Computer Science > Software Engineering
[Submitted on 6 Dec 2024]
Title:Preprocessing is All You Need: Boosting the Performance of Log Parsers With a General Preprocessing Framework
View PDF HTML (experimental)Abstract:Log parsing has been a long-studied area in software engineering due to its importance in identifying dynamic variables and constructing log templates. Prior work has proposed many statistic-based log parsers (e.g., Drain), which are highly efficient; they, unfortunately, met the bottleneck of parsing performance in comparison to semantic-based log parsers, which require labeling and more computational resources. Meanwhile, we noticed that previous studies mainly focused on parsing and often treated preprocessing as an ad hoc step (e.g., masking numbers). However, we argue that both preprocessing and parsing are essential for log parsers to identify dynamic variables: the lack of understanding of preprocessing may hinder the optimal use of parsers and future research. Therefore, our work studied existing log preprocessing approaches based on Loghub, a popular log parsing benchmark. We developed a general preprocessing framework with our findings and evaluated its impact on existing parsers. Our experiments show that the preprocessing framework significantly boosts the performance of four state-of-the-art statistic-based parsers. Drain, the best statistic-based parser, obtained improvements across all four parsing metrics (e.g., F1 score of template accuracy, FTA, increased by 108.9%). Compared to semantic-based parsers, it achieved a 28.3% improvement in grouping accuracy (GA), 38.1% in FGA, and an 18.6% increase in FTA. Our work pioneers log preprocessing and provides a generalizable framework to enhance log parsing.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.