LIPIcs.CSL.2025.32.pdf
- Filesize: 0.87 MB
- 21 pages
Graded modal logics generalise standard modal logics via families of modalities indexed by an algebraic structure whose operations mediate between the different modalities. The graded "of-course" modality !_r captures how many times a proposition is used and has an analogous interpretation to the of-course modality from linear logic; the of-course modality from linear logic can be modelled by a linear exponential comonad and graded of-course can be modelled by a graded linear exponential comonad. Benton showed in his seminal paper on Linear/Non-Linear logic that the of-course modality can be split into two modalities connecting intuitionistic logic with linear logic, forming a symmetric monoidal adjunction. Later, Fujii et al. demonstrated that every graded comonad can be decomposed into an adjunction and a "strict action". We give a similar result to Benton, leveraging Fujii et al.’s decomposition, showing that graded modalities can be split into two modalities connecting a graded logic with a graded linear logic. We propose a sequent calculus, its proof theory and categorical model, and a natural deduction system which we show is isomorphic to the sequent calculus system. Interestingly, our system can also be understood as Linear/Non-Linear logic composed with an action that adds the grading, further illuminating the shared principles between linear logic and a class of graded modal logics.
Feedback for Dagstuhl Publishing