Computer Science > Data Structures and Algorithms
[Submitted on 18 Sep 2023 (v1), last revised 28 May 2024 (this version, v2)]
Title:Graph Threading
View PDF HTML (experimental)Abstract:Inspired by artistic practices such as beadwork and himmeli, we study the problem of threading a single string through a set of tubes, so that pulling the string forms a desired graph. More precisely, given a connected graph (where edges represent tubes and vertices represent junctions where they meet), we give a polynomial-time algorithm to find a minimum-length closed walk (representing a threading of string) that induces a connected graph of string at every junction. The algorithm is based on a surprising reduction to minimum-weight perfect matching. Along the way, we give tight worst-case bounds on the length of the optimal threading and on the maximum number of times this threading can visit a single edge. We also give more efficient solutions to two special cases: cubic graphs and the case when each edge can be visited at most twice.
Submission history
From: Rebecca Lin [view email][v1] Mon, 18 Sep 2023 19:51:58 UTC (5,238 KB)
[v2] Tue, 28 May 2024 08:31:05 UTC (5,447 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.