[go: up one dir, main page]

 

10.2298/ABS151105017A

Mohammadhassan Gholami-Shabani (2017) Nanotechnology,
DOI: 10.1007/978-981-10-4573-8_8


Amene Haqshenas (2023) Nitrogen reduction and foliar application of zinc sulfate improve the physiological and biochemical characteristics of two autumn-sown sugar beet (Beta vulgaris L.), Acta Physiologiae Plantarum, 45 (12)
DOI: 10.1007/s11738-023-03589-6


Sadia Khan (2023) Efficient regeneration of shoots and roots in graphene oxide and carbon nanotubes mediated callus cultures: A qualitative and quantitative study, Industrial Crops and Products, 204 : 117262
DOI: 10.1016/j.indcrop.2023.117262


Mohamed K. Abou El-Nasr (2021) Using Zinc Oxide Nanoparticles to Improve the Color and Berry Quality of Table Grapes Cv. Crimson Seedless, Plants, 10 (7) : 1285
DOI: 10.3390/plants10071285


Josef Jampílek (2019) Nanotechnology for Agriculture,
DOI: 10.1007/978-981-32-9370-0_11


Krishan K. Verma (2022) Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview, Frontiers in Plant Science, 13
DOI: 10.3389/fpls.2022.865048


Rakesh Bhaskar (2023) Nanoparticles and Plant-Microbe Interactions,
DOI: 10.1016/B978-0-323-90619-7.00007-2


G. Thamodharan (2024) Evaluation of salt tolerance in rice (Oryza sativa L.) under in vitro conditions, Cereal Research Communications, 52 (3) : 1043
DOI: 10.1007/s42976-023-00457-4


Carlos Eduardo da Silva Oliveira (2022) Can saline irrigation improve the quality of tomato fruits?, Agronomy Journal, 114 (2) : 900
DOI: 10.1002/agj2.21003


Alicja Tymoszuk (2024) Zinc oxide and silver effects on the growth, pigment content and genetic stability of chrysanthemums propagated by the node culture method, Folia Horticulturae, 36 (1) : 35
DOI: 10.2478/fhort-2024-0003


Abhishek Singh (2024) Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses, Environmental Geochemistry and Health, 46 (5)
DOI: 10.1007/s10653-024-01921-8


Mohammad Faizan (2020) Sustainable Agriculture Reviews 41, 41 : 83
DOI: 10.1007/978-3-030-33996-8_4


Fabián Pérez-Labrada (2020) Plant Life Under Changing Environment,
DOI: 10.1016/B978-0-12-818204-8.00016-3


Khaled F. M. Salem (2021) Nanobiotechnology,
DOI: 10.1007/978-3-030-73606-4_11


Anna Krzepiłko (2024) The effect of zinc oxide nanoparticles on the growth and development of Stevia plants cultured in vitro, Acta Scientiarum Polonorum Hortorum Cultus, 23 (3) : 43
DOI: 10.24326/asphc.2024.5354


Thorny Chanu Thounaojam (2021) Zinc-Based Nanostructures for Environmental and Agricultural Applications,
DOI: 10.1016/B978-0-12-822836-4.00027-6


Krishan K. Verma (2022) Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security, Nanomaterials, 12 (1) : 173
DOI: 10.3390/nano12010173


Atta Ullah Khan (2021) Iron-doped zinc oxide nanoparticles-triggered elicitation of important phenolic compounds in cell cultures of Fagonia indica, Plant Cell, Tissue and Organ Culture (PCTOC), 147 (2) : 287
DOI: 10.1007/s11240-021-02123-1


Reza Shahhoseini (2020) Effects of zinc oxide nanoelicitors on yield, secondary metabolites, zinc and iron absorption of Feverfew (Tanacetum parthenium (L.) Schultz Bip.), Acta Physiologiae Plantarum, 42 (4)
DOI: 10.1007/s11738-020-03043-x


Amer M. Abdelaziz (2021) Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant, Biocatalysis and Agricultural Biotechnology, 35 : 102083
DOI: 10.1016/j.bcab.2021.102083


Nima MOSAVAT (2022) Influence of Ag nanoparticles on physiological and biochemical aspects of callus of Thymus species and Zataria multiflora Boiss., Acta agriculturae Slovenica, 118 (3)
DOI: 10.14720/aas.2022.118.3.1873


Rakhi Mahto (2021) Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture,
DOI: 10.1016/B978-0-12-820092-6.00010-0


Gabrijel Ondrasek (2022) Salt Stress in Plants and Mitigation Approaches, Plants, 11 (6) : 717
DOI: 10.3390/plants11060717


Raghad Abd Alhamza Juameer (2022) Improved micropropagation and salinity tolerance of strawberry (Fragaria X ananssa L) cv. Albion, Bionatura, 7 (4) : 1
DOI: 10.21931/RB/2022.07.04.34


Marcos H. Feresin Gomes (2021) Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture,
DOI: 10.1016/B978-0-12-820092-6.00013-6


Sakineh Farhadi (2023) Rice husk-derived biogenic silica nanoparticles and zinc oxide nanoparticles as nano-additives for improving in vitro quince rootstock propagation, Plant Cell, Tissue and Organ Culture (PCTOC), 155 (2) : 531
DOI: 10.1007/s11240-023-02556-w


Mostafa Ahmed (2022) Different Tactics of Synthesized Zinc Oxide Nanoparticles, Homeostasis Ions, and Phytohormones as Regulators and Adaptatively Parameters to Alleviate the Adverse Effects of Salinity Stress on Plants, Life, 13 (1) : 73
DOI: 10.3390/life13010073


Mohammad Ali Aazami (2021) Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration, BMC Plant Biology, 21 (1)
DOI: 10.1186/s12870-021-03379-7


Josef Jampílek (2021) Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture,
DOI: 10.1016/B978-0-12-820092-6.00008-2


Qurat-ul-Nain Nawaz (2023) Influence of bio fabricated manganese oxide nanoparticles for effective callogenesis of Moringa oleifera Lam, Plant Physiology and Biochemistry, 198 : 107671
DOI: 10.1016/j.plaphy.2023.107671


Subhash Babu (2022) Nanofertilizers for agricultural and environmental sustainability, Chemosphere, 292 : 133451
DOI: 10.1016/j.chemosphere.2021.133451


Mubarak Ali Khan (2019) Analysis, fate, and toxicity of engineered nanomaterials in plants, 84 : 23
DOI: 10.1016/bs.coac.2019.04.005


Norah Arrak Alenezi (2022) Zinc Oxide Nanoparticles (ZnO NPs), Biosynthesis, Characterization and Evaluation of Their Impact to Improve Shoot Growth and to Reduce Salt Toxicity on Salvia officinalis In Vitro Cultivated, Processes, 10 (7) : 1273
DOI: 10.3390/pr10071273


Maria Hanif (2024) Synthesis and optimization of nanoparticles from Phragmites karka improves tomato growth and salinity resilience, Biocatalysis and Agricultural Biotechnology, 55 : 102972
DOI: 10.1016/j.bcab.2023.102972


Khan Atta Ullah (2022) Bio-inspired fabrication of zinc oxide nanoparticles: Insight into biomedical applications, Annals of Advances in Chemistry, 6 (1) : 023
DOI: 10.29328/journal.aac.1001028


Sonia Mbarki (2018) Salinity Responses and Tolerance in Plants, Volume 1,
DOI: 10.1007/978-3-319-75671-4_4


Abdalrhaman M. Salih (2021) Biosynthesis of zinc oxide nanoparticles using Phoenix dactylifera and their effect on biomass and phytochemical compounds in Juniperus procera, Scientific Reports, 11 (1)
DOI: 10.1038/s41598-021-98607-3


Tauseef Anwar (2024) Amelioration of cadmium stress by supplementation of melatonin and ZnO-nanoparticles through physiochemical adjustments in Brassica oleracea var. capitata, Scientia Horticulturae, 323 : 112493
DOI: 10.1016/j.scienta.2023.112493


Pradeep Kumar Shukla (2018) Salinity Responses and Tolerance in Plants, Volume 2,
DOI: 10.1007/978-3-319-90318-7_12


Rakesh Bhaskar (2024) Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests, OpenNano, 15 : 100198
DOI: 10.1016/j.onano.2023.100198


Rakibul Rabbi (2024) Impact of different zinc concentrations on growth, yield, fruit quality, and nutrient acquisition traits of tomato (Lycopersicon esculentum L.) grown under salinity stress, Archives of Biological Sciences, 76 (1) : 71
DOI: 10.2298/ABS240101003R


Nima Mosavat (2019) Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress, Biotechnology and Applied Biochemistry, 66 (3) : 316
DOI: 10.1002/bab.1727


Sandra Pérez Álvarez (2019) Plant Nanobionics,
DOI: 10.1007/978-3-030-12496-0_12


Doo Hwan Kim (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed, RSC Advances, 7 (58) : 36492
DOI: 10.1039/C7RA07025J


Yasmin M. Heikal (2023) Applications of nanoparticles for mitigating salinity and drought stress in plants: an overview on the physiological, biochemical and molecular genetic aspects, New Zealand Journal of Crop and Horticultural Science, 51 (3) : 297
DOI: 10.1080/01140671.2021.2016870


Ahmad Sher (2022) Zinc sulfate application to grass forages (oat, barley, annual ryegrass and triticale) for increasing their yield, quality and profitability, Crop & Pasture Science, 73 (5) : 473
DOI: 10.1071/CP21476


Shweta (2023) A review on nanotechnological advancements in tomato: a model plant, The Journal of Horticultural Science and Biotechnology, 98 (5) : 563
DOI: 10.1080/14620316.2023.2183903


Magdalena Tomaszewska-Sowa (2024) The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles, Sustainability, 16 (3) : 977
DOI: 10.3390/su16030977


Hala Mohamed Safwat El-Bassiou (2020) Nano-Zinc Oxide and Arbuscular mycorrhiza Effects on Physiological and Biochemical Aspects of Wheat Cultivars under Saline Conditions, Pakistan Journal of Biological Sciences, 23 (4) : 478
DOI: 10.3923/pjbs.2020.478.490


Saima Shafique (2020) Green fabricated zinc oxide nanoformulated media enhanced callus induction and regeneration dynamics of Panicum virgatum L., PLOS ONE, 15 (7) : e0230464
DOI: 10.1371/journal.pone.0230464


Amir Ali (2023) Phytomediated selenium nanoparticles and light regimes elicited in vitro callus cultures for biomass accumulation and secondary metabolite production in Caralluma tuberculata, Frontiers in Plant Science, 14
DOI: 10.3389/fpls.2023.1253193


Smriti Arora (2022) A comprehensive overview of nanotechnology in sustainable agriculture, Journal of Biotechnology, 355 : 21
DOI: 10.1016/j.jbiotec.2022.06.007


Elif Çakmak (2019) Evaluation ofin vitrogenotoxic effects induced byin vitroanther culture conditions in sunflower, Plant Signaling & Behavior, 14 (9) : 1633885
DOI: 10.1080/15592324.2019.1633885


M. M. Tawfik (2021) Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment, Bulletin of the National Research Centre, 45 (1)
DOI: 10.1186/s42269-021-00624-9


Norollah Kheyri (2024) Zinc Oxide Nanoparticles - Fundamentals and Applications [Working Title],
DOI: 10.5772/intechopen.1006107


Sanjay Singh (2020) Nanomaterials for Agriculture and Forestry Applications,
DOI: 10.1016/B978-0-12-817852-2.00009-3


Rehab Y. Ghareeb (2024) Utilizing bio-synthesis of nanomaterials as biological agents for controlling soil-borne diseases in pepper plants: root-knot nematodes and root rot fungus, BMC Plant Biology, 24 (1)
DOI: 10.1186/s12870-024-04760-y


Ahmed Madi Waheed Al-Mayahi (2021) The effect of humic acid (HA) and zinc oxide nanoparticles (ZnO-NPS) on in vitro regeneration of date palm (Phoenix dactylifera L.) cv. Quntar, Plant Cell, Tissue and Organ Culture (PCTOC), 145 (2) : 445
DOI: 10.1007/s11240-021-02020-7


Katarzyna Włodarczyk (2023) The Antioxidant Potential of Tomato Plants (Solanum lycopersicum L.) under Nano-ZnO Treatment, International Journal of Molecular Sciences, 24 (14) : 11833
DOI: 10.3390/ijms241411833


Ibrahim M. Abdelsalam (2022) Nanotechnology as a tool for abiotic stress mitigation in horticultural crops, Biologia, 78 (1) : 163
DOI: 10.1007/s11756-022-01251-z


A. Vinuganesh (2022) Influence of seawater acidification on biochemical composition and oxidative status of green algae Ulva compressa, Science of The Total Environment, 806 : 150445
DOI: 10.1016/j.scitotenv.2021.150445


Ashutosh Pathak (2023) Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering, Plants, 12 (17) : 3126
DOI: 10.3390/plants12173126


Ana Itsel Canales-Mendoza (2023) Effect of the addition of fungal extracellular biogenic zinc oxide nanoparticles on the in vitro multiplication of Agave salmiana shoots, Plant Cell, Tissue and Organ Culture (PCTOC), 155 (2) : 479
DOI: 10.1007/s11240-023-02589-1


Manal Mostafa (2019) Nanobiotechnology Applications in Plant Protection,
DOI: 10.1007/978-3-030-13296-5_4


Muhammad aamir Shehzad (2021) Interactive effects of zinc oxide nano particles and different light regimes on growth and silymarin biosynthesis in callus cultures of Silybum marianum L. , Artificial Cells, Nanomedicine, and Biotechnology, 49 (1) : 523
DOI: 10.1080/21691401.2021.1946069


Tauheed ul Haq (2019) Beneficial Effects of Several Nanoparticles on the Growth of Different Plants Species, Current Nanoscience, >15 (5) : 460
DOI: 10.2174/1573413715666190104143705


M Kh Jabbar (2019) Effect exposure of non-specialist tissue to ultraviolet treatments on gene expression and growth under cold stress in some breeds of beans, Journal of Physics: Conference Series, 1294 (6) : 062027
DOI: 10.1088/1742-6596/1294/6/062027


Sherif Elbasuney (2022) Ferric Oxide Colloid: Towards Green Nano-Fertilizer for Tomato Plant with Enhanced Vegetative Growth and Immune Response Against Fusarium Wilt Disease, Journal of Inorganic and Organometallic Polymers and Materials, 32 (11) : 4270
DOI: 10.1007/s10904-022-02442-6


Gabrijel Ondrasek (2021) Environmental salinization processes: Detection, implications & solutions, Science of The Total Environment, 754 : 142432
DOI: 10.1016/j.scitotenv.2020.142432


Sourav Das (2023) Biological Applications of Nanoparticles,
DOI: 10.1007/978-981-99-3629-8_6


Faisal Zulfiqar (2019) Nanofertilizer use for sustainable agriculture: Advantages and limitations, Plant Science, 289 : 110270
DOI: 10.1016/j.plantsci.2019.110270


Mohammad Faizan (2021) Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato, Plant Physiology and Biochemistry, 161 : 122
DOI: 10.1016/j.plaphy.2021.02.002


Samra Irum (2020) Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L., PLOS ONE, 15 (12) : e0242829
DOI: 10.1371/journal.pone.0242829


Muhammad Iqbal (2019) Silver nanoparticles and silver salt (AgNO3) elicits morphogenic and biochemical variations in callus cultures of sugarcane, IET Nanobiotechnology, 13 (9) : 896
DOI: 10.1049/iet-nbt.2018.5122


Maryam Mazaheri-Tirani (2020) In vitro effect of zinc oxide nanoparticles on Nicotiana tabacum callus compared to ZnO micro particles and zinc sulfate (ZnSO4), Plant Cell, Tissue and Organ Culture (PCTOC), 140 (2) : 279
DOI: 10.1007/s11240-019-01725-0


Javaid Akhter Bhat (2022) Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.), Chemosphere, 288 : 132471
DOI: 10.1016/j.chemosphere.2021.132471


Wei Han (2020) Foliar application of zinc alleviates the heat stress of pakchoi (Brassica chinensis L.), Journal of Plant Nutrition, 43 (2) : 194
DOI: 10.1080/01904167.2019.1659350


Muhammad Aslam (2021) Lead Toxicity in Cereals: Mechanistic Insight Into Toxicity, Mode of Action, and Management, Frontiers in Plant Science, 11
DOI: 10.3389/fpls.2020.587785


Jing Ma (2020) Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification, Environmental Science and Pollution Research, 27 (3) : 3202
DOI: 10.1007/s11356-019-06872-7


Muhammad Noman (2021) Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms, Ecotoxicology and Environmental Safety, 217 : 112264
DOI: 10.1016/j.ecoenv.2021.112264


Gauri A. Achari (2018) Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora, Journal of Agricultural and Food Chemistry, 66 (33) : 8647
DOI: 10.1021/acs.jafc.8b00691


Razu Ahmed (2021) Recent Trends in the Foliar Spraying of Zinc Nutrient and Zinc Oxide Nanoparticles in Tomato Production, Agronomy, 11 (10) : 2074
DOI: 10.3390/agronomy11102074


Rachana Singh (2022) Integration of Nanotechnology in Plant Tissue Culture, Current Nanoscience, 18 (5) : 604
DOI: 10.2174/1573413717666211015115351


Eman G. Sayed (2024) Synergistic Influence of Arbuscular mycorrhizal Fungi Inoculation with Nanoparticle Foliar Application Enhances Chili (Capsicum annuum L.) Antioxidant Enzymes, Anatomical Characteristics, and Productivity under Cold-Stress Conditions, Plants, 13 (4) : 517
DOI: 10.3390/plants13040517


Sanaz Feizi (2023) Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications,
DOI: 10.1007/978-3-031-20878-2_14


Norollah Kheyri (2022) Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement,
DOI: 10.1016/B978-0-323-91225-9.00019-4


Avnesh Kumari (2023) Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives, Plant Nano Biology, 5 : 100046
DOI: 10.1016/j.plana.2023.100046


Ahmed Madi Waheed Al–Mayahi (2023) Combined efficiency of iron nanoparticles (IONPs) and salicylic acid (SA) on in vitro propagation of date palm (Phoenix dactylifera L.) under combined drought and salinity, South African Journal of Botany, 162 : 324
DOI: 10.1016/j.sajb.2023.09.019


Deepesh Bhatt (2020) Protective Chemical Agents in the Amelioration of Plant Abiotic Stress,
DOI: 10.1002/9781119552154.ch32


Carlos Eduardo Silva Oliveira (2022) Salt Stress Affects Nutrient Uptake, Fruit Yield and Fruit Quality of Tomato Genotypes, SSRN Electronic Journal ,
DOI: 10.2139/ssrn.4064624


Tapan K. Mandal (2024) Nanofertilizers for Sustainable Agroecosystems,
DOI: 10.1007/978-3-031-41329-2_10


Elham Jahangirinia (2024) Impact of zinc and molybdenum, in bulk and nano forms, on red bean: photosynthesis, root traits, nitrate reduction, antioxidant enzymes, and yield under drought stress, Journal of Plant Nutrition, : 1
DOI: 10.1080/01904167.2024.2380495


Tamara Al-Qudah (2022) Nanotechnology Applications in Plant Tissue Culture and Molecular Genetics: A Holistic Approach, Current Nanoscience, 18 (4) : 442
DOI: 10.2174/1573413717666211118111333


Hamideh Amiri (2016) Improving date palm (phoenix dactylifera l. cv. estamaran) calogenesis by the use of zinc oxide nanoparticles, Journal of Experimental Biology and Agricultural Sciences, 4 (5) : 557
DOI: 10.18006/2016.4(5).557.563


Buse CAN (2023) Nanopartiküllerin Bitki Sistemlerinde ve Bitki Doku Kültürlerinde Uygulamalarına Yönelik Genel Bir Bakış, International Journal of Life Sciences and Biotechnology, 6 (3) : 335
DOI: 10.38001/ijlsb.1293031


Letizia Zanella (2019) Induction of Antioxidant Metabolites in Moringa oleifera Callus by Abiotic Stresses, Journal of Natural Products, 82 (9) : 2379
DOI: 10.1021/acs.jnatprod.8b00801


Mohamed Tarroum (2023) Improving the Production of Secondary Metabolites via the Application of Biogenic Zinc Oxide Nanoparticles in the Calli of Delonix elata: A Potential Medicinal Plant, Metabolites, 13 (8) : 905
DOI: 10.3390/metabo13080905


Boudhyayan Chatterjee (2024) Nanofertilizers for Sustainable Agroecosystems,
DOI: 10.1007/978-3-031-41329-2_17


Thounaojam Thorny Chanu (2019) Nanomaterials in Plants, Algae and Microorganisms,
DOI: 10.1016/B978-0-12-811488-9.00003-2


Rajesh Dev Sarkar (2023) Alleviation of salt stress complications in plants by nanoparticles and the associated mechanisms: An overview, Plant Stress, 7 : 100134
DOI: 10.1016/j.stress.2023.100134


Hala Mohamed Safwat El-Bassiouny (2022) Physiological and Molecular Response of Wheat Cultivars to Titanium Dioxide or Zinc Oxide Nanoparticles under Water Stress Conditions, International Journal of Agronomy, 2022 : 1
DOI: 10.1155/2022/3806574


Carlos Eduardo Da Silva Oliveira (2022) Tolerance and Adaptability of Tomato Genotypes to Saline Irrigation, Crops, 2 (3) : 306
DOI: 10.3390/crops2030022


M. M. A. N. Shanika (2021) Propagation and Genetic Manipulation of Plants,
DOI: 10.1007/978-981-15-7736-9_5


Anna Krzepiłko (2024) Influence of Zinc Oxide Nanoparticles in In Vitro Culture and Bacteria Bacillus thuringiensis in Ex Vitro Conditions on the Growth and Development of Blackberry (Rubus fruticosus L.), Applied Sciences, 14 (9) : 3743
DOI: 10.3390/app14093743