Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors
"> Figure 1
<p>North Africa cluster map.</p> "> Figure 2
<p>Cluster 13 pixel masks for UTM zones 29 (shaded region on left) and 34 (shaded region on right).</p> "> Figure 3
<p>(<b>a</b>) Portion of Cluster 13 pixel mask overlaid on OLI Image (UTM Zone 34, WRS-2 Path/Row 181/40) (Left); (<b>b</b>) Masked TOA reflectance image, Coastal/Aerosol band (Right).</p> "> Figure 4
<p>TOA reflectance trend from (<b>a</b>) Libya-4 ROI (Left); (<b>b</b>) Cluster 13 without any further cloud screening and correction (Right).</p> "> Figure 5
<p>(<b>a</b>) Libya-4 CNES ROI (Red rectangle) over WRS-2 path-row 181/40 image from Landsat 8 (Left). (<b>b</b>) Improvement of temporal revisit period using EPICS over traditional Libya-4 PICS (Right).</p> "> Figure 6
<p>Mean temporal TOA reflectance values (with associated total standard deviations) of 16 individual Cluster 13 WRS-2 Path/Row(s): (<b>a</b>) CA band; (<b>b</b>) Blue band; (<b>c</b>) Green band; (<b>d</b>) Red band; (<b>e</b>) NIR band; (<b>f</b>) SWIR1 band; (<b>g</b>) SWIR2 band .</p> "> Figure 6 Cont.
<p>Mean temporal TOA reflectance values (with associated total standard deviations) of 16 individual Cluster 13 WRS-2 Path/Row(s): (<b>a</b>) CA band; (<b>b</b>) Blue band; (<b>c</b>) Green band; (<b>d</b>) Red band; (<b>e</b>) NIR band; (<b>f</b>) SWIR1 band; (<b>g</b>) SWIR2 band .</p> "> Figure 7
<p>Procedure to create analysis dataset for determining expected behavior of random Cluster 13 location.</p> "> Figure 8
<p>Histogram of the mean distribution of CA band when (<b>a</b>) eight distinct sites were considered at once (Left) and (<b>b</b>) three distinct sites were considered at once (Right).</p> "> Figure 9
<p>Average expected behavior of randomly selected site from Cluster 13.</p> "> Figure 10
<p>OLI lifetime TOA reflectance trend of Cluster 13.</p> "> Figure 11
<p>Validation of Cluster 13 mean temporal TOA reflectance values using OLI, Sentinel 2A/2B MSI, and ETM+ Sensors: (<b>a</b>) CA band; (<b>b</b>) Blue band; (<b>c</b>) Green band; (<b>d</b>) Red band; (<b>e</b>) NIR band; (<b>f</b>) SWIR1 band; (<b>g</b>) SWIR2 band.</p> "> Figure 11 Cont.
<p>Validation of Cluster 13 mean temporal TOA reflectance values using OLI, Sentinel 2A/2B MSI, and ETM+ Sensors: (<b>a</b>) CA band; (<b>b</b>) Blue band; (<b>c</b>) Green band; (<b>d</b>) Red band; (<b>e</b>) NIR band; (<b>f</b>) SWIR1 band; (<b>g</b>) SWIR2 band.</p> "> Figure 12
<p>Dynamic ranges of clusters found by Shrestha’s analysis.</p> "> Figure 13
<p>Temporal trending of OLI over Cluster 4.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. SDSU Processed Google Earth Engine (GEE) Derived Data and Mosaic of North Africa
2.2. Classification Map of North Africa
2.3. Cluster 13 as EPICS Candidate Cluster
2.4. Cluster 13 Boundary Delineation
2.5. Creation of Cluster 13 Zone-Specific Masks
2.6. Application of Cluster 13 Zone-Specific Masks
2.7. Additional Data Filtering
2.8. Development of Cluster-Based EPICS BRDF Model
3. Results and Discussion
3.1. Cluster 13 Imaging Frequency
3.2. Cluster Optimization
3.3. Traditional PICS vs. EPICS
3.4. Cluster 13 Region Similarity
3.5. Expected Behavior of Random Cluster 13 Location
3.6. Validation
3.7. Extension of Dynamic Range Using Lower Reflectance Clusters
3.8. Increase of Sensitivity to Detect Change in the Sensor
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cabot, F.; Hagolle, O.; Henry, P. Relative and multitemporal calibration of AVHRR, SeaWiFS, and VEGETATION using POLDER characterization of desert sites. In Proceedings of the IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Proceedings (Cat. No. 00CH37120), Honolulu, HI, USA, 24–28 July 2000; pp. 2188–2190. [Google Scholar]
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ. 1996, 58, 101–114. [Google Scholar] [CrossRef]
- Kaufman, Y.; Holben, B. Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection. Int. J. Remote Sens. 1993, 14, 21–52. [Google Scholar] [CrossRef]
- Kim, W.; He, T.; Wang, D.; Cao, C.; Liang, S. Assessment of long-term sensor radiometric degradation using time series analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2960–2976. [Google Scholar] [CrossRef]
- Teillet, P.; Barsi, J.; Chander, G.; Thome, K. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. In Proceedings of the Earth Observing Systems XII, San Diego, CA, USA, 5 October 2007; p. 66770S. [Google Scholar]
- Teillet, P.; Chander, G. Terrestrial reference standard sites for postlaunch sensor calibration. Can. J. Remote Sens. 2010, 36, 437–450. [Google Scholar] [CrossRef]
- Wu, A.; Zhonc, Q. A method for determining the sensor degradation rates of NOAA AVHRR channels 1 and 2. J. Appl. Meteorol. 1994, 33, 118–122. [Google Scholar] [CrossRef]
- Chander, G.; Xiong, X.J.; Choi, T.J.; Angal, A. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ. 2010, 114, 925–939. [Google Scholar] [CrossRef]
- Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, D.L.; Barker, J.L.; Scaramuzza, P.L. Landsat-7 ETM+on-orbit reflective-band radiometric stability and absolute calibration. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2810–2820. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.; Wu, A.; Xiong, X.; Scarino, B.; Haney, C.; Gopalan, A. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets. Remote Sens. 2014, 6, 2809–2826. [Google Scholar] [CrossRef]
- Wu, A.; Xiong, X.; Cao, C.; Chiang, K.-F. Assessment of SNPP VIIRS VIS/NIR radiometric calibration stability using Aqua MODIS and invariant surface targets. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2918–2924. [Google Scholar] [CrossRef]
- Angal, A.; Chander, G.; Xiong, X.; Choi, T.J.; Wu, A. Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors. J. Appl. Remote Sens. 2011, 5, 059502. [Google Scholar] [CrossRef] [Green Version]
- Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors. J. Appl. Remote Sens. 2010, 4, 043525. [Google Scholar]
- Tabassum, R. Worldwide Optimal PICS Search; South Dakota State University: Brookings, SD, USA, 2017. [Google Scholar]
- Vuppula, H. Normalization of Pseudo-Invariant Calibration Sites for Increasing the Temporal Resolution and Long-Term Trending; South Dakota State University: Brookings, SD, USA, 2017. [Google Scholar]
- Shrestha, M.; Leigh, L.; Helder, D. Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (EPICS) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sens. 2019, 11, 875. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.; Kvaran, G. Landsat-8 operational land imager design, characterization and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- GD Team. GDAL—Geospatial Data Abstraction Library. 2013. Available online: http://www.gdal.org (accessed on 10 May 2019).
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Farhad, M. Cross Calibration and Validation of Landsat 8 OLI and Sentinel 2A MSI; South Dakota State University: Brookings, SD, USA, 2018. [Google Scholar]
- Kaewmanee, M. Pseudo Invariant Calibration Sites: PICS Evolution; Utah State University: Logan, UT, USA, 2018. [Google Scholar]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.-C. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Jackman, C.H.; Bishop, L.; Frith, S.M.H.; DeLuisi, J.; Keller, T.; Oltmans, S.J.; Fleming, E.L. Detecting the recovery of total column ozone. J. Geophys. Res. Atmos. 2000, 105, 22201–22210. [Google Scholar] [CrossRef] [Green Version]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.L.; Choi, D.; Cheang, W.K.; Keller, T.; DeLuisi, J.; Wuebbles, D.J.; Kerr, J.B. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. Atmos. 1998, 103, 17149–17161. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015; ISBN 978-1-118-67502-1. [Google Scholar]
Bands | |||||||
---|---|---|---|---|---|---|---|
Coastal | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
Mean TOA reflectance | 0.23 | 0.25 | 0.34 | 0.48 | 0.59 | 0.69 | 0.60 |
Average Temporal Uncertainty (%) | 2.48 | 2.55 | 2.22 | 2.25 | 2.20 | 2.36 | 3.34 |
Spatial Uncertainty (%) | 4.59 | 4.8 | 3.08 | 2.71 | 2.11 | 1.78 | 2.62 |
Day of Landsat Cycle | Path Coverage of Cluster 13 | Optimized Path/Row | Site Number Assignment | Pixel Count in Million | Area in km2 | Additional Path/Row Intersection |
---|---|---|---|---|---|---|
1 | 190 | 190/43 | 11 | 0.50 | 454 | Not Found |
2 | 181,197 | 181/40 | 4 | 17.90 | 16114 | 181/41,181/42,181/43,181/48, 197/46,197/47, 197/48 |
3 | 188 | 188/47 | 9 | 5.57 | 5017 | 188/46, 188/48 |
4 | 179 | 179/41 | 2 | 8.39 | 7548 | 179/40,179/42,179/44,179/47,179 /48 |
5 | 186,202 | 186/47 | 7 | 8.06 | 7250 | 186/47,186/48,186/49,202/46,202/47 |
6 | 177,193 | 193/37 | 14 | 4.49 | 4040 | 177/40,177/41,177/42,177/44, 177/45, 177/46 |
7 | 184,200 | 200/47 | 16 | 2.60 | 2337 | 184/40, 184/41, 184/42, 184/46, 184/47, 184/49, 200/48 |
8 | 191 | 191/37 | 12 | 2.56 | 2301 | Not Found |
9 | 182,198 | 182/40 | 5 | 18.47 | 16620 | 182/42,182/43,182/49,198/46,198/47, 198/48 |
10 | 189 | 189/46 | 10 | 0.38 | 339 | 189/43, 189/44, 189/45,189/47 |
11 | 180 | 180/40 | 3 | 7.98 | 7186 | 180/41, 180/42, 180/44 |
12 | 187,203 | 187/47 | 8 | 9.21 | 8285 | 187/42, 187/46, 187/48, 187/49, 203/45, 203/46, 203/47 |
13 | 178 | 178/47 | 1 | 8.21 | 7393 | 178/40, 178/41, 178/42, 178/43 |
14 | 185,201 | 185/47 | 6 | 8.73 | 7858 | 185/44, 185/45,185/46,185/48, 185/49, 201/46,201/47 |
15 | 192,176 | 192/37 | 13 | 5.55 | 4999 | 176/42 |
16 | 183,199 | 199/46 | 15 | 5.55 | 4993 | 183/40, 183/41,183/42,183/43, 183/49, 199/47,199/48 |
Bands | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|---|
Cluster 13 statistics (without BRDF correction) | Mean TOA reflectance | 0.228 | 0.244 | 0.340 | 0.474 | 0.590 | 0.680 | 0.594 |
Temporal uncertainty (%) | 3.07 | 2.60 | 1.85 | 1.88 | 1.99 | 2.72 | 3.29 | |
Average spatial uncertainty (%) | 4.50 | 4.96 | 4.35 | 4.06 | 4.09 | 4.00 | 4.21 | |
Libya-4 ROI statistics (without BRDF correction) | Mean TOA reflectance | 0.231 | 0.248 | 0.337 | 0.459 | 0.582 | 0.672 | 0.593 |
Temporal uncertainty (%) | 3.04 | 2.56 | 1.86 | 1.94 | 2.02 | 2.76 | 3.30 | |
Average spatial uncertainty (%) | 0.68 | 0.87 | 1.02 | 1.09 | 1.16 | 1.15 | 1.17 |
CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|
Distribution mean | 0.227 | 0.244 | 0.34 | 0.475 | 0.591 | 0.68 | 0.593 |
Distribution uncertainty (%) | 2.03 | 2.07 | 0.92 | 1.75 | 0.86 | 1.56 | 1.34 |
Bands | |||||||
---|---|---|---|---|---|---|---|
CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
Mean TOA reflectance | 0.228 | 0.244 | 0.340 | 0.474 | 0.591 | 0.681 | 0.595 |
Temporal Uncertainty (%) | 2.74 | 2.68 | 1.47 | 2.18 | 1.23 | 1.69 | 2.53 |
Average Spatial Uncertainty (%) | 4.50 | 4.96 | 4.35 | 4.06 | 4.09 | 4.00 | 4.21 |
Optimized Path/Row Pairs with Respect to OLI | Optimized Path/Row Pairs Used for Validation with Respect to ETM+ | Optimized Sentinel 2A/2B MSI Tile ID | Optimized Path/Row Pairs with Respect to OLI | Optimized Path/Row Pairs Used for Validation with Respect to ETM+ | Sentinel 2A/2B MSI Tile ID |
---|---|---|---|---|---|
200/47 | Not Used | 29QNA | 187/47 | Same as OLI | 32QRF |
199/46 | Not Used | 29QRC | 186/47 | Same as OLI | 33QUA |
193/37 | Not Used | 32SKB | 185/47 | Same as OLI | 33QWA |
192/37 | Not Used | 32SLB | 182/40 | Same as OLI | 34RFT |
191/37 | Not Used | 32SMB | 181/40 | Same as OLI | 34RGS |
190/43 | Not Used | 32QNM | 180/40 | Same as OLI | 35RLN |
189/46 | Same as OLI | 32QPH | 179/41 | Same as OLI | 35RMK |
188/47 | Not Used | 32QPG | 178/47 | Same as OLI | 35QLA |
Bands | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 |
---|---|---|---|---|---|---|---|
Mean | 0.181 | 0.177 | 0.204 | 0.262 | 0.314 | 0.380 | 0.326 |
Temporal Standard Deviation | 0.0112 | 0.0130 | 0.0155 | 0.0157 | 0.0118 | 0.0145 | 0.0122 |
Temporal Uncertainty (%) | 6.2% | 7.35% | 7.59% | 5.97% | 3.76% | 3.82% | 3.75% |
Bands | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|---|
Minimum detectable trend of OLI (%/yr) | 1 year—Libya-4 | 3.62 | 4.01 | 3.17 | 3.77 | 2.77 | 2.04 | 4.65 |
1 year—Cluster 13 | 2.31 | 2.50 | 1.33 | 2.33 | 1.36 | 1.65 | 4.28 | |
5.4 years—Libya-4 | 0.29 | 0.32 | 0.25 | 0.30 | 0.22 | 0.16 | 0.37 | |
5.4 years—Cluster 13 | 0.18 | 0.20 | 0.11 | 0.19 | 0.11 | 0.13 | 0.34 |
CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|
Time required(years) for Cluster-13 to detect 1 year equivalent Libya-4 trend | 0.74 | 0.73 | 0.56 | 0.72 | 0.62 | 0.86 | 0.96 |
Time required(years) for Cluster-13 to detect 5.4 years equivalent Libya-4 trend | 3.99 | 3.94 | 3.02 | 3.91 | 3.36 | 4.67 | 5.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.N.; Shrestha, M.; Leigh, L.; Helder, D. Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sens. 2019, 11, 1755. https://doi.org/10.3390/rs11151755
Hasan MN, Shrestha M, Leigh L, Helder D. Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sensing. 2019; 11(15):1755. https://doi.org/10.3390/rs11151755
Chicago/Turabian StyleHasan, Md Nahid, Mahesh Shrestha, Larry Leigh, and Dennis Helder. 2019. "Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors" Remote Sensing 11, no. 15: 1755. https://doi.org/10.3390/rs11151755
APA StyleHasan, M. N., Shrestha, M., Leigh, L., & Helder, D. (2019). Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sensing, 11(15), 1755. https://doi.org/10.3390/rs11151755