Computer Science > Networking and Internet Architecture
[Submitted on 21 Jan 2020 (v1), last revised 3 Feb 2020 (this version, v2)]
Title:Towards Flexible Wireless Charging for Medical Implants Using Distributed Antenna System
View PDFAbstract:This paper presents the design, implementation and evaluation of In-N-Out, a software-hardware solution for far-field wireless power transfer. In-N-Out can continuously charge a medical implant residing in deep tissues at near-optimal beamforming power, even when the implant moves around inside the human body. To accomplish this, we exploit the unique energy ball pattern of distributed antenna array and devise a backscatter-assisted beamforming algorithm that can concentrate RF energy on a tiny spot surrounding the medical implant. Meanwhile, the power levels on other body parts stay in low level, reducing the risk of overheating. We prototype In-N-Out on 21 software-defined radios and a printed circuit board (PCB). Extensive experiments demonstrate that In-N-Out achieves 0.37~mW average charging power inside a 10~cm-thick pork belly, which is sufficient to wirelessly power a range of commercial medical devices. Our head-to-head comparison with the state-of-the-art approach shows that In-N-Out achieves 5.4$\times$--18.1$\times$ power gain when the implant is stationary, and 5.3$\times$--7.4$\times$ power gain when the implant is in motion.
Submission history
From: Xiaoran Fan [view email][v1] Tue, 21 Jan 2020 16:47:14 UTC (4,556 KB)
[v2] Mon, 3 Feb 2020 01:40:10 UTC (4,556 KB)
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.