Synergistic Use of Multispectral Data and Crop Growth Modelling for Spatial and Temporal Evapotranspiration Estimations
<p>Scheme for the analysis of the assimilation efficiency of the EnKF-SAFY_swb method. (1) Phase 1: Input setting. (2) Phase 2: “True” values evaluation. (3) Phase 3: “Synthetic” LAI values elaboration. (4) Phase 4: Model running. (5) Phase 5: Calculation of AE indicators.</p> "> Figure 2
<p>Study area: Le Rogaie, Grosseto, Tuscany (Italy). The base map used for the image on the left was downloaded from the Google catalogue made available for the QGIS plugin QuickMapService. The base map used for the image on the right is a true color composite based on HyPlant raw data recorded on 20 July 2018 during SurfSense 2018 [<a href="#B51-remotesensing-13-02138" class="html-bibr">51</a>].</p> "> Figure 3
<p>Climatic data for Grosseto2018. (<b>a</b>) temperature and daily solar radiation; (<b>b</b>) precipitation and reference evapotranspiration. Data provided by Consorzio Lamma, Laboratory for Meteorology and Environmental Modelling.</p> "> Figure 4
<p>Airborne flight plan used to record airborne data with the TASI-600 and HyPlant DUAL sensor. Airborne raw data were recorded during the 2018 Surfsense campaign [<a href="#B51-remotesensing-13-02138" class="html-bibr">51</a>]. The basemap was elaborated from Sentinel-2A data acquired on 8 July 2018.</p> "> Figure 5
<p>Average LAI Trend estimated from Sentinel-2 data. The error bars represent the standard deviation for each group of fields.</p> "> Figure 6
<p>Comparison between “true” and “simulated” variables (generated with and without assimilation) for a synthetic dataset (generated following the procedure described in <a href="#sec2dot2-remotesensing-13-02138" class="html-sec">Section 2.2</a>. (<b>a</b>) Comparison and linear regression between “true” LAI and “simulated” LAI generated without assimilation (using the SAFY_swb crop growth model); (<b>b</b>) comparison and linear regression between “true” LAI and “simulated” LAI generated with assimilation (using the methodology EnKF-SAFY_swb); (<b>c</b>) comparison and linear regression between “true” yield and “simulated” yield generated without assimilation (SAFY_swb); (<b>d</b>) comparison and linear regression between “true” yield and “simulated” yield generated with assimilation (EnKF-SAFY_swb). For each case RMSE, relative RMSE (RRMSE) and coefficient of determination (R<sup>2</sup>) are shown.</p> "> Figure 7
<p>Assimilation efficiency index calculated with synthetic data as described in <a href="#sec2dot2-remotesensing-13-02138" class="html-sec">Section 2.2</a>. Each column represents a different number of assimilations (the value is reported on the <span class="html-italic">x</span>-axis) while each colour represents a different error on “measured” LAI. For simplicity of calculation, AE is valued against yield.</p> "> Figure 8
<p>Comparison of “true” and “simulated” variable obtained using the EnKF-SAFY_swb data assimilation method for a synthetic dataset (6 assimilated observations). A set of 5000 simulations is used. For each variable RMSE, relative RMSE and R<sup>2</sup> are shown. In detail: (<b>A</b>) comparison and linear regression between “true” and “simulated” LAI; (<b>B</b>) comparison and linear regression between “true” and “simulated” actual evapotranspiration; (<b>C</b>) comparison and linear regression between “true” and “simulated” biomass (expressed in <math display="inline"><semantics> <mrow> <mfrac> <mi>g</mi> <mrow> <msup> <mi>m</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo stretchy="false">)</mo> </mrow> </semantics></math>; (<b>D</b>) comparison and linear regression between “true” and “simulated” yield (expressed in <math display="inline"><semantics> <mrow> <mfrac> <mi>g</mi> <mrow> <msup> <mi>m</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </semantics></math>).</p> "> Figure 9
<p>Comparison of latent heat flux (LE<sub>i</sub>) measured with Eddy Covariance (circle) and calculated from airborne data (triangle), for the 199th (<b>a</b>) and 201st DOY (<b>b</b>). The line represents a polynomial regression function (6 degree) fitted through the LE<sub>i</sub> measurements from the EC station.</p> "> Figure 10
<p>Comparison between dailyactual evapotranspiration (AET) measured with EC (circles), calculated from airborne data (triangles) and simulated with EnKF-SAFY_swb (continuous line).</p> "> Figure 11
<p>Comparison between AET calculated using airborne data (horizontal axis) and simulated using EnKF-SAFYswb (vertical axis), for the day of year (DOY) 199 (diamonds) and 201 (circles). The dashed line is the 1:1 simulated vs. the observed line.</p> "> Figure 12
<p>(<b>a</b>) Map of daily Actual ET (mm) for the DOY 199 estimated using airborne data. (<b>b</b>) map of Actual ET (in mm) for the DOY 201 estimated using airborne data; (<b>c</b>) map of Actual ET for the DOY 199simulated using EnKF-SAFY_swb; (<b>d</b>) map of Actual ET for the DOY 201simulated using EnKF-SAFY_swb.</p> "> Figure 13
<p>(<b>a</b>) Histogram of daily ET (expressed in mm) calculated from airborne data; (<b>b</b>) histogram of daily ET (expressed in mm) simulated by EnKF-SAFY_swb.</p> "> Figure 14
<p>Comparison and linear regression between LAI estimated from Sentinel-2 data (horizontal axes) and LAI simulated by EnKF-SAFY_swb (vertical axis) for each group of fields (as classified in <a href="#sec2dot3dot1-remotesensing-13-02138" class="html-sec">Section 2.3.1</a>, each letter corresponds to a group of fields). (<b>A</b>) Group A; (<b>B</b>) Group B; (<b>C</b>) Group C; (<b>D</b>) Group D; (<b>E</b>) Group E; (<b>F</b>) Group F; (<b>G</b>) Group G; (<b>H</b>) Group H.</p> "> Figure 15
<p>Comparison and linear regression between LAI estimated from Sentinel-2 data (horizontal axes, denominated as obs) and LAI simulated by EnKF-SAFY_swb (vertical axis, denominated as sim) for the whole area of study.</p> ">
Abstract
:1. Introduction
- providing information on the growth state of crops with high spatial resolution and high temporal frequency to encourage practical applications,
- the complex calibration of model parameters,
- the high computational cost of DA methodologies,
- the scarce availability of spatialized ground data and at the same time frequently collected during the crop cycle.
2. Materials and Methods
2.1. SAFY_swb and the Ensemble Kalman Filter Data Assimilation Method
2.1.1. SAFY_swb
- -
- to calculate soil water content, in addition to considering the effects due to precipitation, evaporation and transpiration, we also considered the effects due to irrigation:
- -
- to simplify the algorithm and avoid repeated calculations, we considered the potential evapotranspiration (PET) proportional to reference evapotranspiration (ET0) through an appropriate specific crop coefficient, as suggested by [42].
2.1.2. Ensemble Kalman Filter Method Assimilation
2.2. Assimilation Efficiency Assessment
2.2.1. General Case
2.2.2. Specific Case
2.3. Grosseto Case Study (Central Italy)
2.3.1. Study Area and In Situ Data
2.3.2. Airborne Measurements
2.3.3. From Instantaneous LE to Daily Actual ET
2.3.4. Satellite Data
2.3.5. EnKF-SAFY_swb Method Pre-Processing
3. Results
3.1. Assimilation Efficiency
3.2. Grosseto Case Study (Central Italy)
4. Discussion
5. Conclusions
- -
- Few acquisitions of satellite images from which to obtain the LAI for the updating of the model.
- -
- Few images acquired via airborne for validation
- -
- Single Eddy Covariance tower on the ground
- -
- Lack of an active in situ weather station for the entire crop cycle.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture–Trends and Challenges; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 28 May 2021).
- Huang, J.; Gómez-dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.; Wu, Y.; et al. Agricultural and Forest Meteorology Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing of Environment Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Yu, T.; Huang, X.; Gu, X. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Jutz, S.; Milagro Perez, M.P. Copernicus space component: Status and evolution. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; EGU: Wien, Austria, 2017; p. 18668. Available online: https://ui.adsabs.harvard.edu/abs/2017EGUGA..1918668J/abstract (accessed on 28 May 2021).
- Siad, S.M.; Iacobellis, V.; Zdruli, P.; Gioia, A.; Stavi, I.; Hoogenboom, G. A review of coupled hydrologic and crop growth models. Agric. Water Manag. 2019, 224, 105746. [Google Scholar] [CrossRef]
- Beveridge, L.; Whitfield, S.; Challinor, A. Crop modelling: Towards locally relevant and climate-informed adaptation. Clim. Chang. 2018, 147, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Challinor, A.J.; Müller, C.; Asseng, S.; Deva, C.; Nicklin, K.J.; Wallach, D.; Vanuytrecht, E.; Whitfield, S.; Ramirez-Villegas, J.; Koehler, A.-K. Improving the use of crop models for risk assessment and climate change adaptation. Agric. Syst. 2018, 159, 296–306. [Google Scholar] [CrossRef]
- Biswal, A.; Chakraborty, A.; Murthy, C.S. Spatialization of Crop Growth Simulation Model Using Remote Sensing BT-Geospatial Technologies for Crops and Soils; Mitran, T., Meena, R.S., Chakraborty, A., Eds.; Springer: Singapore, 2021; pp. 153–199. [Google Scholar]
- Hoefsloot, P.; Ines, A.; van Dam, J.; Duveiller, G.; Kayitakire, N.F.; Hanse, J. Combining Crop Models and Remote Sensing for Yield Prediction: Concepts, Applications and Challenges for Heterogeneous, Smallholder Environments; European Union: Luxembourg, 2012; p. 52. [Google Scholar]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Silvestro, P.C.; Pignatti, S.; Pascucci, S.; Yang, H.; Li, Z.; Yang, G.; Huang, W.; Casa, R. Estimating Wheat Yield in China at the Field and District Scale from the Assimilation of Satellite Data into the Aquacrop and Simple Algorithm for Yield (SAFY) Models. Remote Sens. 2017, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Özdoğan, M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sens. Environ. 2019, 228, 144–163. [Google Scholar] [CrossRef]
- Tewes, A.; Hoffmann, H.; Krauss, G.; Schäfer, F.; Kerkhoff, C.; Gaiser, T. New Approaches for the Assimilation of LAI Measurements into a Crop Model Ensemble to Improve Wheat Biomass Estimations. Agronomy 2020, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, J.; Xu, X.; Zhao, C.; Jin, X.; Yang, G.; Feng, H. Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Remote Sens. 2015, 7, 12400–12418. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Li, Z.; Yang, G.; Yang, H.; Feng, H.; Xu, X.; Wang, J. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. ISPRS J. Photogramm. Remote Sens. 2017, 126, 24–37. [Google Scholar] [CrossRef]
- He, L.; Mostovoy, G. Cotton Yield Estimate Using Sentinel-2 Data and an Ecosystem Model over the Southern US. Remote Sens. 2019, 11, 2000. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M. An innovative intelligent system based on remote sensing and mathematical models for improving crop yield estimation. Inf. Process. Agric. 2019, 6, 316–325. [Google Scholar] [CrossRef]
- Monteith, J.L.; Moss, C.J. Climate and the Efficiency of Crop Production in Britain [and Discussion]. Philos. Trans. R. Soc. B Biol. Sci. 1977, 281, 277–294. [Google Scholar]
- Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 2008, 23, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Papadavid, G.; Toulios, L. The use of earth observation methods for estimating regional crop evapotranspiration and yield for water footprint accounting. J. Agric. Sci. 2018, 156, 599–617. [Google Scholar] [CrossRef]
- Tewes, A.; Hoffmann, H.; Nolte, M.; Krauss, G.; Schäfer, F.; Kerkhoff, C.; Gaiser, T. How Do Methods Assimilating Sentinel-2-Derived LAI Combined with Two Different Sources of Soil Input Data Affect the Crop Model-Based Estimation of Wheat Biomass at Sub-Field Level? Remote Sens. 2020, 12, 925. [Google Scholar] [CrossRef] [Green Version]
- Stancalie, G.; Marica, A.; Toulios, L. Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiration. Phys. Chem. Earth Parts A/B/C 2010, 35, 25–30. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Srivastava, P.K.; Piles, M.; Pearson, S. Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, A.; Villani, P.; Falanga Bolognesi, S.; Chirico, G.B.; D’Urso, G. Predicting Crop Evapotranspiration by Integrating Ground and Remote Sensors with Air Temperature Forecasts. Sensors 2020, 20, 1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartanto, I.M.; Van Der Kwast, J.; Alexandridis, T.K.; Almeida, W.; Song, Y. Data assimilation of satellite-based actual evapotranspiration in a distributed hydrological model of a controlled water system. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 123–135. [Google Scholar] [CrossRef]
- Koetz, B.; Bastiaanssen, W.; Berger, M.; Defourney, P.; Del Bello, U.; Drusch, M.; Drinkwater, M.; Duca, R.; Fernandez, V.; Ghent, D.; et al. High Spatio- Temporal Resolution Land Surface Temperature Mission—A Copernicus Candidate Mission in Support of Agricultural Monitoring. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8160–8162. [Google Scholar]
- Mission Science Division. Copernicus High Spatio-Temporal Resolution Land Surface Temperature Mission: Mission Requirements Document; ESA: Noordwijk, The Netherlands, 2019; pp. 1–89. [Google Scholar]
- Lagouarde, J.-P.; Bhattacharya, B.K.; Crébassol, P.; Gamet, P.; Adlakha, D.; Murthy, C.S.; Singh, S.K.; Mishra, M.; Nigam, R.; Raju, P.V.; et al. Indo-french high-resolution thermal infrared space mission for earth natural resources assessment and monitoring–concept and definition of trishna. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W6, 403–407. Available online: https://hal-normandie-univ.archives-ouvertes.fr/hal-02420462/document (accessed on 28 May 2021).
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Gómez, M.; Jiménez-Muñoz, J.C.; Olioso, A. Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sens. Environ. 2007, 110, 139–148. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H. Remote Sensing of Environment Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote Sens. Environ. 2019, 221, 157–172. [Google Scholar] [CrossRef]
- Gunston, H.; Batchelor, C.H. A Comparison of The Priestley-Taylor And Penman Methods for Estimating Reference Crop Evapotranspiration in Tropical Countries. Agric. Water Manag. 1983, 6, 65–77. [Google Scholar] [CrossRef]
- Delécolle, R.; Maas, S.J.; Guérif, M.; Baret, F. Remote sensing and crop production models: Present trends. ISPRS J. Photogramm. Remote Sens. 1992, 47, 145–161. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Curnel, Y.; de Wit, A.J.W.; Duveiller, G.; Defourny, P. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment. Agric. For. Meteorol. 2011, 151, 1843–1855. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.F.; Huc, M.; Keravec, P.; Béziat, P.; et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Marais Sicre, C.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Shang, J.; Liao, C. Using UAV-Based SOPC Derived LAI and SAFY Model for Biomass and Yield Estimation of Winter Wheat. Remote Sens. 2020, 12, 2378. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Delobel, F. Review of ETo Calculation Methods and Software. 2009. Available online: http://www.fao.org/3/X0490E/X0490E00.htm (accessed on 28 May 2021).
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. 2016. Available online: https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 28 May 2021).
- Burgers, G.; van Leeuwen, P.J.; Evensen, G. Analysis Scheme in the Ensemble Kalman Filter. Mon. Weather Rev. 1998, 126, 1719–1724. [Google Scholar] [CrossRef]
- Makowski, D.; Guérif, M.; Jones, J.W.; Graham, W. Data assimilation with crop models. In Working with Dynamic Crop Models; Wallach, D., Makowski, D., Jones, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 151–170. [Google Scholar]
- Benton Jones, J. Agronimic Handbook Management of Crops, Soils, and Their Fertility; ESA CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Hillel, D. Water Harvesting; Elsevier: Oxford, UK, 2005; pp. 264–270. Available online: https://pubs.giss.nasa.gov/docs/2005/2005_Hillel_hi09000a.pdf (accessed on 28 May 2021).
- Tang, R.; Zhao, X.; Zhou, T.; Jiang, B.; Wu, D.; Tang, B. Assessing the impacts of urbanization on albedo in Jing-Jin-Ji Region of China. Remote Sens. 2018, 10, 1096. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating Generalized Soil-water Characteristics from Texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Rascher, U.; Sobrino, J.A.; Skokovic, D.; Hanus, J.; Siegmann, B. SurfSense Technical Assistance for Airborne and Ground Measurements during the High Spatio-Temporal Resolution Land Surface Temperature Experiment Final Report; 2019. [Google Scholar]
- Rivington, M.; Bellocchi, G.; Matthews, K.B.; Buchan, K. Evaluation of three model estimations of solar radiation at 24 UK stations. Agric. For. Meteorol. 2005, 132, 228–243. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance. A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Van Dijk, A.; Moene, A.F.; De Bruin, H.A.R. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library; Meteorology and Air Quality Group, Wageningen University: Wageningen, The Netherlands, 2004. [Google Scholar]
- Jackson, R.D.; Hatfield, J.L.; Reginato, R.J.; Idso, S.B.; Pinter, P.J. Estimation of Daily Evapotranspiration from one Time-of-Day Measurements. In Plant Production and Management under Drought Conditions; Stone, J.F., Willis, W.O., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; Volume 12, pp. 351–362. [Google Scholar]
- Zhang, L.; Lemeur, R. Evaluation of daily evapotranspiration estimates from instantaneous measurements. Agric. For. Meteorol. 1995, 74, 139–154. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Y.; Li, W.; Cao, W.; Tian, Y. Assimilating Remotely Sensed Information with the WheatGrow Model Based on the Ensemble Square Root Filter for Improving Regional Wheat Yield Forecasts. Plant Prod. Sci. 2013, 16, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Hillel, D. Water harvesting. In Encyclopedia of Soils in the Environment; Hillel, D., Hatfield, J.H., Powlson, D.S., Rosenzweig, C., Scow, K.M., Singer, M.J., Sparks, D.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 264–270. [Google Scholar]
- Silvestro, P.C.; Pignatti, S.; Yang, H.; Yang, G.; Pascucci, S.; Castaldi, F.; Casa, R. Sensitivity analysis of the Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications. PLoS ONE 2017, 12, e0187485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.P. Ensemble Kalman Filtering for State and Parameter Estimation on a Reservoir Model. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2007. [Google Scholar]
- De Wit, A.D.; Van Diepen, C.A. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. For. Meteorol. 2007, 146, 38–56. [Google Scholar] [CrossRef]
- Silvestro, P.C.; Casa, R.; Pignatti, S.; Castaldi, F.; Yang, H.; Yang, G. Development of an assimilation scheme for the estimation of drought-induced yield losses based on multi-source Remote Sensing and the Aquacrop model. In Proceedings of the Dragon 3Mid Term Results, Chengdu, China, 26–29 May 2014. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
Soil Property | Min | Max | Mean | St. Dev. |
---|---|---|---|---|
pH | 7.1 | 8.2 | 7.5 | 0.2 |
Electrical Conductivity (mS cm−1) | 158.0 | 2970.0 | 1472.5 | 548.5 |
Sand (%) | 7.7 | 34.9 | 18.2 | 6.1 |
Silt (%) | 38.7 | 67.3 | 55.0 | 6.2 |
Clay (%) | 12.3 | 43.9 | 26.8 | 6.8 |
Carbonates (g kg−1) | 73.0 | 148.0 | 122.8 | 11.3 |
Total nitrogen (g kg−1) | 0.1 | 0.2 | 0.2 | 0.0 |
Organic carbon (g kg−1) | 0.9 | 1.7 | 1.4 | 0.2 |
C/N | 6.6 | 8.9 | 7.5 | 0.5 |
ID | Day of Acquisition | Validation |
---|---|---|
S2A_MSIL2A_20180419T101031 | 139 | no |
S2A_MSIL2A_20180618T101021 | 169 | no |
S2A_MSIL2A_20180708T101031 | 188 | no |
S2A_MSIL2A_20180718T101031 | 199 | no |
S2A_MSIL2A_20180807T101021 | 219 | no |
S2A_MSIL2A_20180817T101021 | 229 | no |
S2A_MSIL2A_20180827T101021 | 239 | A-C-D |
S2A_MSIL2A_20180906T101021 | 252 | no |
S2A_MSIL2A_20180926T101021 | 269 | B-E-F-G-H |
Group | Sowing Date | Harvest Date | Number of LAI Observations |
---|---|---|---|
A | 17 April 2018 | 24 August 2018 | 6 |
B | 27 April 2018 | 03 October 2018 | 8 |
C | 17 April 2018 | 30 August 2018 | 6 |
D | 12 April 2018 | 22 August 2018 | 6 |
E | 10 June 2018 | 27 October 2018 | 6 |
F | 10 June 2018 | 27 August 2018 | 6 |
G | 22 May 2018 | 22 October 2018 | 7 |
H | 22 May 2018 | 22 October 2018 | 7 |
ID | Description | Value | Unit | Reference |
---|---|---|---|---|
Pfen_PrtA | Partition-to-leaf function: parameter 1 | 0.279 | - | [14] |
Pfen_PrtB | Partition-to-leaf function: parameter 2 | 0.0022 | - | [14] |
Pfen_SenA | Sum of temperature for senescence | 1100 | °C | [14] |
Pfen_SenB | Rate of senescence | 5463 | [14] | |
MxRDP | Maximum GDD required to reach maturity (°C) | 1660 | °C | [47] |
Pgro_Ms0 | Emergence Dry Mass Value | 2.5 | [47] | |
Maize.MxDay | Maximum Days from emergence to physiological maturity | 175 | days | [47] |
Maize.RunWin | Window size for running average temperature | 18 | °C | [47] |
Maize.RunAvg | Running average daily mean temperature before planting | 12 | °C | [47] |
Maize.RunMin | Running average daily min temperature before planting | 8 | °C | [47] |
Maize.ErlPlant_doy | Earliest planting date | 91 | Day of Year | [47] |
Maize.EmGDD | GDD required from planting to emergence | 80 | °C | [47] |
Maize.Tmin | Minimum Temperature for Plant Development (°C | 10 | °C | [47] |
Maize.Topt | Optimal Temperature for Plant Development (°C) | 30 | °C | [47] |
Maize.Tmax | Maximum Temperature for Plant Development | 40 | °C | [47] |
RootRatio | root weight to length ratio | 9800 | cm/g | [47] |
RtGrtRate | root depth growth rate | 0.16 | [47] | |
MxRDP | maximum root depth | 120 | cm | [47] |
Rnff | runoff factor | 0.2 | - | [58] |
SALB | Soil Albedo | 0.18 | - | [49] |
DrnCoeff | profile drainage coefficient | 6.99 | [51] | |
MxRWU | maximum root water uptake rate | 0.0035 | [51] |
ID | Unit | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 |
---|---|---|---|---|---|---|
Layer Depth | cm | 10 | 15 | 25 | 50 | 50 |
Field Capacity (FC) | cm3/cm3 | 0.46 | 0.46 | 0.46 | 0.45 | 0.45 |
Wilting Point (WP) | cm3/cm3 | 0.30 | 0.30 | 0.30 | 0.29 | 0.29 |
Air Dry | cm3/cm3 | 0.23 | 0.22 | 0.2 | 0.22 | 0.22 |
Saturation (Sat) | cm3/cm3 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
ID | Min | Max | Mean | Standard Deviation | Description |
---|---|---|---|---|---|
Pgro_Lue | 2.88 | 3.52 | 3.2 | 0.32 | Effective Light use efficiency |
Pgro_R2P | 0.423 | 0.517 | 0.47 | 0.047 | Global to PAR incident radiation ratio (Climatic Efficiency) |
Pgro_Kex | 0.45 | 0.55 | 0.5 | 0.05 | Light interception coefficient |
Pgro_Sla | 0.018 | 0.022 | 0.02 | 0.002 | Specific Leaf-Area |
Pgro_P2G | 0.00585 | 0.00715 | 0.0065 | 0.00065 | Partition coefficient To Grain |
AET | ||||||||
---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | Group E | Group F | Group G | Group H | |
RMSE | 0.57 | 0.59 | 0.62 | 0.68 | 0.16 | 0.24 | 0.86 | 0.91 |
RRMSE | 0.20 | 0.24 | 0.21 | 0.23 | 0.17 | 0.21 | 0.43 | 0.42 |
LAI | ||||||||
---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | Group E | Group F | Group G | Group H | |
RMSE | 0.25 | 0.28 | 0.18 | 0.08 | 0.29 | 0.30 | 0.26 | 0.27 |
RRMSE | 0.83 | 0.20 | 0.73 | 0.29 | 0.15 | 0.13 | 0.26 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestro, P.C.; Casa, R.; Hanuš, J.; Koetz, B.; Rascher, U.; Schuettemeyer, D.; Siegmann, B.; Skokovic, D.; Sobrino, J.; Tudoroiu, M. Synergistic Use of Multispectral Data and Crop Growth Modelling for Spatial and Temporal Evapotranspiration Estimations. Remote Sens. 2021, 13, 2138. https://doi.org/10.3390/rs13112138
Silvestro PC, Casa R, Hanuš J, Koetz B, Rascher U, Schuettemeyer D, Siegmann B, Skokovic D, Sobrino J, Tudoroiu M. Synergistic Use of Multispectral Data and Crop Growth Modelling for Spatial and Temporal Evapotranspiration Estimations. Remote Sensing. 2021; 13(11):2138. https://doi.org/10.3390/rs13112138
Chicago/Turabian StyleSilvestro, Paolo Cosmo, Raffaele Casa, Jan Hanuš, Benjamin Koetz, Uwe Rascher, Dirk Schuettemeyer, Bastian Siegmann, Drazen Skokovic, José Sobrino, and Marin Tudoroiu. 2021. "Synergistic Use of Multispectral Data and Crop Growth Modelling for Spatial and Temporal Evapotranspiration Estimations" Remote Sensing 13, no. 11: 2138. https://doi.org/10.3390/rs13112138
APA StyleSilvestro, P. C., Casa, R., Hanuš, J., Koetz, B., Rascher, U., Schuettemeyer, D., Siegmann, B., Skokovic, D., Sobrino, J., & Tudoroiu, M. (2021). Synergistic Use of Multispectral Data and Crop Growth Modelling for Spatial and Temporal Evapotranspiration Estimations. Remote Sensing, 13(11), 2138. https://doi.org/10.3390/rs13112138