Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2024]
Title:SeCG: Semantic-Enhanced 3D Visual Grounding via Cross-modal Graph Attention
View PDF HTML (experimental)Abstract:3D visual grounding aims to automatically locate the 3D region of the specified object given the corresponding textual description. Existing works fail to distinguish similar objects especially when multiple referred objects are involved in the description. Experiments show that direct matching of language and visual modal has limited capacity to comprehend complex referential relationships in utterances. It is mainly due to the interference caused by redundant visual information in cross-modal alignment. To strengthen relation-orientated mapping between different modalities, we propose SeCG, a semantic-enhanced relational learning model based on a graph network with our designed memory graph attention layer. Our method replaces original language-independent encoding with cross-modal encoding in visual analysis. More text-related feature expressions are obtained through the guidance of global semantics and implicit relationships. Experimental results on ReferIt3D and ScanRefer benchmarks show that the proposed method outperforms the existing state-of-the-art methods, particularly improving the localization performance for the multi-relation challenges.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.