Analysis of the Land Surface Temperature Scaling Problem: A Case Study of Airborne and Satellite Data over the Heihe Basin
"> Figure 1
<p>Spatial distribution and ground photographs of the five study sites. The upper right image is the ASTER L1 B VNIR image of the study area taken on 10 July 2012. The RGB components are channels 3 (0.81 <math display="inline"> <semantics> <mrow> <mtext>μm</mtext> </mrow> </semantics> </math>), 2 (0.66 <math display="inline"> <semantics> <mrow> <mtext>μm</mtext> </mrow> </semantics> </math>) and 1 (0.56 <math display="inline"> <semantics> <mrow> <mtext>μm</mtext> </mrow> </semantics> </math>), and the spatial resolution is 15 m. The land cover types include (<b>a</b>) cropland, (<b>b</b>) Gobi, (<b>c</b>) river and (<b>d</b>) village.</p> "> Figure 2
<p>Schematic of the comparison between the distributed and lumped LSTs. The same inversion model is used in the distributed method and the lumped method.</p> "> Figure 3
<p>Relationship between the spatial resolution and the LST scaling effect. The distributed LSTs are acquired from (<b>a</b>) Method 1; (<b>b</b>) Method 2; (<b>c</b>) Method 3 and (<b>d</b>) Method 4.</p> "> Figure 4
<p>Pixel-by-pixel comparison of the distributed LST (with Method 1) and the lumped LST (300 m) at (<b>a</b>) Site 1, (<b>b</b>) Site 2, (<b>c</b>) Site 3, (<b>d</b>) Site 4 and (<b>e</b>) Site 5.</p> "> Figure 5
<p>Comparison between the rectified TASI LST and the distributed LST by (<b>a</b>) Method 1; (<b>b</b>) Method 2; (<b>c</b>) Method 3 and (<b>d</b>) Method 4. The difference is described by the mean absolute bias in the LST image (Equation (8)).</p> "> Figure 6
<p>The relationship between spatial heterogeneity of the LST quantified by the dispersion variance <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mrow> <mo>(</mo> <mrow> <mi>v</mi> <mo>,</mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> and the scaling effect in (<b>a</b>) the sites covered by Gobi (Sites 1 and 2); (<b>b</b>) the sites covered by cropland (Sites 3 and 4); and (<b>c</b>) the mixed site (Site 5).</p> "> Figure 7
<p>The relationship between the spatial resolution and the LST scaling effect for the ASTER LST data in the five study areas. The distributed LST was derived from Method 1.</p> "> Figure 8
<p>Comparison between the ASTER LST data and the TASI LST data in (<b>a</b>) Gobi areas; (<b>b</b>) cropland areas and (<b>c</b>) the mixed area. The TASI LSTs were upscaled using Method 1. The sizes of the dots in the scatterplots correspond to their density in the swarm of points. The larger dots are given hotter colors in the dense particle region.</p> "> Figure 9
<p>Relationship between the spatial resolution and the LST scaling effect after the scaling correction. The distributed LSTs were upscaled using Method 1.</p> "> Figure 10
<p>Histograms of the difference between the distributed LST and lumped LST before and after the scaling effect correction at (<b>a</b>) Site 1; (<b>b</b>) Site 3; (<b>c</b>) Site 4 and (<b>d</b>) Site 5 at a spatial scale of 300 m. The black bars (<math display="inline"> <semantics> <mrow> <mi>L</mi> <mi>S</mi> <msup> <mi>T</mi> <mrow> <mi>a</mi> <mi>p</mi> <mi>p</mi> </mrow> </msup> </mrow> </semantics> </math>) represent the frequencies of the scaling effect before the correction, and the red bars (<math display="inline"> <semantics> <mrow> <mi>L</mi> <mi>S</mi> <msup> <mi>T</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> </mrow> </msup> </mrow> </semantics> </math>) represent the frequencies of the scaling effect after the correction.</p> ">
Abstract
:1. Introduction
2. Study Regions and Data
2.1. HiWATER Experiment
2.2. Study Regions
Sites | Vegetation (%) | Water (%) | Village (%) | Gobi/Bare Soil (%) |
---|---|---|---|---|
Site 1 | 0 | 0.9673 | 0 | 99.0327 |
Site 2 | 0.1488 | 0 | 0 | 99.8512 |
Site 3 | 95.5357 | 0 | 4.1171 | 0.3472 |
Site 4 | 96.2798 | 0 | 3.6210 | 0.0992 |
Site 5 | 9.176 | 26.4385 | 0.1488 | 64.2361 |
Sites | Land Surface Type | mLST (K) (ASTER) | mLST (K) (TASI) | σLST (K) (ASTER) | σLST (K) (TASI) |
---|---|---|---|---|---|
Site 1 | Gobi | 321.04 | 321.07 | 1.24 | 2.29 |
Site 2 | Gobi | 320.12 | 319.97 | 1.64 | 2.44 |
Site 3 | Vegetation | 303.73 | 304.49 | 2.36 | 5.19 |
Site 4 | Vegetation | 303.11 | 303.83 | 2.35 | 5.01 |
Site 5 | Mixed | 313.81 | 313.81 | 5.33 | 8.62 |
2.3. Experimental Data Preprocessing
2.3.1. Description and Preprocessing of ASTER Data
2.3.2. Description and Preprocessing of TASI Data
3. Methodology
3.1. Quantification of the Spatial Heterogeneity of LST
3.2. Methods of Studying the LST Scaling Problem
3.2.1. Comparison between Distributed LST and Lumped LST
3.2.2. Comparison between the TASI and ASTER LSTs
3.3. Correction Methodology for the LST Scaling Effect
4. Results and Discussion
4.1. Analysis of the Comparison between the Distributed LST and the Lumped LST
4.1.1. Analysis of the TASI LST Data
LST at Site 1 (K) | LST at Site 2 (K) | LST at Site 3 (K) | |||||||
Min. | Max. | Mean | Min. | Max. | Mean | Min. | Max. | Mean | |
M1 | 318.59 | 322.86 | 321.26 | 314.20 | 322.07 | 319.77 | 301.84 | 310.99 | 304.69 |
M2 | 318.59 | 322.86 | 321.26 | 314.23 | 322.08 | 319.78 | 301.85 | 311.02 | 304.71 |
M3 | 318.56 | 322.85 | 321.24 | 314.09 | 322.06 | 319.75 | 301.81 | 310.72 | 304.57 |
M4 | 318.57 | 322.86 | 321.24 | 314.13 | 322.07 | 319.76 | 301.82 | 310.75 | 304.58 |
LST at Site 4 (K) | LST at Site 5 (K) | ||||||||
Min. | Max. | Mean | Min. | Max. | Mean | ||||
M1 | 301.34 | 308.79 | 304.08 | 301.71 | 320.37 | 313.55 | |||
M2 | 301.35 | 308.79 | 304.09 | 301.76 | 320.38 | 313.57 | |||
M3 | 301.34 | 308.49 | 303.96 | 301.31 | 320.35 | 313.30 | |||
M4 | 301.34 | 308.49 | 303.97 | 301.36 | 320.35 | 313.33 |
4.1.2. Analysis of the ASTER LST Data
4.2. Analysis of the Comparison between the ASTER and TASI LSTs
RMSE1 (K) | RMSE2 (K) | RMSE3 (K) | RMSE4 (K) | RMSE5 (K) | |
---|---|---|---|---|---|
Method 1 | 0.81 | 0.95 | 1.93 | 1.91 | 2.68 |
Method 2 | 0.81 | 0.95 | 1.94 | 1.92 | 2.68 |
4.3. Correcting the Scaling Effect
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Raffy, M. Change of scale in models of remote sensing: A general method for spatialization of models. Remote Sens. Environ. 1992, 40, 101–112. [Google Scholar] [CrossRef]
- Zhenglin, H.; Islam, S. A framework for analyzing and designing scale invariant remote sensing algorithms. IEEE Trans. Geosci. Remote Sens. 1997, 35, 747–755. [Google Scholar] [CrossRef]
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 2006, 105, 286–298. [Google Scholar] [CrossRef]
- Chen, J.M.; Chen, X.; Ju, W. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity. Biogeosciences 2013, 10, 4879–4896. [Google Scholar] [CrossRef]
- Moran, M.; Humes, K.S.; Pinter, P.J., Jr. The scaling characteristics of remotely-sensed variables for sparsely-vegetated heterogeneous landscapes. J. Hydrol. 1997, 190, 337–362. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Generating consistent land surface temperature and emissivity products between aster and modis data for earth science research. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1304–1315. [Google Scholar] [CrossRef]
- Gaofei, Y.; Jing, L.; Qinhuo, L.; Longhui, L.; Yelu, Z.; Baodong, X.; Le, Y.; Jing, Z. Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: A case study in the heihe river basin. IEEE Geosci. Remote Sens. Lett. 2015, 12, 359–363. [Google Scholar] [CrossRef]
- Wu, H.; Tang, B.-H.; Li, Z.-L. Impact of nonlinearity and discontinuity on the spatial scaling effects of the leaf area index retrieved from remotely sensed data. Int. J. Remote Sens. 2013, 34, 3503–3519. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.L. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, Y.; Zhang, Y.; Knyazikhin, Y.; Bogaert, J.; Myneni, R.B. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sens. Environ. 2003, 84, 143–159. [Google Scholar] [CrossRef]
- Liu, Y.; Hiyama, T.; Yamaguchi, Y. Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens. Environ. 2006, 105, 115–128. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C. Minimum configuration of thermal infrared bands for land surface temperature and emissivity estimation in the context of potential future missions. Remote Sens. Environ. 2014, 148, 158–167. [Google Scholar] [CrossRef]
- Huazhong, R.; Rongyuan, L.; Guangjian, Y.; Xihan, M.; Zhao-Liang, L.; Nerry, F.; Qiang, L. Angular normalization of land surface temperature and emissivity using multiangular middle and thermal infrared data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4913–4931. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.L. Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sens. Rev. 1995, 12, 225–253. [Google Scholar] [CrossRef]
- Lakshmi, V.; Zehrfuhs, D. Normalization and comparison of surface temperatures across a range of scales. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2636–2646. [Google Scholar] [CrossRef]
- Jacob, F.; Petitcolin, F.o.; Schmugge, T.; Vermote, É.; French, A.; Ogawa, K. Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sens. Environ. 2004, 90, 137–152. [Google Scholar] [CrossRef]
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sens. Environ. 2006, 103, 81–96. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the VIIRS and MODIS LST products in an arid area of northwest China. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Zhong, B.; Ma, P.; Nie, A.; Yang, A.; Yao, Y.; Lü, W.; Zhang, H.; Liu, Q. Land cover mapping using time series HJ-1/CCD data. Sci. China Earth Sci. 2014, 57, 1790–1799. [Google Scholar] [CrossRef]
- Zhong, B.; Nie, A.; Yang, A.; Zhang, H.; Ma, P.; Liu, Q. HiWATER: Land cover map of Heihe river basin. In Heihe Plan Science Data Center; Heihe Plan Science Data Center: Beijing, China, 2014. [Google Scholar]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Tonooka, H. Accurate atmospheric correction of aster thermal infrared imagery using the WVS method. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2778–2792. [Google Scholar] [CrossRef]
- Wang, H. Thermal Infrared Emissivity Extraction from Remote Sensing Data and Soil Emissivity Modeling. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2014. [Google Scholar]
- Young, S.J.; Johnson, B.R.; Hackwell, J.A. An in-scene method for atmospheric compensation of thermal hyperspectral data. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 401–405. [Google Scholar] [CrossRef]
- Zhang, R.H.; Li, Z.L.; Tang, X.Z.; Sun, X.M.; Su, H.B.; Zhu, C.; Zhu, Z.L. Study of emissivity scaling and relativity of homogeneity of surface temperature. Int. J. Remote Sens. 2004, 25, 245–259. [Google Scholar] [CrossRef]
- Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Remote Sens. Rev. 1995, 12, 159–173. [Google Scholar] [CrossRef]
- Hu, T.; Liu, Q.; Du, Y.; Li, H.; Huang, H. Analysis of land surface temperature spatial heterogeneity using variogram model. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015.
- Heshun, W.; Qing, X.; Hua, L.; Yongming, D.; Qinhuo, L. Investigating the impact of soil moisture on thermal infrared emissivity using ASTER data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 294–298. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Liu, Q.; Du, Y.; Li, H.; Wang, H.; Cao, B. Analysis of the Land Surface Temperature Scaling Problem: A Case Study of Airborne and Satellite Data over the Heihe Basin. Remote Sens. 2015, 7, 6489-6509. https://doi.org/10.3390/rs70506489
Hu T, Liu Q, Du Y, Li H, Wang H, Cao B. Analysis of the Land Surface Temperature Scaling Problem: A Case Study of Airborne and Satellite Data over the Heihe Basin. Remote Sensing. 2015; 7(5):6489-6509. https://doi.org/10.3390/rs70506489
Chicago/Turabian StyleHu, Tian, Qinhuo Liu, Yongming Du, Hua Li, Heshun Wang, and Biao Cao. 2015. "Analysis of the Land Surface Temperature Scaling Problem: A Case Study of Airborne and Satellite Data over the Heihe Basin" Remote Sensing 7, no. 5: 6489-6509. https://doi.org/10.3390/rs70506489
APA StyleHu, T., Liu, Q., Du, Y., Li, H., Wang, H., & Cao, B. (2015). Analysis of the Land Surface Temperature Scaling Problem: A Case Study of Airborne and Satellite Data over the Heihe Basin. Remote Sensing, 7(5), 6489-6509. https://doi.org/10.3390/rs70506489