Computer Science > Robotics
[Submitted on 19 Aug 2022]
Title:ACO based Adaptive RBFN Control for Robot Manipulators
View PDFAbstract:This paper describes a new approach for approximating the inverse kinematics of a manipulator using an Ant Colony Optimization (ACO) based RBFN (Radial Basis Function Network). In this paper, a training solution using the ACO and the LMS (Least Mean Square) algorithm is presented in a two-phase training procedure. To settle the problem that the cluster results of k-mean clustering Radial Basis Function (RBF) are easy to be influenced by the selection of initial characters and converge to a local minimum, Ant Colony Optimization (ACO) for the RBF neural networks which will optimize the center of RBF neural networks and reduce the number of the hidden layer neurons nodes is presented. The result demonstrates that the accuracy of Ant Colony Optimization for the Radial Basis Function (RBF) neural networks is higher, and the extent of fitting has been improved.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.