A Deep Learning Ensemble Method to Assist Cytopathologists in Pap Test Image Classification
<p>Example of the 90 × 90 cutouts of each class present in the Center for Recognition and Inspection of Cells (CRIC) cervix collection: (<b>A</b>) NILM; (<b>B</b>) ASC-US; (<b>C</b>) LSIL; (<b>D</b>) ASC-H; (<b>E</b>) HSIL; (<b>F</b>) SCC.</p> "> Figure 2
<p>Main blocks of the architectures considered in this work: (<b>A</b>) MobileNet block (adapted from [<a href="#B35-jimaging-07-00111" class="html-bibr">35</a>]); (<b>B</b>) InceptionNet block (adapted from [<a href="#B38-jimaging-07-00111" class="html-bibr">38</a>]); (<b>C</b>) EfficientNet block (adapted from [<a href="#B41-jimaging-07-00111" class="html-bibr">41</a>]).</p> "> Figure 3
<p>Convolutional neural network architectures.</p> "> Figure 4
<p>Proposed ensemble.</p> "> Figure 5
<p>Confusion matrix for the two-class classification.</p> "> Figure 6
<p>Confusion matrix for the three-class classification.</p> "> Figure 7
<p>Confusion matrix for the six-class classification.</p> "> Figure 8
<p>Examples of incorrect classifications: original images, their activation maps according to each architecture used in the ensemble, and their true and predicted classes: (<b>A</b>) ASC-H; (<b>B</b>) ASC-US; (<b>C</b>) SCC; (<b>D</b>) HSIL; (<b>E</b>) LSIL; (<b>F</b>) NILM.</p> ">
Abstract
:1. Introduction
- Proposal of a simple yet efficient ensemble method for improving the classification task;
- A data augmentation methodology to compensate for dataset imbalance;
- Classification analyses of different numbers of classes (two, three, and six) and their benefits;
- Investigation of the EfficientNets models, which are currently state of the art for the ImageNet dataset and have not yet been investigated for the cervical cell classification problem;
- Introduction of the results for six-class classification;
- State-of-the-art results for the cervical cell collection of the Center for Recognition and Inspection of Cells (CRIC), CRIC Cervix. Searchable Image Database [12].
2. Related Works
3. Materials and Methods
3.1. Dataset
3.2. Preprocessing
3.3. Dataset Division
3.4. Number of Classes
3.5. Balance and Data Augmentation
3.6. Convolutional Neural Network Architectures
3.6.1. MobileNet
3.6.2. InceptionNet and XceptionNet
3.6.3. EfficientNet
3.7. Proposed Ensemble
4. Experimental Results and Discussion
4.1. Metrics
4.2. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acc. | Accuracy |
ASC-US | Atypical Squamous Cells of Undetermined Significance |
ASC-H | Atypical Squamous Cells, cannot exclude HSIL |
BHS | Brazilian Health System |
CRIC | Center for Recognition and Inspection of Cells |
FN | False Negative |
FP | False Positive |
HSIL | High-Grade Squamous Intraepithelial Lesion |
k-NN | k-Nearest Neighbors |
LSIL | Low-Grade Squamous Intraepithelial Lesion |
NILM | Negative for Intraepithelial Lesion or Malignancy |
Prec. | Precision |
Rec. | Recall |
RF | Random Forest |
SCC | Squamous Carcinoma |
Spec. | Specificity |
SVM | Support Vector Machine |
TN | True Negatives |
TP | True Positives |
References
- Gay, J.; Donaldson, L.; Goellner, J. False-negative results in cervical cytologic studies. Acta Cytol. 1985, 29, 1043–1046. [Google Scholar] [PubMed]
- Bosch, M.; Rietveld-Scheffers, P.; Boon, M. Characteristics of false-negative smears tested in the normal screening situation. Acta Cytol. 1992, 36, 711–716. [Google Scholar] [PubMed]
- Naryshkin, S. The false-negative fraction for Papanicolaou smears: How often are ‘abnormal’ smears not detected by a ‘standard’ screening cytologist? Arch. Pathol. Lab. Med. 1997, 121, 270–272. [Google Scholar]
- Koonmee, S.; Bychkov, A.; Shuangshoti, S.; Bhummichitra, K.; Himakhun, W.; Karalak, A.; Rangdaeng, S. False-negative rate of Papanicolaou testing: A national survey from the Thai Society of Cytology. Acta Cytol. 2017, 61, 434–440. [Google Scholar] [CrossRef]
- Silva, R.; Araujo, F.; Rezende, M.; Oliveira, P.; Medeiros, F.; Veras, R.; Ushizima, D. Searching for cell signatures in multidimensional feature spaces. Int. J. Biomed. Eng. Technol. 2020; in press. [Google Scholar]
- Isidoro, D.; Carneiro, C.; Rezende, M.; Medeiros, F.; Ushizima, D.; Bianchi, A. Automatic classification of cervical cell patches based on non-geometric characteristics. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Valletta, Malta, 27–29 February 2020; Volume 5, pp. 845–852. [Google Scholar]
- Hussain, E.; Mahanta, L.B.; Das, C.R.; Talukdar, R.K. A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network. Tissue Cell 2020, 65, 101347. [Google Scholar] [CrossRef]
- Ghoneim, A.; Muhammad, G.; Hossain, M.S. Cervical cancer classification using convolutional neural networks and extreme learning machines. Future Gener. Comput. Syst. 2020, 102, 643–649. [Google Scholar] [CrossRef]
- Mousser, W.; Ouadfel, S. Deep feature extraction for Pap-smear image classification: A comparative study. In Proceedings of the 2019 5th International Conference on Computer and Technology Applications, Istanbul, Turkey, 16–17 April 2019; pp. 6–10. [Google Scholar]
- William, W.; Ware, J.; Habinka, A.; Obungoloch, J. A review of image analysis and machine learning techniques for automated cervical cancer screening from Pap-smear images. Comput. Methods Progr. Biomed. 2018, 164, 15–22. [Google Scholar] [CrossRef]
- Guan, T.; Zhou, D.; Liu, Y. Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF Snake model. IEEE J. Biomed. Health Inform. 2015, 19, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Rezende, M.T.; Silva, R.; Bernardo, F.d.O.; Tobias, A.H.G.; Oliveira, P.H.C.; Machado, T.M.; Costa, C.S.; Medeiros, F.N.S.; Ushizima, D.M.; Carneiro, C.M.; et al. Cric searchable image database as a public platform for conventional pap smear cytology data. Nat. Sci. Data 2021, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Kuko, M.; Pourhomayoun, M. An ensemble machine learning method for single and clustered cervical cell classification. In Proceedings of the 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI), Los Angeles, CA, USA, 30 July–1 August 2019; pp. 216–222. [Google Scholar]
- Diniz, D.N.; Rezende, M.T.; Bianchi, A.G.C.; Carneiro, C.M.; Ushizima, D.M.; de Medeiros, F.N.S.; Souza, M.J.F. A hierarchical feature-based methodology to perform cervical cancer classification. Appl. Sci. 2021, 11, 4091. [Google Scholar] [CrossRef]
- Lin, H.; Hu, Y.; Chen, S.; Yao, J.; Zhang, L. Fine-grained classification of cervical cells using morphological and appearance based convolutional neural networks. IEEE Access 2019, 7, 71541–71549. [Google Scholar] [CrossRef]
- Li, C.; Xue, D.; Kong, F.; Hu, Z.; Chen, H.; Yao, Y.; Sun, H.; Zhang, L.; Zhang, J.; Jiang, T.; et al. Cervical histopathology image classification using ensembled transfer learning. In Information Technology in Biomedicine; Pietka, E., Badura, P., Kawa, J., Wieclawek, W., Eds.; Springer: Cham, Switzerland, 2019; pp. 26–37. [Google Scholar]
- Sompawong, N.; Mopan, J.; Pooprasert, P.; Himakhun, W.; Suwannarurk, K.; Ngamvirojcharoen, J.; Vachiramon, T.; Tantibundhit, C. Automated pap smear cervical cancer screening using deep learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 7044–7048. [Google Scholar]
- Nannavecchia, A.; Girardi, F.; Fina, P.R.; Scalera, M.; Dimauro, G. Personal heart health monitoring based on 1D convolutional neural network. J. Imaging 2021, 7, 26. [Google Scholar] [CrossRef]
- Rijo, R.; Silva, C.; Pereira, L.; Gonçalves, D.; Agostinho, M. Decision support system to diagnosis and classification of epilepsy in children. J. Univers. Comput. Sci. 2014, 20, 907–923. [Google Scholar]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Walsh, S.; de Jong, E.E.; van Timmeren, J.E.; Ibrahim, A.; Compter, I.; Peerlings, J.; Sanduleanu, S.; Refaee, T.; Keek, S.; Larue, R.T.; et al. Decision support systems in oncology. JCO Clin. Cancer Inform. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Rezende, M.T.; Tobias, A.H.G.; Silva, R.; Oliveira, P.; Sombra de Medeiros, F.; Ushizima, D.; Carneiro, C.M.; Bianchi, A.G.C. CRIC cervix cell classification. Collection 2020. [Google Scholar] [CrossRef]
- Diniz, D.N.; Souza, M.J.F.; Carneiro, C.M.; Ushizima, D.M.; de Medeiros, F.N.S.; Oliveira, P.H.C.; Bianchi, A.G.C. An iterated local search-based algorithm to support cell nuclei detection in Pap smears test. In Enterprise Information Systems, Proceedings of the 21st International Conference (ICEIS 2019); Revised Selected Papers; Lecture Notes in Business Information Processing; Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S., Eds.; Springer: Cham, Switzerland, 2020; Volume 378, pp. 78–96. [Google Scholar]
- Moshavegh, R.; Bejnordi, B.E.; Mehnert, A.; Sujathan, K.; Malm, P.; Bengtsson, E. Automated segmentation of free-lying cell nuclei in pap smears for malignancy-associated change analysis. In Proceedings of the 2012 Annual International Conference of Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 5372–5375. [Google Scholar]
- Samsudin, N.A.; Mustapha, A.; Arbaiy, N.; Hamid, I.R.A. Extended local mean-based nonparametric classifier for cervical cancer screening. In Proceedings of the International Conference on Soft Computing and Data Mining, Bandung, Indonesia, 18–20 August 2016; pp. 386–395. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 2, pp. 1137–1143. [Google Scholar]
- Khamparia, A.; Gupta, D.; Albuquerque, V.; Kumar, A.; Jhaveri, R. Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. 2020, 76, 8590–8608. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: New York, NY, USA, 2006; p. 738. [Google Scholar]
- Suong, L.K.; Jangwoo, K. Detection of potholes using a deep convolutional neural network. J. Univers. Comput. Sci. 2018, 24, 1244–1257. [Google Scholar]
- Jing, J.F.; Ma, H.; Zhang, H.H. Automatic fabric defect detection using a deep convolutional neural network. Color. Technol. 2019, 135, 213–223. [Google Scholar] [CrossRef]
- Rouhi, R.; Bertini, F.; Montesi, D. No matter what images you share, you can probably be fingerprinted anyway. J. Imaging 2021, 7, 33. [Google Scholar] [CrossRef]
- Sharif, M.; Khan, M.A.; Rashid, M.; Yasmin, M.; Afza, F.; Tanik, U.J. Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images. J. Exp. Theor. Artif. Intell. 2019, 1–23. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, C.; Huang, J.; Liu, S.; Zhuo, Y.; Lu, X. Deep learning framework based on integration of S-Mask R-CNN and Inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Future Gener. Comput. Syst. 2021, 114, 358–367. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the Machine Learning Research; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: Long Beach, CA, USA, 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2014, arXiv:1312.4400. [Google Scholar]
- Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2820–2828. [Google Scholar]
- Silva, P.; Luz, E.; Silva, G.; Moreira, G.; Silva, R.; Lucio, D.; Menotti, D. COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Inform. Med. Unlocked 2020, 20, 100427. [Google Scholar] [CrossRef]
- Polikar, R. Ensemble based systems in decision making. IEEE Circ. Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Zacharaki, E.I. Prediction of protein function using a deep convolutional neural network ensemble. PeerJ Comput. Sci. 2017, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Nanni, L.; De Luca, E.; Facin, M.L.; Maguolo, G. Deep learning and handcrafted features for virus image classification. J. Imaging 2020, 6, 143. [Google Scholar] [CrossRef]
- Biedrzycki, J.; Burduk, R. Integration of decision trees using distance to centroid and to decision boundary. J. Univers. Comput. Sci. 2020, 26, 720–733. [Google Scholar]
- Manzo, M.; Pellino, S. Bucket of deep transfer learning features and classification models for melanoma detection. J. Imaging 2020, 6, 129. [Google Scholar] [CrossRef]
- Wilbur, D.C.; Nayar, R. Bethesda 2014: Improving on a paradigm shift. Cytopathology 2015, 26, 339–342. [Google Scholar] [CrossRef] [PubMed]
Class | NILM | ASC-US | LSIL | ASC-H | HSIL | SCC | Total |
---|---|---|---|---|---|---|---|
Training | 551 | 182 | 382 | 342 | 535 | 48 | 2040 |
Testing | 173 | 58 | 120 | 108 | 175 | 16 | 650 |
Validation | 138 | 46 | 96 | 86 | 164 | 13 | 543 |
Total per class | 862 | 286 | 598 | 536 | 874 | 77 | 3233 |
Set | Normal | Altered | Total | ||||
---|---|---|---|---|---|---|---|
NILM | ASC-US | LSIL | ASC-H | HSIL | SCC | ||
Training | 2756 | 547 | 558 | 558 | 559 | 536 | 5514 |
Testing | 173 | 58 | 120 | 108 | 175 | 16 | 650 |
Validation | 689 | 137 | 140 | 140 | 140 | 135 | 1381 |
Total | 3618 | 3927 | 7545 |
Set | Normal | Low-Grade Lesions | High-Grade Lesions | Total | |||
---|---|---|---|---|---|---|---|
NILM | ASC-US | LSIL | ASC-H | HSIL | SCC | ||
Training | 1653 | 833 | 844 | 558 | 559 | 536 | 4983 |
Testing | 173 | 58 | 120 | 108 | 175 | 16 | 650 |
Validation | 414 | 209 | 212 | 140 | 140 | 135 | 1250 |
Total | 2240 | 2276 | 2367 | 6883 |
Set | NILM | ASC-US | LSIL | ASC-H | HSIL | SCC | Total |
---|---|---|---|---|---|---|---|
Training | 551 | 547 | 558 | 558 | 559 | 536 | 3309 |
Testing | 173 | 58 | 120 | 108 | 175 | 16 | 650 |
Validation | 138 | 137 | 140 | 140 | 140 | 135 | 830 |
Total | 862 | 742 | 818 | 806 | 874 | 687 | 4789 |
Architecture | Prec. | Rec. | F1-Score | Acc. | Spec. |
---|---|---|---|---|---|
EfficientNetB0 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
EfficientNetB1 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
EfficientNetB2 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
EfficientNetB3 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
EfficientNetB4 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
EfficientNetB5 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
EfficientNetB6 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
MobileNet | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
XceptionNet | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
InceptionNetV3 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
Ensemble | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
Architecture | Prec. | Rec. | F1-Score | Acc. | Spec. |
---|---|---|---|---|---|
EfficientNetB0 | 0.92 | 0.92 | 0.92 | 0.94 | 0.96 |
EfficientNetB1 | 0.92 | 0.92 | 0.92 | 0.95 | 0.96 |
EfficientNetB2 | 0.92 | 0.92 | 0.92 | 0.95 | 0.96 |
EfficientNetB3 | 0.91 | 0.91 | 0.91 | 0.94 | 0.96 |
EfficientNetB4 | 0.93 | 0.93 | 0.93 | 0.95 | 0.97 |
EfficientNetB5 | 0.92 | 0.92 | 0.92 | 0.95 | 0.96 |
EfficientNetB6 | 0.93 | 0.93 | 0.93 | 0.95 | 0.97 |
MobileNet | 0.91 | 0.91 | 0.91 | 0.94 | 0.95 |
XceptionNet | 0.92 | 0.92 | 0.92 | 0.95 | 0.96 |
InceptionNetV3 | 0.83 | 0.83 | 0.83 | 0.89 | 0.92 |
Ensemble | 0.94 | 0.94 | 0.94 | 0.96 | 0.97 |
Architecture | Prec. | Rec. | F1-Score | Acc. | Spec. |
---|---|---|---|---|---|
EfficientNetB0 | 0.82 | 0.82 | 0.82 | 0.94 | 0.96 |
EfficientNetB1 | 0.82 | 0.82 | 0.82 | 0.94 | 0.96 |
EfficientNetB2 | 0.83 | 0.83 | 0.83 | 0.94 | 0.97 |
EfficientNetB3 | 0.83 | 0.83 | 0.83 | 0.94 | 0.97 |
EfficientNetB4 | 0.81 | 0.81 | 0.81 | 0.94 | 0.96 |
EfficientNetB5 | 0.82 | 0.82 | 0.82 | 0.94 | 0.96 |
EfficientNetB6 | 0.82 | 0.82 | 0.82 | 0.94 | 0.96 |
MobileNet | 0.77 | 0.77 | 0.77 | 0.92 | 0.95 |
XceptionNet | 0.80 | 0.80 | 0.80 | 0.93 | 0.96 |
InceptionNetV3 | 0.55 | 0.55 | 0.55 | 0.85 | 0.91 |
Ensemble | 0.85 | 0.85 | 0.85 | 0.95 | 0.97 |
Method | Classes | Prec. | Rec. | F1-Score | Acc. | Spec. |
---|---|---|---|---|---|---|
Proposed method | two | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
Proposed method | three | 0.94 | 0.94 | 0.94 | 0.96 | 0.97 |
Proposed method | six | 0.85 | 0.85 | 0.85 | 0.95 | 0.97 |
k-NN [5] | two | - | 0.95 | - | - | - |
RF [5] | two | - | 0.94 | - | - | - |
SVM [5] | two | - | 0.90 | - | - | - |
SVM [6] | two | 0.90 | 0.92 | 0.91 | 0.90 | 0.88 |
SVM [6] | three | 0.86 | 0.95 | 0.90 | 0.85 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
N. Diniz, D.; T. Rezende, M.; G. C. Bianchi, A.; M. Carneiro, C.; J. S. Luz, E.; J. P. Moreira, G.; M. Ushizima, D.; N. S. de Medeiros, F.; J. F. Souza, M. A Deep Learning Ensemble Method to Assist Cytopathologists in Pap Test Image Classification. J. Imaging 2021, 7, 111. https://doi.org/10.3390/jimaging7070111
N. Diniz D, T. Rezende M, G. C. Bianchi A, M. Carneiro C, J. S. Luz E, J. P. Moreira G, M. Ushizima D, N. S. de Medeiros F, J. F. Souza M. A Deep Learning Ensemble Method to Assist Cytopathologists in Pap Test Image Classification. Journal of Imaging. 2021; 7(7):111. https://doi.org/10.3390/jimaging7070111
Chicago/Turabian StyleN. Diniz, Débora, Mariana T. Rezende, Andrea G. C. Bianchi, Claudia M. Carneiro, Eduardo J. S. Luz, Gladston J. P. Moreira, Daniela M. Ushizima, Fátima N. S. de Medeiros, and Marcone J. F. Souza. 2021. "A Deep Learning Ensemble Method to Assist Cytopathologists in Pap Test Image Classification" Journal of Imaging 7, no. 7: 111. https://doi.org/10.3390/jimaging7070111
APA StyleN. Diniz, D., T. Rezende, M., G. C. Bianchi, A., M. Carneiro, C., J. S. Luz, E., J. P. Moreira, G., M. Ushizima, D., N. S. de Medeiros, F., & J. F. Souza, M. (2021). A Deep Learning Ensemble Method to Assist Cytopathologists in Pap Test Image Classification. Journal of Imaging, 7(7), 111. https://doi.org/10.3390/jimaging7070111