Computer Science > Computational Engineering, Finance, and Science
[Submitted on 11 Nov 2024 (v1), last revised 17 Nov 2024 (this version, v2)]
Title:Advancements in Constitutive Model Calibration: Leveraging the Power of Full-Field DIC Measurements and In-Situ Load Path Selection for Reliable Parameter Inference
View PDF HTML (experimental)Abstract:Accurate material characterization and model calibration are essential for computationally-supported engineering decisions. Current characterization and calibration methods (1) use simplified test specimen geometries and global data, (2) cannot guarantee that sufficient characterization data is collected for a specific model of interest, (3) use deterministic methods that provide best-fit parameter values with no uncertainty quantification, and (4) are sequential, inflexible, and time-consuming. This work brings together several recent advancements into an improved workflow called Interlaced Characterization and Calibration that advances the state-of-the-art in constitutive model calibration. The ICC paradigm (1) efficiently uses full-field data to calibrate a high-fidelity material model, (2) aligns the data needed with the data collected with an optimal experimental design protocol, (3) quantifies parameter uncertainty through Bayesian inference, and (4) incorporates these advances into a quasi real-time feedback loop. The ICC framework is demonstrated on the calibration of a material model using simulated full-field data for an aluminum cruciform specimen being deformed bi-axially. The cruciform is actively driven through the myopically optimal load path using Bayesian optimal experimental design, which selects load steps that yield the maximum expected information gain. To aid in numerical stability and preserve computational resources, the full-field data is dimensionally reduced via principal component analysis, and fast surrogate models which approximate the input-output relationships of the expensive finite element model are used. The tools demonstrated here show that high-fidelity constitutive models can be efficiently and reliably calibrated with quantified uncertainty, thus supporting credible decision-making and potentially increasing the agility of solid mechanics modeling.
Submission history
From: Denielle Ricciardi [view email][v1] Mon, 11 Nov 2024 19:07:11 UTC (44,236 KB)
[v2] Sun, 17 Nov 2024 07:21:08 UTC (46,969 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.