On Strengthened Extragradient Methods Non-Convex Combination with Adaptive Step Sizes Rule for Equilibrium Problems
<p>Algorithm 1 is compared to Algorithm 3.1 in [<a href="#B32-symmetry-14-01045" class="html-bibr">32</a>].</p> "> Figure 2
<p>Algorithm 2 is compared to Algorithm 3.2 in [<a href="#B32-symmetry-14-01045" class="html-bibr">32</a>].</p> "> Figure 3
<p>Algorithm 1 is compared to Algorithm 3.1 in [<a href="#B32-symmetry-14-01045" class="html-bibr">32</a>].</p> "> Figure 4
<p>Algorithm 2 is compared to Algorithm 3.2 in [<a href="#B32-symmetry-14-01045" class="html-bibr">32</a>].</p> "> Figure 5
<p>Algorithm 1 is compared to Algorithm 3.1 in [<a href="#B32-symmetry-14-01045" class="html-bibr">32</a>].</p> "> Figure 6
<p>Algorithm 2 is compared to Algorithm 3.2 in [<a href="#B32-symmetry-14-01045" class="html-bibr">32</a>].</p> ">
Abstract
:1. Introduction
2. Preliminaries
- (i)
- For some and in order that
- (ii)
- if and only if
- (1)
- for all and is pseudomonotone on feasible set
- (2)
- meet the Lipschitz-type condition on with constants and
- (3)
- is jointly weakly continuous on ;
- (4)
- need to be convex and subdifferentiable over for each
3. Main Results
Algorithm 1 Self-Adaptive Explicit Extragradient Method with Non-Convex Combination |
|
Algorithm 2 Modified Self-Adaptive Explicit Extragradient Method with Non-Convex Combination |
|
4. Applications
- (i)
- L-Lipschitz continuous on if
- (ii)
- pseudomonotone on if
- (i)
- An operator G is pseudomonotone upon Σ and is nonempty;
- (ii)
- G is L-Lipschitz continuous on Σ with
- (iii)
- for any and meet
5. Numerical Illustration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blum, E. From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63, 123–145. [Google Scholar]
- Fan, K. A Minimax Inequality and Applications, Inequalities III; Shisha, O., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Bigi, G.; Castellani, M.; Pappalardo, M.; Passacantando, M. Existence and solution methods for equilibria. Eur. J. Oper. Res. 2013, 227, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Muu, L.; Oettli, W. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. Theory Methods Appl. 1992, 18, 1159–1166. [Google Scholar] [CrossRef]
- Hung, P.G.; Muu, L.D. The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Anal. Theory Methods Appl. 2011, 74, 6121–6129. [Google Scholar] [CrossRef]
- Konnov, I. Application of the Proximal Point Method to Nonmonotone Equilibrium Problems. J. Optim. Theory Appl. 2003, 119, 317–333. [Google Scholar] [CrossRef]
- Moudafi, A. Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 1999, 15, 91–100. [Google Scholar]
- Oliveira, P.; Santos, P.; Silva, A. A Tikhonov-type regularization for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 2013, 401, 336–342. [Google Scholar] [CrossRef]
- Rehman, H.U.; Kumam, P.; Shutaywi, M.; Pakkaranang, N.; Wairojjana, N. An Inertial Extragradient Method for Iteratively Solving Equilibrium Problems in Real Hilbert Spaces. Int. J. Comput. Math. 2021, 99, 1081–1104. [Google Scholar] [CrossRef]
- Rehman, H.u.; Pakkaranang, N.; Hussain, A.; Wairojjana, N. A modified extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces. J. Math. Comput. Sci. 2021, 22, 38–48. [Google Scholar] [CrossRef]
- Wairojjana, N.; Pakkaranang, N.; Pholasa, N. Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces. Demonstr. Math. 2021, 54, 110–128. [Google Scholar] [CrossRef]
- Rehman, H.U.; Kumam, P.; Abubakar, A.B.; Cho, Y.J. The extragradient algorithm with inertial effects extended to equilibrium problems. Comput. Appl. Math. 2020, 39, 100. [Google Scholar] [CrossRef]
- Rehman, H.U.; Kumam, P.; Kumam, W.; Shutaywi, M.; Jirakitpuwapat, W. The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems. Symmetry 2020, 12, 463. [Google Scholar] [CrossRef] [Green Version]
- Konnov, I.V. Regularization method for nonmonotone equilibrium problems. J. Nonlinear Convex Anal. 2009, 10, 93–101. [Google Scholar]
- Konnov, I.V. Partial proximal point method for nonmonotone equilibrium problems. Optim. Methods Softw. 2006, 21, 373–384. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.; Vijayakumar, V.; Udhayakumar, R. Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces. Chaos Solitons Fractals 2021, 150, 111095. [Google Scholar] [CrossRef]
- Patel, R.; Shukla, A.; Jadon, S.S. Existence and optimal control problem for semilinear fractional order (1,2] control system. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D. Controllability of Semilinear Stochastic System with Multiple Delays in Control. IFAC Proc. Vol. 2014, 47, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Patel, R. Existence and Optimal Control Results for Second-Order Semilinear System in Hilbert Spaces. Circuits Syst. Signal Process. 2021, 40, 4246–4258. [Google Scholar] [CrossRef]
- Van Hieu, D.; Duong, H.N.; Thai, B. Convergence of relaxed inertial methods for equilibrium problems. J. Appl. Numer. Optim. 2021, 3, 215–229. [Google Scholar]
- Ogbuisi, F.U. The projection method with inertial extrapolation for solving split equilibrium problems in Hilbert spaces. Appl. Set-Valued Anal. Optim. 2021, 3, 239–255. [Google Scholar]
- Liu, L.; Cho, S.Y.; Yao, J.C. Convergence Analysis of an Inertial Tseng’s Extragradient Algorithm for Solving Pseudomonotone Variational Inequalities and Applications. J. Nonlinear Var. Anal. 2021, 5, 627–644. [Google Scholar]
- Rehman, H.u.; Kumam, P.; Argyros, I.K.; Shutaywi, M.; Shah, Z. Optimization Based Methods for Solving the Equilibrium Problems with Applications in Variational Inequality Problems and Solution of Nash Equilibrium Models. Mathematics 2020, 8, 822. [Google Scholar] [CrossRef]
- Rehman, H.u.; Kumam, P.; Shutaywi, M.; Alreshidi, N.A.; Kumam, W. Inertial Optimization Based Two-Step Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth Control Equilibrium Models. Energies 2020, 13, 3292. [Google Scholar] [CrossRef]
- Rehman, H.; Kumam, P.; Dong, Q.-L.; Peng, Y.; Deebani, W. A new Popov’s subgradient extragradient method for two classes of equilibrium programming in a real Hilbert space. Optimization 2020, 70, 2675–2710. [Google Scholar] [CrossRef]
- Rehman, H.U.; Pakkaranang, N.; Kumam, P.; Cho, Y.J. Modified subgradient extragradient method for a family of pseudomonotone equilibrium problems in real a Hilbert space. J. Nonlinear Convex Anal. 2020, 21, 2011–2025. [Google Scholar]
- Flåm, S.D.; Antipin, A.S. Equilibrium programming using proximal-like algorithms. Math. Program. 1996, 78, 29–41. [Google Scholar] [CrossRef]
- Korpelevich, G. The extragradient method for finding saddle points and other problems. Matecon 1976, 12, 747–756. [Google Scholar]
- Tran, D.Q.; Dung, M.L.; Nguyen, V.H. Extragradient algorithms extended to equilibrium problems. Optimization 2008, 57, 749–776. [Google Scholar] [CrossRef]
- Hieu, D.V.; Quy, P.K.; Vy, L.V. Explicit iterative algorithms for solving equilibrium problems. Calcolo 2019, 56, 11. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Liu, Z. Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 2018, 67, 2247–2258. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ping, P.; Cho, Y.; Guo, H. New extragradient methods with non-convex combination for pseudomonotone equilibrium problems with applications in Hilbert spaces. Filomat 2019, 33, 1677–1693. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Gibali, A.; Reich, S. The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space. J. Optim. Theory Appl. 2010, 148, 318–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiel, J.V. Convex Analysis: An Introductory Text, 1st ed.; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Bushell, P.J. UNIFORM CONVEXITY, HYPERBOLIC GEOMETRY, AND NONEXPANSIVE MAPPINGS (Pure and Applied Mathematics: A Series of Monographs & Textbooks, 83) By K. Goebel and S. Reich: Pp. 192. SFr.96.-. (Marcel Dekker Inc, U.S.A., 1984). Bull. Lond. Math. Soc. 1985, 17, 293–294. [Google Scholar] [CrossRef]
- Kreyszig, E. Introductory Functional Analysis with Applications, 1st ed.; Wiley Classics Library, Wiley: Hoboken, NJ, USA, 1989. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed.; CMS Books in Mathematics; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Xu, H.K. Another control condition in an iterative method for nonexpansive mappings. Bulletin of the Australian Mathematical Society 2002, 65, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Maingé, P.E. Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization. Set-Valued Anal. 2008, 16, 899–912. [Google Scholar] [CrossRef]
- Bianchi, M.; Schaible, S. Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 1996, 90, 31–43. [Google Scholar] [CrossRef]
- Mastroeni, G. On Auxiliary Principle for Equilibrium Problems. In Nonconvex Optimization and Its Applications; Springer: Boston, MA, USA, 2003; pp. 289–298. [Google Scholar] [CrossRef]
- Rehman, H.U.; Kumam, P.; Cho, Y.J.; Yordsorn, P. Weak convergence of explicit extragradient algorithms for solving equilibirum problems. J. Inequalities Appl. 2019, 2019, 282. [Google Scholar] [CrossRef]
- Browder, F.; Petryshyn, W. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Rehman, H.U.; Kumam, P.; Je Cho, Y.; Suleiman, Y.I.; Kumam, W. Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems. Optim. Methods Softw. 2020, 36, 82–113. [Google Scholar] [CrossRef]
- Van Hieu, D.; Anh, P.K.; Muu, L.D. Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 2017, 66, 75–96. [Google Scholar] [CrossRef]
Number of Iterations | CPU Time in Seconds | ||||||
---|---|---|---|---|---|---|---|
Algo. 3.1 | Algo. 1 | Algo. 3.1 | Algo. 1 | ||||
0.20 | 35 | 33 | 1.6799 | 1.6119 | |||
0.50 | - | 30 | - | 1.4787 | |||
0.70 | - | 25 | - | 1.1520 | |||
1.00 | - | 22 | - | 1.0100 |
Number of Iterations | CPU Time in Seconds | ||||||
---|---|---|---|---|---|---|---|
Algo. 3.2 | Algo. 2 | Algo. 3.2 | Algo. 2 | ||||
0.20 | 99 | 109 | 4.9391 | 5.3081 | |||
0.50 | - | 84 | - | 4.0511 | |||
0.70 | - | 72 | - | 3.2269 | |||
1.00 | - | 64 | - | 2.9225 |
Number of Iterations | CPU Time in Seconds | ||||||
---|---|---|---|---|---|---|---|
Algo. 3.1 | Algo. 1 | Algo. 3.1 | Algo. 1 | ||||
0.20 | 149 | 126 | 7.0363 | 5.7321 | |||
0.50 | - | 114 | - | 5.0527 | |||
0.70 | - | 107 | - | 4.8159 | |||
1.00 | - | 101 | - | 4.5495 |
Number of Iterations | CPU Time in Seconds | ||||||
---|---|---|---|---|---|---|---|
Algo. 3.2 | Algo. 2 | Algo. 3.2 | Algo. 2 | ||||
0.20 | 300 | 326 | 14.7791 | 14.2233 | |||
0.50 | - | 273 | - | 13.7107 | |||
0.70 | - | 236 | - | 11.7754 | |||
1.00 | - | 211 | - | 11.2054 |
Number of Iterations | CPU Time in Seconds | ||||||
---|---|---|---|---|---|---|---|
Algo. 3.1 | Algo. 1 | Algo. 3.1 | Algo. 1 | ||||
0.20 | 64 | 72 | 0.0174 | 0.0331 | |||
0.50 | – | 61 | – | 0.0295 | |||
0.70 | – | 53 | – | 0.0273 | |||
1.00 | – | 47 | – | 0.0265 |
Number of Iterations | CPU Time in Seconds | ||||||
---|---|---|---|---|---|---|---|
Algo. 3.2 | Algo. 2 | Algo. 3.2 | Algo. 2 | ||||
0.20 | 213 | 200 | 0.0313 | 0.0500 | |||
0.50 | – | 181 | – | 0.0460 | |||
0.70 | – | 177 | – | 0.0352 | |||
1.00 | – | 155 | – | 0.0260 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shutaywi, M.; Kumam, W.; Rehman, H.u.; Sombut, K. On Strengthened Extragradient Methods Non-Convex Combination with Adaptive Step Sizes Rule for Equilibrium Problems. Symmetry 2022, 14, 1045. https://doi.org/10.3390/sym14051045
Shutaywi M, Kumam W, Rehman Hu, Sombut K. On Strengthened Extragradient Methods Non-Convex Combination with Adaptive Step Sizes Rule for Equilibrium Problems. Symmetry. 2022; 14(5):1045. https://doi.org/10.3390/sym14051045
Chicago/Turabian StyleShutaywi, Meshal, Wiyada Kumam, Habib ur Rehman, and Kamonrat Sombut. 2022. "On Strengthened Extragradient Methods Non-Convex Combination with Adaptive Step Sizes Rule for Equilibrium Problems" Symmetry 14, no. 5: 1045. https://doi.org/10.3390/sym14051045
APA StyleShutaywi, M., Kumam, W., Rehman, H. u., & Sombut, K. (2022). On Strengthened Extragradient Methods Non-Convex Combination with Adaptive Step Sizes Rule for Equilibrium Problems. Symmetry, 14(5), 1045. https://doi.org/10.3390/sym14051045