A subscription to JoVE is required to view this content. Sign in or start your free trial.
Formalin-fixed paraffin-embedded specimens represent a valuable source of molecular biomarkers of human diseases. Here we present a laboratory-based cDNA library preparation protocol, initially designed with fresh frozen RNA, and optimized for the analysis of archived microRNAs from tissues stored up to 35 years.
–Archived, clinically classified formalin-fixed paraffin-embedded (FFPE) tissues can provide nucleic acids for retrospective molecular studies of cancer development. By using non-invasive or pre-malignant lesions from patients who later develop invasive disease, gene expression analyses may help identify early molecular alterations that predispose to cancer risk. It has been well described that nucleic acids recovered from FFPE tissues have undergone severe physical damage and chemical modifications, which make their analysis difficult and generally requires adapted assays. MicroRNAs (miRNAs), however, which represent a small class of RNA molecules spanning only up to ~18–24 nucleotides, have been shown to withstand long-term storage and have been successfully analyzed in FFPE samples. Here we present a 3' barcoded complementary DNA (cDNA) library preparation protocol specifically optimized for the analysis of small RNAs extracted from archived tissues, which was recently demonstrated to be robust and highly reproducible when using archived clinical specimens stored for up to 35 years. This library preparation is well adapted to the multiplex analysis of compromised/degraded material where RNA samples (up to 18) are ligated with individual 3' barcoded adapters and then pooled together for subsequent enzymatic and biochemical preparations prior to analysis. All purifications are performed by polyacrylamide gel electrophoresis (PAGE), which allows size-specific selections and enrichments of barcoded small RNA species. This cDNA library preparation is well adapted to minute RNA inputs, as a pilot polymerase chain reaction (PCR) allows determination of a specific amplification cycle to produce optimal amounts of material for next-generation sequencing (NGS). This approach was optimized for the use of degraded FFPE RNA from specimens archived for up to 35 years and provides highly reproducible NGS data.
miRNAs are remarkably well conserved in formalin-fixed paraffin-embedded (FFPE) specimens1,2,3. Previous work has demonstrated that the expression of these short regulatory non-coding single stranded RNA molecules can be successfully evaluated using total RNA from FFPE samples and provide relevant gene expression data when compared to the original fresh tissues4,5,6,7,8. When compared to large-size messenger RNAs, ....
1. Preparation of All Reagents and Primers
As described in the method here, a total of 18 individual FFPE RNA samples (100 ng each) are set up in separate tubes to undergo 3' adenylated barcoded oligonucleotide T4 ligation overnight. The next day, the enzymatic reactions are heat-deactivated, combined, and precipitated in a single tube. The RNA pellet is resuspended and the ligated RNA molecules are separated on a 15% denaturing polyacrylamide gel (PAGE), where RNA oligonucleotide size markers that migrated in adjacent wells o.......
A highly reproducible and robust cDNA library preparation protocol for NGS of small RNAs archived in FFPE RNA specimens is presented in this protocol, which is a modified and optimized version of the procedure described by Hafner et al.22
All steps of this protocol have been optimized for use with older archived and compromised total RNA recovered from FFPE specimens. The key step of this protocol, for processing small amounts of FFPE RNA, resides in the poolin.......
The authors wish to disclose that a publication containing some of the data presented in this manuscript was published in the International Journal of Molecular Sciences by Loudig et al.21.
We thank Dr. Thomas Tuschl, head of the laboratory for RNA molecular biology, as well as members of his laboratory for their support and for sharing the technology developed in his laboratory and providing access to the RNAworld pipeline. We also thank Dr. Markus Hafner for sharing his protocol and providing detailed descriptions on all biochemical and enzymatic steps used in his initial procedure.
....Name | Company | Catalog Number | Comments |
1% Triton x-100 | Invitrogen | HFH10 | |
10mM ATP | Ambion | AM8110G | |
10X dNTPs | Ambion | AM8110G | |
10x TBE | Thermofisher Scientific | 15581044 | |
14M Mercaptoethanol | Sigma | O3445I-100 | |
20 nt ladder | Jena Bioscience | M-232S | |
20mg/ml Bovine Serum Albumine | Sigma | B8894-5ML | |
50X Titanium Taq | Clontech Laboratories | 639208 | |
Ammonium Persulfate | Fisher Scientific | 7727-54-0 | |
BRL Vertical Gel Electrophoresis System with glass plates and combs | GIBCO | V16 | |
Dimethyl sulfoxide (DMSO) | Sigma | D9170-5VL | |
Eppendorf microcentrifuge 5424R | USA scientific | 4054-4537Q | |
Eppndorf Thermomixer | USA scientific | 4053-8223Q | |
Fisherbrand™ Siliconized Low-Retention Microcentrifuge Tubes 1.5ml | Fisher Scientific | 02-681-320 | |
Gel Breaker Tube 0.5 ml | IST Engineering Inc, | 3388-100 | |
Gel electrophoresis apparatus 7cm x10cm- Mini-sub Cell GT with gel trays and combs | Biorad | 1704446 | |
Glycoblue | Ambion | AM9516 | |
Jersey-Cote | LabScientific, Inc | 1188 | |
KcL 2M | Ambion | AM9640G | |
MgCl2 1M | Ambion | AM9530G | |
Minifuge dual rotor personal centrifuge | USA scientific | 2641-0016 | |
Model V16 polyacrylamide gel electrophoresis apparatus, glasses, combs, and spacers | Ciore Life Science | 21070010 | |
Oligonucleotides | IDT | Defined during order | |
Owl EasyCast B2 mini electrophoresis system- with gel trays and combs | Thermofisher Scientific | B2 | |
Qiaquick Gel Extraction kit | Qiagen | 28704 | |
Restriction enzyme PmeI | NEB | R0560S | |
RNase-free water | Ambion | AM9932 | |
Safe Imager 2.0 | Life Technologies | G6600 | |
Safe Imager 2.0 blue light transilluminator | Thermofisher | G6600 | |
SeaKem LE agarose | Lonza | 50002 | |
Superscript III reverse transcription kit | Invitrogen | 18080-044 | |
SybrGold | Life Technologies | S11494 | |
T4 RNA Ligase 1 | NEB | M0204S | |
T4 RNA Ligase 2 Truncated K227Q | NEB | 0351L | |
TEMED | Fisher Scientific | O3446I-100 | |
Themocycler with heated lid | Applied Biosystem | 4359659 | |
Tris 1M pH 7.5 | Invitrogen | 15567027 | |
Tris 1M pH8.0 | Ambion | AM9855G | |
UltraPure Sequagel system concentrate, diluent, and buffer | National Diagnostics | EC-833 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved