Towards Managing Uncertain Geo-Information for Drilling Disasters Using Event Tracking Sensitivity Analysis
<p>Timeline for drilling interaction leading to a disaster. The vertical axis represents both curves of Event Improbability (the declining curve) and Hazard Potential (the growing curve) ranging between two generally defined bands of low and high.</p> "> Figure 2
<p>Four Critical Operations in Decision Making for Drilling Disaster Management.</p> "> Figure 3
<p>Overall functionality of the EventTracker algorithm.</p> "> Figure 4
<p>Trigger–Event Detection functionality on each Search Slot.</p> "> Figure 5
<p>Normalized sensitivity indices as in <a href="#sensors-23-04292-t003" class="html-table">Table 3</a>.</p> "> Figure 6
<p>Averaged normalized sensitivity indices for the data in <a href="#sensors-23-04292-t003" class="html-table">Table 3</a>.</p> "> Figure 7
<p>TRIDEC Drilling Support Components (DSC). The different color line in the left block is the plan of the drill in the layers of the soil.</p> "> Figure 8
<p>Sensor data time series (four <b>upper</b> charts) and state of the drilling (<b>bottom</b> chart) for one rig sampled at 0.1 Hz. The top chart shows the block position (red) and drill string rotation speed (green). The second chart shows the torque applied to the drill string (yellow) and the hook load (green). The third chart shows the pump pressure measured at the standpipe (orange) and the mud flow rate (blue). The fourth chart shows the measured depth of the bit (green) and the measured depth of the borehole (blue); also, the main operations trip-in, drilling and trip-out can be identified by the bit depth in this chart. The bottom chart shows the 10 possible operational state labels that may occur at a rig; the predominant light and dark blue encoded states indicate drilling.</p> "> Figure 9
<p>Forces influencing the hook load.</p> "> Figure 10
<p>Some of the features based on the sensor data. (<b>a</b>) Bit Velocity, (<b>b</b>) Bit Accel., (<b>c</b>) Pump Power.</p> "> Figure 11
<p>EventTracker SI value correlation behavior.</p> "> Figure 12
<p>Neural Network Architectures: (<b>a</b>) Completely Connected Perceptron and (<b>b</b>) Multi-Layer Perceptron.</p> "> Figure 13
<p>Feature Selection Results—All Wells.</p> "> Figure 14
<p>Feature Selection Results—All Wells, 1st SFS Cycle.</p> ">
Abstract
:1. Introduction
1.1. Basic Concepts
1.2. Critical Drilling Operations
1.2.1. Crisis Detection
1.2.2. Crisis Prediction
1.2.3. Counter-Action Support
1.2.4. Crisis Prevention
1.3. Response Time
1.4. Features
2. Related Work
3. EventTracker Sensitivity Analysis
3.1. Stepwise Scan
3.2. Trigger–Event Detection
3.3. Give-and-Take Matching Score
3.4. Summation of the Matching Scores
3.5. The Normalization Process
3.6. Time Efficiency
4. Experiments and Results
4.1. TRIDEC Drilling Support Components
4.1.1. System Training Component
4.1.2. Data Analysis Component
4.1.3. Knowledge Editor Component
4.2. Feature Construction
4.3. Validation
4.4. Validation Dataset
4.5. Obtaining a Feature Ranking from SA Algorithm
4.6. Experiments with a Random Forest Classifier
4.7. Experiments with a Neural Network Classifier
4.8. Time Efficiency of Applied Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jandl, B.; Winter, M.; Fruhwirth, R.; Riedel, F.; Zeiner, H. Rig Side Online Drilling Support System for Prediction and Prevention of Upcoming Crises. In Proceedings of the EGU General Assembly 2012, Vienna, Austria, 22–27 April 2012; Volume 14. EGU2012-9363-1. [Google Scholar]
- Coppes, J.; Rudd, N.E. Blowout Prevention is Mistake Prevention. In Proceedings of the SPE European Spring Meeting, Amsterdam, The Netherlands, 8–9 April 1976; ISBN 978-1-55563-750-7. [Google Scholar] [CrossRef]
- Christman, S.; Kelly, A.; Plaisance, M.; Kropla, S.; Metcalf, J.; Robinson, E.; Weddle, C. An Overview of the IADC Deepwater Well Control Guidelines. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 9–11 March 1999; ISBN 978-1-55563-370-7. [Google Scholar] [CrossRef]
- Nunes, J.O.L.; Bannwart, A.C.; Ribeiro, P.R. Mathematical Modeling of Gas Kicks in Deep Water Scenario. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology, Jakarta, Indonesia, 8–11 September 2002; ISBN 978-1-55563-939-6. [Google Scholar] [CrossRef]
- Freithofnig, H.J.; Spoerker, H.F.; Thonhauser, G. Analysis of Hook Load Data to Optimize Ream and Wash Operations. In Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition, Abu Dhabi, United Arab Emirates, 20–22 October 2003; ISBN 978-1-55563-972-3. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press Inc.: New York, NY, USA, 1995; ISBN 978-0-19-853864-6. [Google Scholar]
- Pritchard, D.; Roye, J.; Cunha, J.C. Trends in Monitoring: How to Use Real-Time Data Effectively. In Drilling and Completions, Management and Information; Successful Energy Practices International, LLC: Holyoke, MA, USA; Available online: https://www.successful-energy.com/2012/01/20/trends-in-monitoring-how-to-use-real-time-data-effectively/ (accessed on 17 April 2023).
- Cayeux, E.; Daireaux, B.; Dvergsnes, E.W.; Sælevik, G. Early Symptom Detection Based on Real-Time Evaluation of Downhole Conditions: Principles and Results from Several North Sea Drilling Operations. In Proceedings of the SPE Intelligent Energy International, Utrecht, The Netherlands, 27–29 March 2012. [Google Scholar]
- Gundersen, O.E.; Sørmo, F.; Aamodt, A.; Skalle, P. A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations. In Proceedings of the Twenty-Fourth Conference on Innovative Applications of Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012. [Google Scholar]
- Gulsrud, T.O.; Bjørkevoll, K.S.; Nybø, R. Statistical Method for Detection of Poor Hole Cleaning and Stuck Pipe; Offshore Europe: Aberdeen, UK, 2009. [Google Scholar]
- Arnaout, A.; Alsallakh, B.; Fruhwirth, R.; Thonhauser, G.; Esmael, B.; Prohaska, M. Diagnosing drilling problems using visual analytics of sensors measurements. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, Austria, 13–16 May 2012; pp. 1750–1753. [Google Scholar]
- Murillo, A.; Neuman, J.; Samuel, R. Pipe Sticking Prediction and Avoidance Using Adptive Fuzzy Logic and Neural Network Modeling. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 4–8 April 2009. SPE 120128. [Google Scholar]
- Giese, M.; Bratvold, R.B. Probabilistic Modeling for Decision Support in Integrated Operations. SPE Econ. Manag. 2011, 3, 173–185. [Google Scholar] [CrossRef]
- Booth, J. Real-Time Drilling Operations Centers: A History of Functionality and Organizational Purpose-The Second Generation. SPE Drill. Complet. 2011, 26, 295–302. [Google Scholar] [CrossRef]
- Brodersen, K.H.; Haiss, F.; Ong, C.S.; Jung, F.; Tittgemeyer, M.; Buhmann, J.M.; Weber, B.; Stephan, K.E. Model-based feature construction for multivariate decoding. NeuroImage 2010, 56, 601–615. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Liao, W. Feature construction method of combined subdivision surface. Comput. Integr. Manuf. Syst. 2010, 16, 507–512. [Google Scholar]
- Kim, E.; Lee, S.; Kwon, K.; Klm, S. Feature construction scheme for efficient intrusion detection system. J. Inf. Sci. Eng. 2010, 26, 527–547. [Google Scholar]
- Lavrač, N.; Fürnkranz, J.; Gamberger, D. Explicit feature construction and manipulation for covering rule learning algorithms. Stud. Comput. Intell. 2010, 262, 121–146. [Google Scholar]
- Buchenneder, K. Processing of myoelectric signals by feature selection and dimensionality reduction for the control of powered upper-limb prostheses. In Computer Aided Systems Theory—EUROCAST 2007; Lecture Notes in Computer Science 4739; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1057–1065. [Google Scholar]
- Dias, N.S.; Kamrunnahar, M.; Mendes, P.M.; Schiff, S.J.; Correia, J.H. Variable subset selection for brain-computer interface: PCA-based dimensionality reduction and feature selection. In Proceedings of the 2nd International Conference on Bio-Inspired Systems and Signal Processing, Porto, Portugal, 14–17 January 2009; p. 35. [Google Scholar]
- Qi, L.; Kambhamettu, C.; Jieping, Y. Integrating Spatial and Discriminant Strength for Feature Selection and Linear Dimensionality Reduction. In Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), New York, NY, USA, 17–22 June 2006; p. 21. [Google Scholar]
- Zaman, S.; Karray, F. Features selection using fuzzy ESVDF for data dimensionality reduction. In Proceedings of the 2009 International Conference on Computer Engineering and Technology, Singapore, 22–24 January 2009; p. 81. [Google Scholar]
- Hand, D.J.; Mannila, H.; Smyth, P. Principles of Data Mining; MIT Press: Cambridge, MA, USA; London, UK, 2001. [Google Scholar]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Mirkin, B.G. Clustering for Data Mining: A Data Recovery Approach, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2012; 374p, ISBN 1439838410. [Google Scholar]
- Banks, D.L.; Olszewski, R.T.; Maxion, R.A. Comparing methods for multivariate nonparametric regression. Commun. Stat. Part B Simul. Comput. 2003, 32, 541–571. [Google Scholar] [CrossRef]
- Cloke, H.L.; Pappenberger, F.; Renaud, J. Multi-Method Global Sensitivity Analysis (MMGSA) for modelling floodplain hydrological processes. Hydrol. Process. 2008, 22, 1660–1674. [Google Scholar] [CrossRef]
- Durkee, D.P.; Pohl, E.A.; Mykytka, E.F. Sensitivity analysis of availability estimates to input data characterization using design of experiments. Qual. Reliab. Eng. Int. 1998, 14, 311–317. [Google Scholar] [CrossRef]
- Cukier, R.I.; Levine, H.B.; Shuler, K.E. Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 1978, 26, 1–42. [Google Scholar] [CrossRef]
- Borgonovo, E.; Peccati, L. Global sensitivity analysis in inventory management. Int. J. Prod. Econ. 2007, 108, 302–313. [Google Scholar] [CrossRef]
- Saltelli, A. Sensitivity analysis for importance assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Isukapalli, S.S. Uncertainty Analysis of Transport-Transformation Models. Ph.D. Thesis, New Burnswick Rutgers, The State University of New Jersey, New Burnswick, NJ, USA, 1999. [Google Scholar]
- Yang, X. Green’s function and positive solutions for higher-order ODE. Appl. Math. Comput. 2003, 136, 379–393. [Google Scholar] [CrossRef]
- Faghihi, F.; Hadad, K. Numerical solutions of coupled differential equations and initial values using Maple software. Appl. Math. Comput. 2004, 155, 563–572. [Google Scholar] [CrossRef]
- Krzykacz-Hausmann, B. Epistemic Sensitivity Analysis Based on the Concept of Entropy. In Proceedings of the SAMO 2001: Third International Symposium on Sensitivity Analysis of Model Output, Madrid, Spain, 18–20 June 2001; p. 53. [Google Scholar]
- Krzykacz-Hausmann, B. An approximate sensitivity analysis of results from complex computer models in the presence of epistemic and aleatory uncertainties. Reliab. Eng. Syst. Saf. 2006, 91, 1210–1218. [Google Scholar] [CrossRef]
- Tavakoli, S.; Mousavi, A.; Broomhead, P. Event Tracking for Real-Time Unaware Sensitivity Analysis (EventTracker). IEEE Trans. Knowl. Data Eng. 2013, 25, 348–359. [Google Scholar] [CrossRef]
- WITSML Standard. Available online: https://www.energistics.org/drilling-completions-interventions/ (accessed on 2 August 2013).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Criminisi, A.; Shotton, J.; Konukoglu, E. Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning; Technical Report No. MSR-TR-2011-114; Microsoft Research: Cambridge, UK, 2011. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Saffari, A.; Leistner, C.; Santner, J.; Godec, M.; Bischof, H. Online Random Forests. In Proceedings of the 3rd IEEE ICCV Workshop on Online Computer Vision, Kyoto, Japan, 27 September–4 October 2009; p. 1393ff. [Google Scholar]
- Fruhwirth, R.K.; Thonhauser, G.; Mathis, W. Hybrid Simulation Using Neural Networks to Predict Drilling Hydraulics in Real Time. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006; SPE 103217. ISBN 978-1-55563-149-9. [Google Scholar] [CrossRef]
Event | Response Time |
---|---|
Kick | magnitude of minutes |
Stuck pipe support | magnitude of seconds |
Pump startup | magnitude of seconds |
Lost circulation | magnitude of seconds |
Input 1 | Input 2 | Output |
---|---|---|
0 | 0 | +1 |
0 | 1 | −1 |
1 | 0 | −1 |
1 | 1 | +1 |
SS | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
ED | * | * | * | * | * | * | * | * | |||
TD1 | * | * | * | * | * | ||||||
S1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 |
SI1 | −1 | −2 | −3 | −4 | −3 | −2 | −3 | −4 | −5 | −4 | −3 |
SIn1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
TD2 | * | * | * | * | * | * | |||||
S2 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 |
SI2 | 1 | 0 | 1 | 0 | −1 | 0 | 1 | 2 | 3 | 4 | 3 |
SIn2 | 1.00 | 1.00 | 1.00 | 0.67 | 0.33 | 0.33 | 0.67 | 0.75 | 0.80 | 0.80 | 0.75 |
TD3 | * | * | * | * | * | ||||||
S3 | −1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 |
SI3 | −1 | 0 | 1 | 2 | 3 | 4 | 3 | 4 | 5 | 6 | 5 |
SIn3 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
ID | Symbol | Unit | Description |
---|---|---|---|
C0108 | mdBit | m | Total (measured) depth of bit |
C0110 | mdHole | m | Total (measured) depth of hole |
C0112 | posBlock | m | Block position |
C0113 | ropAv | m/s | Drill rate |
C0114 | hkldAv | kg | Hookload, measured at surface |
C0116 | wobAv | kg | Weight on bit, measured at surface |
C0118 | tqAv | J | Rotary torque, measured at surface |
C0120 | rpmAv | rad/s | Rotary speed, measured at surface |
C0121 | presPumpAv | Pa | Pump pressure, measured at surface |
C0130 | flowInAv | m3/s | Mud flow into the hole |
ID | Symbol | Unit | Description |
---|---|---|---|
D0101 | n.a. | m | mdHole − mdBit |
D0201 | n.a. | m | mdHole + posBlock |
D0301 | n.a. | m | mdBit + posBlock |
E0101 | n.a. | W | tqAv ∗ rpmAv |
E0201 | n.a. | W | pressPumpAv ∗ flowInAv |
E0301 | n.a. | W | ropAv ∗ wobAv |
State Code | Comments |
---|---|
DrlSld | Drilling Sliding |
DrlRot | Rotary Drilling |
MakeCN | (Dis)Connect a Drill String |
CircHL | Mud Circulation in Borehole |
MoveUP | Move Up Drill String |
MoveDN | Move Down Drill String |
WashUP | Move Up/w Circulation |
WashDN | Move Down/w Circulation |
CleanUP | Move Up/w Circulation & Rotation |
CleanDN | Move Down/w Circulation & Rotation |
Hole Depth, m | Bit Depth, m | ||||||||
---|---|---|---|---|---|---|---|---|---|
Well | Run Description | Duration | Samples | Min | Max | Span | Min | Max | Span |
TDL-S055 | Run-5, Drilling | 34.1 h | 12,281 | 1407.4 | 1775.8 | 368.4 | 16.6 | 1775.8 | 1759.1 |
TDL-S075 | Run-2, Drilling | 35.5 h | 12,792 | 158.9 | 601.9 | 443.0 | 21.6 | 601.9 | 580.3 |
TDL-S085 | Run-3, Drilling | 17.7 h | 6361 | 354.2 | 624.4 | 270.2 | 24.0 | 624.3 | 600.4 |
TDL-S140 | Run-5, Drilling | 36.7 h | 13,202 | 368.5 | 1229.0 | 860.5 | 21.3 | 1229.0 | 1207.7 |
Well ID | CCR | Best Possible CCR |
---|---|---|
S055 | 56% | 86% |
S075 | 69% | 92% |
S085 | 71% | 91% |
S140 | 62% | 92% |
Features (Intuitive Selection) | Features (SA Recommendation) | ||||||
---|---|---|---|---|---|---|---|
Base | 1st | 2nd | 3rd | 1st | MI | 2nd | MI |
C0108 | :H01 | :H02 | :H12 | :H19 | 1.000 | :H59 | 1.000 |
C0110 | :H01 | :H02 | :H12 | :H30 | 1.000 | :H19 | 0.637 |
C0112 | :H01 | :H02 | :H12 | :H16 | 0.999 | :H25 | 0.980 |
C0113 | :H17 | 0.996 | :H72 | 0.994 | |||
C0114 | :H36 | 1.000 | :H39 | 0.560 | |||
C0116 | :H36 | 1.000 | :H39 | 0.546 | |||
C0118 | :H63 | 0.708 | :H89 | 0.682 | |||
C0120 | :H08 | 0.994 | :H07 | 0.994 | |||
C0121 | :H10 | 0.863 | :H60 | 0.863 | |||
C0130 | :H01 | 0.997 | :H14 | 0.994 | |||
D0101 | :H15 | 0.995 | :H03 | 0.985 | |||
D0201 | :H16 | 0.998 | :H04 | 0.988 | |||
D0301 | :H16 | 0.999 | :H56 | 0.995 | |||
E0101 | :H51 | 0.930 | :H89 | 0.907 | |||
E0201 | :H36 | 1.000 | :H39 | 0.288 | |||
E0301 | :H36 | 1.000 | :H39 | 0.980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.; Zeiner, H. Towards Managing Uncertain Geo-Information for Drilling Disasters Using Event Tracking Sensitivity Analysis. Sensors 2023, 23, 4292. https://doi.org/10.3390/s23094292
Tavakoli S, Poslad S, Fruhwirth R, Winter M, Zeiner H. Towards Managing Uncertain Geo-Information for Drilling Disasters Using Event Tracking Sensitivity Analysis. Sensors. 2023; 23(9):4292. https://doi.org/10.3390/s23094292
Chicago/Turabian StyleTavakoli, Siamak, Stefan Poslad, Rudolf Fruhwirth, Martin Winter, and Herwig Zeiner. 2023. "Towards Managing Uncertain Geo-Information for Drilling Disasters Using Event Tracking Sensitivity Analysis" Sensors 23, no. 9: 4292. https://doi.org/10.3390/s23094292
APA StyleTavakoli, S., Poslad, S., Fruhwirth, R., Winter, M., & Zeiner, H. (2023). Towards Managing Uncertain Geo-Information for Drilling Disasters Using Event Tracking Sensitivity Analysis. Sensors, 23(9), 4292. https://doi.org/10.3390/s23094292