Computer Science > Computation and Language
[Submitted on 28 Feb 2025 (v1), last revised 23 Sep 2025 (this version, v3)]
Title:CODI: Compressing Chain-of-Thought into Continuous Space via Self-Distillation
View PDF HTML (experimental)Abstract:Chain-of-Thought (CoT) reasoning enhances Large Language Models (LLMs) by encouraging step-by-step reasoning in natural language. However, leveraging a latent continuous space for reasoning may offer benefits in terms of both efficiency and robustness. Prior implicit CoT methods attempt to bypass language completely by reasoning in continuous space but have consistently underperformed compared to the standard explicit CoT approach. We introduce CODI (Continuous Chain-of-Thought via Self-Distillation), a novel training framework that effectively compresses natural language CoT into continuous space. CODI jointly trains a teacher task (Explicit CoT) and a student task (Implicit CoT), distilling the reasoning ability from language into continuous space by aligning the hidden states of a designated token. Our experiments show that CODI is the first implicit CoT approach to match the performance of explicit CoT on GSM8k at the GPT-2 scale, achieving a 3.1x compression rate and outperforming the previous state-of-the-art by 28.2% in accuracy. CODI also demonstrates robustness, generalizable to complex datasets, and interpretability. These results validate that LLMs can reason effectively not only in natural language, but also in a latent continuous space. Code is available at this https URL.
Submission history
From: Zhenyi Shen [view email][v1] Fri, 28 Feb 2025 14:07:48 UTC (6,541 KB)
[v2] Tue, 20 May 2025 13:16:57 UTC (10,675 KB)
[v3] Tue, 23 Sep 2025 08:16:08 UTC (2,371 KB)
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.