Computer Science > Computation and Language
[Submitted on 19 Oct 2023]
Title:Do Language Models Learn about Legal Entity Types during Pretraining?
View PDFAbstract:Language Models (LMs) have proven their ability to acquire diverse linguistic knowledge during the pretraining phase, potentially serving as a valuable source of incidental supervision for downstream tasks. However, there has been limited research conducted on the retrieval of domain-specific knowledge, and specifically legal knowledge. We propose to explore the task of Entity Typing, serving as a proxy for evaluating legal knowledge as an essential aspect of text comprehension, and a foundational task to numerous downstream legal NLP applications. Through systematic evaluation and analysis and two types of prompting (cloze sentences and QA-based templates) and to clarify the nature of these acquired cues, we compare diverse types and lengths of entities both general and domain-specific entities, semantics or syntax signals, and different LM pretraining corpus (generic and legal-oriented) and architectures (encoder BERT-based and decoder-only with Llama2). We show that (1) Llama2 performs well on certain entities and exhibits potential for substantial improvement with optimized prompt templates, (2) law-oriented LMs show inconsistent performance, possibly due to variations in their training corpus, (3) LMs demonstrate the ability to type entities even in the case of multi-token entities, (4) all models struggle with entities belonging to sub-domains of the law (5) Llama2 appears to frequently overlook syntactic cues, a shortcoming less present in BERT-based architectures.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.