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ABSTRACT 

Motivation: RNA secondary structure plays an important role in the 

function of many RNAs, and structural features are often key to their 

interaction with other cellular components. Thus, there has been 

considerable interest in the prediction of secondary structures for 

RNA families. In this paper, we present a new global structural 

alignment algorithm, RNAG, to predict consensus secondary 

structures for unaligned sequences. It uses a blocked Gibbs 

sampling algorithm, which has a theoretical advantage in 

convergence time. This algorithm iteratively samples from the 

conditional probability distributions P(Structure | Alignment) and 

P(Alignment | Structure). Not surprisingly, there is considerable 

uncertainly in the high dimensional space of this difficult problem, 

which has so far received limited attention in this field. We show how 

the samples drawn from this algorithm can be used to more fully 

characterize the posterior space and to assess the uncertainty of 

predictions.  

Results: Our analysis of three publically available datasets showed 

a substantial improvement in RNA structure prediction by RNAG 

over extant prediction methods. Additionally, our analysis of 17 RNA 

families showed that the RNAG sampled structures were generally 

compact around their ensemble centroids, and at least eleven 

families had at least two well-separated clusters of predicted 

structures. In general, the distance between a reference structure 

and our predicted structure was large relative to the variation among 

structures within an ensemble. 

Availability: The Python implementation of the RNAG algorithm and 

the data necessary to reproduce the results described in Sections 

3.1 and 3.2 are available at http://ccmbweb.ccv.brown.edu/rnag.html 

Contact: Charles_Lawrence@brown.edu 

1 INTRODUCTION  

RNA secondary structure plays a key role in the function of many 

types of RNA, including structural RNAs, non-coding RNAs 

(ncRNA), and regulatory motifs in mRNAs (e.g. riboswitches). 

Accordingly, structural features of RNA molecules are often 

characterized by evolutionarily conserved secondary structures that 

are critical to their functions. Furthermore, there are often multiple 

                                                           
*
 To whom correspondence should be addressed.  

occurrences of these structural elements within one species (e.g. 

tRNA). Given the recent recognition of many important additional 

roles that RNAs play in cellular functions, predicting the common 

structural features of a set of RNA sequences is more important 

than ever.  

1.1 Structure prediction for a single sequence 

   Three main classes of probabilistic models of P(S|Q) for the 

prediction of the secondary structure (S) for a single sequence (Q), 

are currently available. The most popular is a thermodynamic 

model that supposes that RNA structures may be described by 

Boltzmann statistics (e.g., Mfold (Zuker et al., 1981)). The second 

model incorporates phylogenetic information into folding (e.g., 

PETfold (Seemann et al., 2008)). The third method abandons the 

bio-physical model in favor of machine learning algorithms that 

empirically infer structure based on probabilistic graphical models 

(e.g., CONTRAfold (Do et al., 2006)) or nonparametric methods 

(e.g., KNETfold (Bindewald et al., 2006)).  

   Algorithms that use a thermodynamic model have gained wide 

acceptance, particularly the early algorithms like Mfold (Zuker et 

al., 1981) and RNAfold (Hofacker et al., 1994) that use dynamic 

programming to find the most probable structure (MPS), i.e., the 

“minimum free energy structure” (MFE). However, the Boltzmann 

weighted ensemble of structures, represented as a large set of 

binary matrices, defines a high-dimensional discrete space in 

which even the most probable structure is likely to have low 

probability. Furthermore, the MPS is often not representative of 

the Boltzmann weighted ensemble of structures. In particular, there 

is no fundamental reason for the MPS to even be included in the 

high-weight region of the Boltzmann space (Carvalho et al., 2008). 

Thus, alternative estimators that gain information from the full 

ensemble of structures have emerged, including centroid estimators 

(Ding et al., 2005; Carvalho et al., 2008) and the related maximum 

expected accuracy (MEA) estimator (Do et al., 2006). A 

generalization of the centroid estimator, the γ-centroid (Hamada et 

al., 2009; 2011), permits the balancing of false positive and false 

negative errors based on the tunable parameter γ. Moreover, the 

focus on finding the MPS without uncertainty analysis implicitly 

assumes that an RNA molecule exists only in one single stable 

state, which is not the case for many RNAs, and almost certainly is 

not the case for mRNAs. To address these issues, sampling 
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algorithms like Sfold (Ding et al., 2005) provide a method to 

characterize the full ensemble of structures (Mathews 2006), and 

Bayesian confidence limits, a.k.a. credibility limits, provide a 

method to delineate  the uncertainty of an estimate (Newberg et al., 

2009; Webb et al., 2008).  

1.2 Structure prediction for multiple unaligned 

sequences 

With multiple sequences, the problem becomes harder since 

the extra unknown alignment (A) of the sequences enters and the 

model becomes P(S,A|Q). Algorithms that address the two major 

components of this problem, i.e. the prediction of common 

structure given an alignment and predicting an alignment given a 

common structure, have been developed. The first of these 

assumes an alignment of sequences is given, and seeks to predict 

the structure common to the aligned sequences, i.e. draw inference 

from P(S|A,Q). Several methods have been developed for this 

problem. Mutual information (Gutell et al., 1992) and stochastic 

context-free grammars (SCFG) (Sakakibara et al., 1994; Knudsen 

et al., 1999) have been effectively used to detect and model 

complementary covariation that is indicative of conserved base-

pairing interactions. Maximum weighted matching (MWM), a 

graph-theoretical approach, was introduced to predict common 

secondary structures allowing pseudoknots (Cary et al., 1995; 

Tabaska et al., 1998). RNAalifold (Hofacker et al., 2002; Bernhart 

et al., 2008) incorporates both thermodynamic parameters and 

sequence covariation, and permits sampling of consensus 

structures from its probabilistic model. 

Algorithms for finding a multiple alignment given a common 

structure, i.e. P(A|S,Q), have also been developed. There are well 

known generic multiple alignment algorithms, e.g., ClustalW2 

(Chenna et al., 2003) and PROBCONS (Do et al., 2005), but these 

don’t incorporate structural information, and thus model is only 

P(A|Q). Of more direct interest here are algorithms that use a given 

consensus structure to predict a multiple alignment, i.e. the model 

P(A|S,Q). Such methods can improve the alignment of RNA 

sequences (Nawrocki and Eddy, 2007). In one approach, structures 

of individual sequences are predicted separately and abstractions of 

these structures aligned (Giegerich et al., 2004; Steffen et al., 

2006; Siebert et al., 2005). Another approach (Ji et al., 2004) 

applies graph theory to find stems conserved across multiple 

sequences first, and then assembles conserved stem blocks to form 

consensus structures in which pseudoknots are permitted. The 

probabilistic covariance model (Eddy and Durbin 1994) employs 

the stochastic context free grammar (SCFG) model to multiply 

align sequences using a given consensus structure. This algorithm 

iterates between parameter estimation and alignment prediction 

using an Expectation Maximization (EM) algorithm. After 

convergence it permits sampling of alignments. Eddy and Durbin 

(1994) also presented an iterative optimization procedure that 

iterates between alignment and structure, taking an optimization 

approach instead of the sampling approach we describe here. More 

recently Yao et al. (2006) described CMfinder, an extension of this 

approach to find regulatory motifs.  

   There is a “chicken and egg” problem for these two classes of 

algorithms: a good RNA sequence alignment (A) depends on a 

specified consensus structure (S), and a good consensus structure 

(S) prediction depends on a good alignment (A). One approach to 

solving this dilemma is to simultaneously align and fold a pair of 

RNA sequences with a dynamic programming algorithm (Sankoff, 

1985). However, the computational complexity is O(n6), too high 

to be of practical value in all but very short sequences. Heuristics 

based on simplifications and restrictions of the Sankoff algorithm 

for multiple sequences (more than two) have been developed, such 

as FoldalignM (Torarinsson et al., 2007), mLocARNA (Will et al., 

2007), Murlet (Kiryu et al., 2007) and RNA Alignment and 

Folding (RAF) (Do et al, 2008). 

   Another approach is to iteratively predict structure and alignment 

conditional on each other. Early work focused on finding the 

optimal solution with an EM algorithm (Eddy et al., 1994; Yao et 

al., 2006), or simulated annealing (Lindgreen et al., 2007). 

Recently, approaches that draw samples from probabilistic models 

using Markov chain Monte Carlo (MCMC) procedures have been 

described. Meyer et al. (2007) employs a Metropolis-Hastings 

algorithm that makes proposals for local alignment and structure 

changes, accepting them probabilistically. However, the slow 

convergence of these local-move algorithms tends to require a 

large number of sampling steps. Another variation is RNAsampler 

(Xing et al. 2007), which heuristically iterates between the 

alignment and sampling of candidate stems in the multiple 

sequences. 

   Gibbs sampling, introduced by Geman and Geman (1984), is 

another popular MCMC procedure. Inspired by a theorem of Liu 

(1994) concerning accelerated convergence of various Gibbs 

samplers, here we describe a blocked sampling algorithm that 

iterates between alignment (A) and structure prediction (S). In 

Liu's first theorem, three alternative Gibbs sampling approaches 

are considered: 1) the standard Gibbs sampler in which each of the 

random variables (RV) are sampled individually, 2) the grouped 

Gibbs sampler in which two or more of the RVs are sampled 

jointly in blocks, and 3) the collapsed Gibbs sampler in which at 

least one of the RVs is removed from the problem via integration. 

He compares their convergence rates based on their forward 

operators, Fs, Fg, Fc, respectively. The theorem shows that the 

norms of these operators are ordered as follows ||Fc|| ≤ ||Fg|| ≤ ||Fs||. 

Thus the expected number of iterations until convergence follows 

the reverse order. However, as he points out, if the computation 

required at each iteration to sample blocks or to remove random 

variables via integration is too large, then any improvements in 

convergence rate may not be worth the added computational 

expense. Thus, the key is to find efficient procedures for blocking 

or integrating.  

   Here we describe Gibbs a sampling algorithm that capitalizes on 

Liu’s theorem via block sampling.  This algorithm, which we call 

RNAG, iteratively block samples from the conditional probability 

distributions P(Structure | Alignment) and P(Alignment | 

Structure), and in so doing refines the models of both Alignment 

and Structure. We use these samples to characterize the shape of 

the posterior space using hierarchal clustering and centroid 

estimators. We use γ-centroid estimators to delineate the tradeoff 

between the positive predictive value and the sensitivity of the 

algorithm, and credibility limits to characterize the uncertainty of 

our predictions. 

2 METHODS 
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2.1 RNAG Sampling Algorithm 

Consider the probabilistic model P(A,S|ΛA,ΛS,Q) for multiple 

sequences Q, where the hidden variables are: A (the alignment) 

and S (the consensus structure), and ΛA, ΛS are the corresponding 

parameters of the A, S prediction steps. The goal is to find samples 

from the joint distribution P(A,S|ΛA,ΛS,Q). RNAG, the blocked 

Gibbs sampler described here, achieves this by iteratively sampling 

from the conditional probabilities P(S(t)|A(t-1), ΛS,Q) and P(A(t)|S(t-

1), ΛA ,Q), at the t-th iteration. Notice that our algorithm provides a 

generic framework that can employ any probabilistic sampling 

algorithms in each of its two sampling steps. Specifically, RNAG 

proceeds as follows: 

2.1.1 Alignment Initialization In theory, it does not matter if the 

algorithm starts from an initial alignment or an initial consensus 

structure. Here we begin with an initial alignment A(0) produced by 

PROBCONS (Do et al., 2005) under the model P(A|Q). 

2.1.2   Iteration Steps 

(1) Sample a consensus structure (S(t)) given an alignment (A(t-1)).  
To sample from P(S(t)|A(t-1), ΛS,Q), we employ RNAalifold 

(Bernhart et al., 2008), which combines thermodynamic pa-

rameters and empirical parameters estimated from the aligned 

sequences using a default covariation weight ΛS. 

(2) Sample an alignment (A(t)) given a consensus structure (S(t-1)).  
To sample from P(A(t)|S(t-1), ΛA,Q), we employ the Infernal 

package (Nawrocki et al.,2009). ΛA is a set of empirical pa-

rameter estimates (parameters for SCFG model) obtained 

from P(ΛA |S(t-1),A(t-1),Q) using an Expectation Maximization 

(EM) algorithm. Given ΛA, a multiple alignment is sampled 

from P(A(t)|ΛA , S(t-1) ,Q) using the SCFG model. 

Figure S1 shows a diagram of these steps. 

2.2 Sample analysis: Characterization of the posterior 

space 

As described by Mathews (2006), sampling from the Boltzmann 

weighted ensemble of secondary structures can provide a full char-

acterization of this structure space. Here, the RNAG sampler draws 

samples from the very high-dimensional space of structures and 

alignments. In our approach, attention is focused on the sampled 

structures, though the multiple alignments also evolve during the 

sampling. We employed clustering analysis to characterize the 

overall shape of the posterior space of structures, and credibility 

limits to delineate uncertainty in predicted structures. 

 

2.2.1 Clustering analysis Boltzmann weighted ensembles of 

RNA secondary structures can exhibit complex shapes, which 

often include multiple modes (Ding et al., 2006). Here we examine 

the shape of the probabilistically weighted posterior space using a 

hierarchical clustering procedure like that employed by Ding et al. 

(2006) for a single sequence. 

Direct comparison of the sampled consensus structures is im-

practical because of the dependence of the indices of the bases of 

sampled structures on the alignment. Thus, we followed the second 

evaluation procedure described by Hamada et al.(2011), projecting 

the consensus structure back onto each sequence, and then used a 

hierarchical clustering method on the projected structures. 

2.2.2 Centroid Estimator We calculated γ-centroid estimators 

(Hamada et al., 2009) for structure prediction and for the compari-

son of alternative predictive methods. Specficially, we used esti-

mates of marginal probabilities of base pairs obtained from base 

pair frequencies from the Gibbs sampler after a burn-in period to 

obtain the γ-centroid estimators. For all the RNAG experiments 

described in Results, we sampled a burn-in period of 1,000 itera-

tions, and used the next 1,000 sampled structures for clustering and 

calculation of the centroid. The γ-centroid, as a generalization of 

the centroid estimator, provides a means to balance sensitivity and 

positive predictive value (PPV) and accordingly can be used to 

compare procedures over the range of this tradeoff. We employed 

the γ-centroid estimator for such comparisons and the original 

centroid estimator in calculations of bias and variance. 

2.3 Evaluation Metric 

2.3.1 Prediction Accuracy To evaluate prediction accuracy, we 

compared the predicted structure for each sequence with its 

reference structure and calculated sensitivity (SEN) and positive 

predictive value (PPV). SEN is the fraction of known base pairs 

correctly predicted, and PPV is the fraction of predicted base pairs 

that are in the known structure (Mathews, 2004). Using γ-centroid 

estimation, we can interpolate a curve on the PPV-SEN plane 

based on different γ values (Hamada et al., 2011). Following the 

lead of Do et al. (2008), we report the average of (PPV, SEN) 

calculated for each test case, weighing each sequence equally.  For 

the comparison of the relative performance of RNAG across RNA 

families, we used the area under the curve, acquired with linear 

interpolation, as a qualitative measure. 

2.3.2 Uncertainty Analysis 

(1) Credibility Limits: any prediction of structure provides only a 

point estimate of secondary structure, giving no information 

about the uncertainty of that estimate. We employed Bayesian 

confidence limits, a.k.a. credibility limits, to characterize this 

uncertainty (Newberg et al., 2009; Webb-Robertson et al., 

2008). These limits compute the radius of the smallest hyper-

sphere centered at the estimate containing 95% of the poste-

rior weighted space. 

(2) Bias-Variance Analysis:  In any prediction based on finite 

data involving comparison with a reference, deviations from 

the reference involve two components, bias and variance, 

where the bias measures the distance between the mean and 

the reference, and the variance gives the variation around the 

mean. In this discrete setting, where the secondary structure is 

treated as a binary matrix with random elements, the mean is 

almost certainly not a feasible RNA secondary structure be-

cause it will almost certainly not be integer valued. Accord-

ingly, here we measured bias as the distance between the ref-

erence structure and the structure in the ensemble that is near-

est to the mean in the least squares sense (the centroid) (Car-

valho and Lawrence, 2008), and the variance as the variation 

around the centroid of the ensemble. As Carvalho and Law-

rence (2008) have shown, for binary variables, square error 

distances, pth power error differences, and Hamming distances 

are equal; thus we used Hamming distances to calculate bias.  
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(3) Separation index: To assess how well-separated the clusters of 

secondary structures were relative to the variation within clus-

ters, we used the following separation index:  

 
1 2

D
S

C C
=

+
                                                                 (1) 

where D is the Hamming distance between the centroids of 

the two largest clusters, i.e. the total number of paired bases 

contained in  one centroid structure but not  in the other,  and 

1 2
,C C  are the 95% credibility limits around the two largest 

cluster centroids. When this index is at least 1, no more than 

5% of the structures from either cluster are within the 95% 

credibility limit of the other cluster, and thus we say the two 

largest clusters are well-separated.  

3 RESULTS 

Following Hamada et al. (2011), we picked 17 γ-centroid 

estimators, where γ∈{2k: −5 ≤ k ≤ 10,k∈Z}∪{6} to interpolate 

the curve on the PPV-SEN plane. 

3.1 Training 

Because there are only a few current algorithms for each step of 

RNAG, and because we used default parameters and settings for 

each algorithm employed in our study, training in this study was 

very limited. Furthermore, since there are very few available 

algorithms that draw samples, we have explored only RNAalifold 

and Infernal for the two iteration steps. Using the dataset of Kiryu 

et al. (2007) we compared CLUSTALW and PROBCONS for the 

initialization step, and found that PROBCONS returned better 

results; thus the results presented here all use PROBCONS.  

3.2 Comparison of accuracy (testing) 

In our first accuracy assessment, we evaluated RNAG on the 

benchmark dataset from Lindgreen et al. (2007), herein called the 

MASTR dataset. Structure prediction results from current algo-

rithms for this dataset are given in Do et al.  (2008) and plotted 

together with the sensitivity-PPV curve from RNAG in Figure 1.  

 
Fig 1. Average performance of different secondary structure prediction 

methods in the PPV-SEN plane for the MASTR dataset (Lindgreen et al., 

2007). PPV=TP/P= TP/(TP+FP), SEN=TP/T=TP/(TP+FN). Note: the axis 

ranges are set from 0.3 to 1.0, to improve readability.  Points showing the 

performance of extant procedures were taken from Do et al. (2008) except 

for CMfinder, which was included because of its similarity to RNAG. 

CMfinder was run at default values and settings. 
We also tested and compared different align-fold algorithms on  

the BRAliBASE II dataset (Gardner et al., 2005), which contains 

collections of ~100 five-sequence sub-alignments, sampled from 

four specific Rfam families (5S rRNA, group II intron, tRNA and 

U5 spliceosomal RNA) for which the BRAliBASE II dataset in-

cluded a references alignment. For comparison, the results reported 

in Do et al. (2008) were averaged over the four RNA families and 

are shown plotted on the PPV-SEN plane along with the RNAG 

frontier in Figure 2. 

Fig 2. Average performance of different secondary structure prediction 

methods in the PPV-SEN plane for four RNA families (5S rRNA, group II 

intron, tRNA and U5 spliceosomal RNA) from the BRAliBASE II dataset 

(Gardner et al., 2005).  Note the axis ranges are set from 0.3 to 1.0, to 

improve readability. Points showing the performance of extant procedures 

were taken from Do et al. (2008) except for CMfinder, which was run at 

defaults. 

 

These comparisons demonstrate that the results of extant pro-

cedures lie below the RNAG frontier, indicating that, on average, 

RNAG provides a better tradeoff between PPV and sensitivity.  

Not surprisingly, this isn’t always the case. Do et al. (2008) pre-

sents the results of prediction methods for each of the four RNA 

families in the BRAliBASE II dataset. Figure S2 shows that 14 of 

these 16 predictions are below the RNAG frontier and two are 

somewhat above this frontier.  

3.3 RNAG performance characteristics 

We explored RNAG’s properties using the benchmark dataset 

described by Kiryu et al. (2007), which contains 85 reference 

alignments of 10 sequences each, representing 17 RNA families 

from the Rfam database (Griffiths-Jones et al., 2005). This dataset 

spans a range of sequence lengths from 51 to 291 bases, and a 

range of sequence identity from 40% to 94%, including nine 

families with identities under 60%.  Kiryu et al. (2007) used this 

dataset to compare algorithms that predict a consensus structure for 

an aligned set of sequences. Perhaps not surprisingly, as shown in 

Figure S3, RNAG also out-performs these procedures, including 

CentroidAlifold (Hamada et al., 2011), a state-of-the-art algorithm. 

However, our purpose in using this dataset was to characterize the 

variation in RNAG performance with number of sequences in the 
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Table 1.Effects of the number of sequences on prediction results. For each row, we not only calculate the average area under the PPV-SEN curve for 

accuracy comparison, but we also summarize the bias-variance statistics and the size of the two biggest clusters to visualize the clustering results. In order to 

normalize bias, standard deviation (std), and credibility limits with respect to the sequence length, we divide them by the average sequence length for the 

family.

Area under PPV-SEN curve #samples 95% Credibility Limit 

#seqs ensemble 1st cluster 2nd cluster Bias Std 1st cluster 2nd cluster 1st +2nd  cluster ensemble 1st cluster 2nd cluster 

2 0.44  0.46  0.37  0.27 0.04 728.13 150.76 878.89 0.21 0.14 0.11 

3 0.58  0.59  0.49  0.20 0.03 793.15 124.94 918.09 0.14 0.10 0.07 

4 0.58  0.58  0.48  0.20 0.03 791.66 115.00 906.66 0.14 0.09 0.06 

5 0.62  0.63  0.51  0.17 0.03 802.20 113.24 915.44 0.12 0.08 0.05 

6 0.67  0.67  0.54  0.16 0.03 800.50 111.66 912.16 0.11 0.07 0.05 

7 0.70  0.69  0.57  0.15 0.03 795.52 111.92 907.44 0.10 0.07 0.05 

8 0.73  0.71  0.60  0.15 0.03 797.56 116.19 913.75 0.10 0.07 0.04 

9 0.73  0.73  0.60  0.14 0.02 790.59 122.38 912.97 0.09 0.06 0.04 

10 0.75  0.74  0.63  0.13 0.02 792.85 125.11 917.96 0.09 0.06 0.04 

 

 

 

alignment and over various RNA families. 

Fig3. Improvement of the RNAG PPV-SEN curves with increasing 

numbers of input sequences.  

 

3.2.1 Variation with the number of unaligned sequences  To 

assess the effect that the number of input sequences has on 

prediction accuracy, we took N (2≤N≤10) random sequences 

from each of the 85 reference alignments, ran RNAG on these 

subsets of sequences and averaged over 10 independent runs 

(except for N=10). The results are given in Table 1 and a subset 

of these results are shown as PPV-SEN curves in Figure 3, 

which shows that with additional sequences the structure 

prediction improves, but with decreasing increments, as 

indicated by the small improvement between 8 and 10 input 

sequences. However, Figure S4 and Table S1 show that this 

finding differs between sequence sets, and depends on the 

average pairwise identity of the input sequences, suggesting that 

larger gains are attainable with additional sequences when the 

input sequences have under 60% average pairwise identity. 

Notice in Table 1 that the bias decreases with the number of 

sequences in the alignment, but with decreasing gains, which is 

in agreement with improvements in the area under the PPV-SEN 

curves.  

 

Fig 4. 2D plot of bias per base pair and the area under the PPV-SEN 

curve of the ensemble centroid for the 17 RNA families in Table 2. The 

results for each family are represented by a symbol indicating their 

functional group. 

 

 3.3.2 A Detailed Look into each Family   The above results 

describe the overall performance of RNAG for this dataset, but 

don't reveal differences across the families. In Table 2, we list 

the bias-variance statistics, area under the PPV-SEN curve and 
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cluster statistics for each family. As this table indicates, there is 

considerable variability in the biases and under-curve areas, 

which reflects the fact that the ability to predict the reference 

structure varies widely between families. Figure 4 highlights 

this variability and shows a strong correlation between bias and 

the area under the PPV-SEN curve.  

 

Table 2. A detailed look into the RNAG results on 17 RNA families, listed in groups by their functional type. We calculated the average area under the PPV-

SEN curve for accuracy comparison, as well as statistics like bias, standard deviation (std), the credibility limit, and the separation index from cluster 

analysis, to better understand the posterior secondary structure space. 

95% Credibility Limit PPV-SEN Area # Samples 

RNA Family RNA type 

mean 

length 

(percent 

identity) Bias Std ensemble 1
st
 cluster 2

nd
 cluster  ensemble 1

st
 cluster 

2
nd

 

cluster  1
st
+2

nd
  

1
st
 

cluster 

2
nd

 

cluster  

Sepa-

ration 

Index 

T-box tRNA 244(45) 0.10 0.01 0.06 0.04 0.02 0.58  0.55  0.47  926 826 100 1.00  

t-RNA tRNA 73(45) 0.02 0.01 0.03 0.01 0.01 1.00  0.99  0.91  949 888 61 2.50  

5S-rRNA rRNA 116(57) 0.17 0.02 0.07 0.05 0.03 0.70  0.70  0.67  922 751 171 0.88  

5-8S-rRNA rRNA 154(61) 0.18 0.03 0.14 0.10 0.08 0.43  0.42  0.26  907 744 163 0.56  

Retroviral-psi Rviral 117(92) 0.07 0.05 0.15 0.11 0.05 0.99  0.99  0.47  981 952 29 1.25  

U1 sRNA 157(59) 0.16 0.02 0.06 0.06 0.02 0.69  0.69  0.63  988 928 60 1.13  

U2 sRNA 182(62) 0.08 0.02 0.05 0.05 0.02 0.90  0.90  0.71  981 941 40 1.14  

Sno-14q-I-II sRNA 75(64) 0.07 0.03 0.12 0.08 0.07 1.00  0.92  0.86  838 636 202 0.47  

Lysine riboswitch 181(49) 0.07 0.02 0.06 0.05 0.03 0.94  0.93  0.84  983 923 60 0.88  

RFN riboswitch 140(66) 0.15 0.03 0.11 0.06 0.06 0.68  0.64  0.60  820 574 246 0.58  

THI riboswitch 105(55) 0.08 0.02 0.07 0.06 0.02 0.89  0.88  0.75  968 869 99 1.13  

S-box riboswitch 107(66) 0.09 0.02 0.07 0.03 0.03 0.88  0.87  0.74  945 806 139 1.17  

IRES-HCV Cis 261(94) 0.25 0.05 0.21 0.16 0.08 0.61  0.58  0.44  936 877 59 1.00  

SECIS Cis 64(41) 0.17 0.02 0.08 0.02 0.02 0.74  0.71  0.72  840 679 161 1.50  

UnaL2 Cis 54(73) 0.18 0.03 0.06 0.02 0.02 0.33  0.62  0.61  867 752 115 1.00  

SRP-bact srpRNA 93(47) 0.16 0.03 0.12 0.04 0.04 0.79 0.78 0.70 834 646 188 2.75  

SRP-euk-arch srpRNA 291(40) 0.23 0.01 0.04 0.03 0.02 0.49 0.48 0.47 921 837 84 0.80  

Avg   142 0.13 0.02 0.09 0.06 0.04 0.76 0.74 0.63 926 826 100 0.90  

 

Furthermore, we observed that the normalized 95% credibility 

limits for the ensemble centroid are under 10% for eleven of the 

families, which indicates that the probabilistically weighted 

ensembles are quite tightly compact around the centroid of the full 

ensemble for the majority of the families. Normalization was 

obtained by dividing the Hamming distances by the lengths of the 

sequences. In spite of this, eleven families have a separation index 

of at least 1 (shown in the last column of Table 2), indicating that 

the cluster centroids are well separated for these eleven families. 

Finally, notice that the biases, which give the distances between 

the predicted structures and the reference structures, are more than 

twice as large as the standard deviations of the distances of 

ensemble members around the predicted structures, which shows 

that the predictions are substantially more precise than they are 

accurate.  

4 DISCUSSION: 

Our results comparing RNAG predictions to those from several 

additional recently published methods show that the existing 

procedures yielded a combination of sensitivity and PPV that were 

considerably below the RNAG frontier. Some features of RNAG 

suggest an explanation for this behavior. RNAG not only inherits 

the advantages of the sampling method, but also enjoys a 

theoretical convergence advantage over the Metropolis-Hastings 

algorithm, which employs local moves. Since RNAG samples full, 

valid secondary structures, RNAG enjoys an advantage over 

iterative algorithms that sample only stems. Also, since the 

recursions sample the full space of alignments and structures 

directly in each of its two steps, it avoids the need to use a reduced 

model; a concession that is common to several extant procedures. 

However, since it is an MCMC procedure, there are no means to 

assure that it has converged to its target distribution.  

4.1 Limitations of comparison datasets and training 

We specifically selected three published datasets and compared 

RNAG’s performance to the published performance of other 

methods in order to avoid self-serving selection biases and biases 

that can arise with less than ideal application of extant methods.  

We added CMfinder to these comparisons by first reproducing the 

results in Yao et.al. (2006) with default settings and then applying 

the published algorithm to the three data set in this study with 

default settings. CMfinder was included because it is similar to 
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RNAG, and as shown by Yao et al. (2006), it can be used to 

predict global RNA secondary structure, but in fairness, note that 

CMfinder was not designed primarily for this purpose. Of the three 

datasets, the most extensive is that of Kiryu et al. (2007), which 

includes 17 Rfam families. We accept that in this field it is almost 

always difficult or impossible to obtain a truly representative 

dataset. Nevertheless it is important to recognize that available 

datasets have limitations.  Specifically, generalizations from these 

seventeen, plus the datasets from the other two comparison groups 

to the population of RNAs, should be drawn with some caution as 

the combined sample size is not large and these sets are not 

random samples. As pointed out above, we did very little to train 

RNAG in this implementation.  

4.2 Potential Improvement of RNAG 

There are several potential means for improving RNAG. Since we 

have done no training to select options or parameters for the 

algorithmic components in this implementation, the performance 

of RNAG could potentially be improved by exploiting the full 

strength of these packages and by tuning the model on a training 

set. Moreover, RNAG is only a framework for computation and the 

auxiliary packages above can be replaced by any other algorithms 

that are designed for P(A|Q), P(S|A,Q) and P(A|S,Q). Furthermore, 

RNAG now takes the theoretical advantage of a blocked Gibbs 

Sampler by grouping parameters to sample into S and A. A further 

increase in the convergence rate may be available by integrating 

out A from the model to take advantage of the collapsed Gibbs 

Sampler. There are several other options for improving the 

algorithm’s speed, including the use of better stopping rules, 

parallel implementation, and the use of more advanced sampling 

methods such as parallel tempering. 

4.3 An alternative goal of these algorithms 

Our finding of substantial biases in the Murlet dataset indicates 

that there are systematic departures of predictions from the 

references structures. Such systematic departures suggest that 

current alignment and structural models are deficient, that we 

haven’t sampled for long enough to achieve convergence, or that 

several of the reference structures in the 17 Rfam families are not 

reflective of the structural and sequence features common to the 

RNA families. As shown in Table S2, only two of the reference 

structures in the Murlet dataset were obtained by covariation 

analysis, and thirteen were obtained by X-ray or NMR. Thus, 

nearly 76% of the reference structures in this data set were 

determined by in vitro methods. Structures from such biophysical 

experiments may not reflect structural features common among 

family members, as important cellular components were likely 

missing in these experiments. This suggests an alternative goal for 

align-fold algorithms aimed at RNA family identification: correct 

classification of sequences into families, similar to that reported by 

Webb et al. (2002) for protein sequences. As the database of Rfam 

families has been obtained based on alignments to specific 

“reference structures”, it will be a particularly difficult challenge to 

demonstrate that there is an alternative structure that is superior in 

the identification of family members. Thus, comparison of 

performances in family membership may require the use of 

reference sets obtained through independent experiments, such as 

experiments using immunoprecipitation (IP) methods. Finally, the 

existence of small variances indicates that an alternative estimator 

that trades larger variances for reduced bias may yield lower 

overall deviations.  

4.4 Confusion of maximum expected accuracy (MEA) 

In recent publications (Do et al., 2006; Kiryu et al., 2007), 

maximum expected accuracy (MEA) estimators are widely used as 

a better representative than the previous MFE estimator. However, 

we find the name MEA misleading. If the MEA is calculated on 

the basis of base pairs instead of individual bases, then this 

estimator corresponds to the centroid or γ-centroid. But our 

findings of large biases of these estimators indicate that expected 

"accuracy" is misleading, in that there is no assurance that these 

estimators are close to an outside reference structure. However, 

these estimators do return estimates that have minimum variance, 

and thus in the least squared sense they are the most reproducible 

of all estimators in the posterior weighted space. Accordingly, they 

would be better described as maximum expected precision (MEP) 

estimators, or perhaps preferably by the non-buoyant name that 

defines them as centroid or γ-centroid estimates.  

5 CONCLUSION 

In this study, we introduce a blocked Gibbs Sampler (RNAG) to 

predict secondary structure for unaligned RNA sequences. RNAG 

confronts the high time complexity of the align-fold problem by 

capitalizing on Liu’s findings on blocked Gibbs sampling. Figure 1 

and Figure 2 show that the new algorithm delivers substantial 

improvement, as measured by PPV-SEN curves. However, as with 

any MCMC procedure, evidence of convergence during the burn-

in cannot be guaranteed. Also, in the current implementation of 

this algorithm, little has been done ensure fast code or an efficient 

stopping rule. We found that the running times of RNAG are in the 

range of three times faster than the RNAsampler and ten times 

slower than RAF. Thus, improvements in implementation speed 

are important future improvements. While the results with the two 

available datasets and another shown in Figure S3 are encouraging, 

these do not assure that this procedure will perform this well for all 

RNA sequence sets. Furthermore, this procedure and others like it 

may not be ideal for structure prediction since if it works perfectly, 

it will only capture structural and sequence features common to a 

set of input sequences, much as motif finding algorithms capture 

sequence characteristics common to transcription factor binding 

sites in multiple sequences. Nevertheless, here we show that 

RNAG does a better job at predicting reference structures than 

extant procedures, while providing a fuller characterization of the 

shape of the posterior space including characterization of 

multimodal features and ascertainment of uncertainty in structural 

predictions. Even if RNAG does continue to perform well at this 

task, several more steps will be necessary to develop a fully 

Bayesian RNA motif finder. 
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