6- to 1.8-Hz band at the cyan, green, and orange points in B. Doubly integrated data
from accelerometers at the cyan and green points are also shown. A time slice from the motion-magnified video is shown (Movie S2). The time at which the
central span is fully lowered is marked as “impact.” (D) Same as C, but for motions in a 2.4- to 2.7-Hz band.

to measure the motions of the bridge at two of those points (Fig.
3B). The motion microscope matches the accelerometers within
error bars. In a second example, we show the modal shapes of
a pipe after it is struck with a hammer (Modal Shapes of a Pipe,
Fig. S10, and Movie S3).

In our final example, we used the motion microscope to ver-
ify the functioning of elastic metamaterials, artificially struc-
tured materials designed to manipulate and control the propa-
gation of elastic waves. They have received much attention (18)
because of both their rich physics and their potential applica-
tions, which include wave guiding (19), cloaking (20), acoustic
imaging (21), and noise reduction (22). Several efforts have been
made to experimentally characterize the elastic wave phenom-
ena observed in these systems. However, as the small ampli-
tude of the propagating waves makes it impossible to directly
visualize them, the majority of the experimental investigations
have focused on capturing the band gaps through the use of
accelerometers, which only provide point measurements. Visu-
alizing the mechanical motions everywhere in the metamateri-
als has only been possible using expensive and highly specialized
setups like scanning laser vibrometers (23).

We focus on a metamaterial comprising an elastic matrix with
embedded resonating units, which consists of copper cores con-
nected to four elastic beams (24). Even when vibrated, this meta-
material appears stationary, making it difficult to determine if
the metamaterial is functioning correctly (Movies S4 and S5).
Previously, these miniscule vibrations were measured with two
accelerometers (24). This method only provides point measure-
ments, making it difficult to verify the successful attenuation of
vibrations. We gain insight and understanding of the system by
visually amplifying its motion.
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Fig. 4. The motion microscope is used to investigate properties of a designed metamaterial. (A) The metamaterial is forced at 50 Hz and 100 Hz in two
experiments, and a frame from the 50-Hz video is shown. (B) One-dimensional slices of the displacement amplitude along the red line in A are shown for
both a finite element analysis simulation and the motion microscope. (C) A finite element analysis simulation of the displacement of the metamaterial. Color
corresponds to displacement amplitude, and the material is warped according to magnified simulated displacement vectors. (D) Results from the motion
microscope are shown. Displacement magnitudes are shown in color at every point on the metamaterial, overlayed on frames from the motion-magnified
videos (Movies S4 and S5).

The elastic metamaterial was forced at two frequencies, 50 Hz
and 100 Hz, and, in each case, it was filmed at 500 frames per
second (FPS) (Fig. 4A). The motions in 20-Hz bands around the
forcing frequencies were amplified, revealing that the metamate-
rial functions as expected (24), passing 50-Hz waves and rapidly
attenuating 100-Hz waves (Movies S4 and S5). We also com-
pared our results with predictions from a finite element analysis
simulation (Fig. 4 B and C). In Fig. 4D, we show heatmaps of
the estimated displacement amplitudes overlaid on the motion-
magnified frames. We interpolated displacements into texture-
less regions, which had noisy motion estimates. The agreement
between the simulation (Fig. 4C) and the motion microscope
(Fig. 4D) demonstrates the motion microscope’s usefulness in
verifying the correct function of the metamaterial.

Conclusion
Small motions can reveal important dynamics in a system under
study, or can foreshadow large-scale motions to come. Motion
microscopy facilitates their visualization, and has been demon-
strated here for motion amplification factors from 20× to 400×
across length scales ranging from 100 nm to 0.3 mm.

Materials and Methods
Quantitative Motion Estimation. For every pixel at location (x, y) and time
t, we combine spatial local phase information in different subbands of the
frames of the input video using the least squares objective function,

arg min
u,v

∑
i

A2
ri ,θi

[(
∂φri ,θi

∂x
,
∂φri ,θi

∂y

)
· (u, v)−∆φri ,θi

]2

. [2]

Arguments have been suppressed for readability; Ari ,θi
(x, y, t) and

φri ,θi
(x, y, t) are the spatial local amplitude and phase of a steerable pyramid

representation of the image, and u(x, y, t) and v(x, y, t) are the horizontal
and vertical motions, respectively, at every pixel. The solution (V = (u, v)) is
our motion estimate and is equal to

V = (XT WX)
−1

(XT WY), [3]

where X is N × 2 with ith row ( ∂∂xφri ,θi
, ∂
∂y φri ,θi

), Y is N × 1 with ith row

∆φri ,θi
, and W is a diagonal N × N matrix with ith diagonal element A2

ri ,θi
.

To increase the signal-to-noise ratio, we assume the motion field is con-
stant in a small window around each pixel. This gives additional constraints
from neighboring pixels, weighted by both their amplitude squared and the
corresponding value in a smoothing kernel K, to the objective described in
Eq. 3. To handle temporal filtering, we replace the local phase variations
∆φr,θ(x, y, t) with temporally filtered local phase variations.

We use a four-orientation complex steerable pyramid specified by Portilla
and Simoncelli (25). We use only the two highest-frequency scales of the
complex steerable pyramid, for a total of eight subbands. We use a Gaussian
spatial smoothing kernel with a SD of 3 pixels and a support of 19×19 pixels.
The temporal filter depends on the application.

Noise Model and Creating Synthetic Video. We estimate the noise level
function (26) of a video. We apply derivative of Gaussian filters to the image
in the x and y directions and use them to compute the gradient magnitude.
We exclude pixels where the gradient magnitude is above 0.05 on a 0 to
1 intensity scale. At the remaining pixels, we take the temporal variance
and mean of the image. We divide the intensity range into 64 equally sized
bins. For each bin, we take all pixels with mean inside that bin and take the
mean of the corresponding temporal variances of I to form 64 points that
are linearly interpolated to estimate the noise level function f .

Estimating Covariance Matrices of Motion Vectors. For an input video
I(x, y, t), we use the noise level function f to create a synthetic video

IS(x, y, t) = I0(x, y, 0) + In(x, y, t)
√

f(I0(x, y, 0)) [4]

that is N frames long. We estimate the covariance matrices of the motion
vectors by taking the temporal sample covariance of IS,

ΣV =
1

N − 1

∑
t

(
VS(x, y, t)− V̄S(x, y)

) (
VS(x, y, t)− V̄S(x, y)

)T, [5]

where V̄S(x, y) is the mean over t of the motion vectors.
The temporal filter reduces noise and decreases the covariance matrix.

Oppenheim and Schafer (27) show that a signal with independent and iden-
tically distributed (IID) noise of variance σ2, when filtered with a filter with
impulse response T(t), has variance

∑
t T(t)2σ2. Therefore, when a temporal

filter is used, we multiply the covariance matrix by
∑

t T(t)2.

Comparison of Our Motion Estimation to a Laser Vibrometer. We compare
the results of our motion estimation algorithm to that of a laser vibrometer,
which measures velocity using Doppler shift (28). In the first experiment, a
cantilevered beam was shaken by a mechanical shaker at 7.3 Hz, 58.3 Hz,
128 Hz, and 264 Hz, the measured modal frequencies of the beam. The rel-
ative amplitude of the shaking signal was varied between a factor of 5 and
25 in 2.5 increments. We simultaneously recorded a 2,000 FPS video of the
beam with a high-speed camera (VisionResearch Phantom V-10) and mea-
sured its horizontal velocity with a laser vibrometer (Polytec PDV100). We
repeated this experiment for nine different excitation magnitudes, three
focal lengths (24 mm, 50 mm, 85 mm) and eight exposure times (12.5 µs,
25 µs, 50 µs, 100 µs, 200 µs, 300 µs, 400 µs, 490 µs), for a total of 20 high-
speed videos. The beam had an accelerometer mounted on it (white object
in Fig. 1A), but we did not use it in this experiment.
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We used our motion estimation method to compute the horizontal dis-
placement of the marked, red point on the left side of the accelerome-
ter from the video (Fig. 1A). We applied a temporal band-stop filter to
remove motions between 67 Hz and 80 Hz that corresponded to camera
motions caused by its cooling fan’s rotation. The laser vibrometer signal
was integrated using discrete, trapezoidal integration. Before integration,
both signals were high-passed above 2.5 Hz to reduce low-frequency noise
in the integrated vibrometer signal. The motion signals from each video
were manually aligned. For one video (exposure, 490 µs; excitation, 25; and
focal length, 85 mm), we plot the two motion signals (Fig. S4 B–D). They
agree remarkably well, with higher modes well aligned and a correlation
of 0.997.

To show the sensitivity of the motion microscope, we plot the correla-
tion of our motion estimate and the integrated velocities from the laser
vibrometer vs. motion size (RMS displacement). Because the motion’s aver-
age size varies over time, we divide each video’s motion signal into eight
equal pieces and plot the correlations of each piece in each video in Fig.
S4 E and F. For RMS displacements on the order of 1/100th of a pixel,
the correlation between the two signals varies between 0.87 and 0.94.
For motions larger than 1/20th of a pixel, the correlation is between
0.95 and 0.999. Possible sources of discrepancy are noise in the motion
microscope signal, integrated low-frequency noise in the vibrometer sig-
nal, and slight misalignment between the signals. Displacements with
RMS smaller than 1/100th of a pixel were noisier and had lower corre-
lations, indicating that noise in the video prevents the two signals from
matching.

As expected, correlation increases with focal length and excitation mag-
nitude, two things that positively correlate with motion size (in pixels) (Fig.
S4 G and H). The correlation also increases with exposure, because videos
with lower exposure times are noisier (Fig. S4I).

Filming Bridge Sequence. The bridge was filmed with a monochrome Point
Gray Grasshopper3 camera (model GS3-U3-23S6M-C) at 30 FPS with a reso-
lution of 800×600. The central span of the bridge lifted to accommodate
marine traffic. Filming was started about 5 s before the central span was
lowered to its lowest point.

The accelerometer data were doubly integrated using trapezoidal inte-
gration to displacement. In Fig. 3 C and D, both the motion microscope dis-
placement and the doubly integrated acceleration were band-passed with a
first-order band-pass Butterworth filter with the specified parameters.

Motion Field Interpolation. In textureless regions, it may not be possible to
estimate the motion at all, and, at one-dimensional structures like edges,
the motion field will only be accurate in the direction perpendicular to the
edge. These inaccuracies are reflected in the motion covariance matrix. We
show how to interpolate the motion field from accurate regions to inaccu-
rate regions, assuming that adjacent pixels have similar motions.

We minimize the following objective function:∑
x

(VS(x)− V(x))Σ−1
V (x)(VS(x)− V(x))T

+

λS

∑
y∈N (x)

(VS(x)− VS(y))(VS(x)− VS(y))T,
[6]

where VS is the desired interpolated field, V is the estimated motion field,
ΣV is its covariance, N (x) is the four-pixel neighborhood of x, and λS is a
user-specified constant that specifies the relative importance of matching
the estimated motion field vs. making adjacent pixels have similar motion
fields. The first term seeks to ensure that VS is close to V, weighted by the
expected amount of noise at each pixel. The second term seeks to ensure
that adjacent pixels have similar motion fields.

In Fig. 4D, we produce the color overlays by applying the above pro-
cessing to the estimated motion field with λS = 300 and then taking the
amplitude of each motion vector. We also set components of the covari-
ance matrix that were larger than 0.1 square pixels to be an arbitrarily large
number (we used 10,000 square pixels).

Finite Element Analysis of Acoustic Metamaterial. We use Abaqus/Standard
(29), a commercial finite-element analyzer, to simulate the metamaterial’s
response to forcing. We constructed a 2D model with 37,660 nodes and
11,809 eight-node plane strain quadrilateral elements (Abaqus element
type CPE8H). We modeled the rubber as Neo-Hookean, with shear mod-
ulus 443.4 kPa, bulk modulus 7.39× 105 kPa, and density 1,050 kg·m3

(Abaqus parameters C10 = 221.7 kPa, D1 = 2.71× 10−9 Pa−1). We mod-
eled the copper core with shear modulus 4.78× 107 kPa, bulk modulus
1.33×8 kPa, and density 8,960 kg·m3 (Abaqus parameters C10 = 2.39×
107 kPa, D1 = 1.5× 10−11 Pa−1. Geometry and material properties are spec-
ified in Wang et al. (24). The bottom of the metamaterial was given a
zero-displacement boundary condition. A sinusoidal displacement loading
condition at the forcing frequency was applied to a node located halfway
between the top and bottom of the metamaterial.

Validation of Noise Analysis with Real Video Data. We took a video of an
accelerometer attached to a beam (Fig. S9A). We used the accelerometer
to verify that the beam had no motions between 600 Hz and 700 Hz (Fig.
S9B). We then estimated the in-band motions from a video of the beam.
Because the beam is stationary in this band, these motions are entirely due
to noise, and their temporal sample covariance gives us a ground-truth mea-
sure of the noise level (Fig. S9C). We used our simulation with a signal-
dependent noise model to estimate the covariance matrix from the first
frame of the video, the specific parameters of which are shown in Fig. S9D.
The resulting covariance matrices closely match the ground truth (Fig. S9 E
and F), showing that our simulation can accurately estimate noise level and
error bars.

We also verify that the signal-dependent noise model performs better
than the simpler constant variance noise model, in which noise is IID. The
result of the constant noise model simulation produced results that are
much less accurate than the signal-dependent noise model (Fig. S9 G and H).

In Fig. S9, we only show the component of the covariance matrix corre-
sponding to the direction of least variance, and only at points corresponding
to edges or corners.
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