Computer Science > Computational Geometry
[Submitted on 13 Sep 2024]
Title:Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
View PDF HTML (experimental)Abstract:Scalar field comparison is a fundamental task in scientific visualization. In topological data analysis, we compare topological descriptors of scalar fields -- such as persistence diagrams and merge trees -- because they provide succinct and robust abstract representations. Several similarity measures for topological descriptors seem to be both asymptotically and practically efficient with polynomial time algorithms, but they do not scale well when handling large-scale, time-varying scientific data and ensembles. In this paper, we propose a new framework to facilitate the comparative analysis of merge trees, inspired by tools from locality sensitive hashing (LSH). LSH hashes similar objects into the same hash buckets with high probability. We propose two new similarity measures for merge trees that can be computed via LSH, using new extensions to Recursive MinHash and subpath signature, respectively. Our similarity measures are extremely efficient to compute and closely resemble the results of existing measures such as merge tree edit distance or geometric interleaving distance. Our experiments demonstrate the utility of our LSH framework in applications such as shape matching, clustering, key event detection, and ensemble summarization.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.