Computer Science > Robotics
[Submitted on 28 Feb 2022 (v1), last revised 13 Nov 2022 (this version, v2)]
Title:GA+DDPG+HER: Genetic Algorithm-Based Function Optimizer in Deep Reinforcement Learning for Robotic Manipulation Tasks
View PDFAbstract:Agents can base decisions made using reinforcement learning (RL) on a reward function. The selection of values for the learning algorithm parameters can, nevertheless, have a substantial impact on the overall learning process. In order to discover values for the learning parameters that are close to optimal, we extended our previously proposed genetic algorithm-based Deep Deterministic Policy Gradient and Hindsight Experience Replay approach (referred to as GA+DDPG+HER) in this study. On the robotic manipulation tasks of FetchReach, FetchSlide, FetchPush, FetchPick&Place, and DoorOpening, we applied the GA+DDPG+HER methodology. Our technique GA+DDPG+HER was also used in the AuboReach environment with a few adjustments. Our experimental analysis demonstrates that our method produces performance that is noticeably better and occurs faster than the original algorithm. We also offer proof that GA+DDPG+HER beat the current approaches. The final results support our assertion and offer sufficient proof that automating the parameter tuning procedure is crucial and does cut down learning time by as much as 57%.
Submission history
From: Adarsh Sehgal [view email][v1] Mon, 28 Feb 2022 23:31:46 UTC (14,417 KB)
[v2] Sun, 13 Nov 2022 22:04:54 UTC (14,642 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.