Depth Inversion from Wave Frequencies in Temporally Augmented Satellite Video
<p>Pleiades satellite collecting 12 images of the field-site Capbreton, France. The observed area and its location (Lat°, Lon°) are depicted in the top right.</p> "> Figure 2
<p>First four frames of the reconstructed video at times <math display="inline"><semantics> <mrow> <mi mathvariant="normal">t</mi> <mn>0</mn> <mo>=</mo> <mn>0</mn> <mrow/> </mrow> </semantics></math> s to <math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="normal">t</mi> <mn>0</mn> <mo>+</mo> <mn>3</mn> </mrow> <mo>=</mo> <mspace width="3.33333pt"/> <mn>3</mn> <mrow/> </mrow> </semantics></math> s. Wave movement is highlighted by zooming in on two example regions (white boxes), and looking at the difference with respect to <math display="inline"><semantics> <mrow> <mi mathvariant="normal">t</mi> <mn>0</mn> </mrow> </semantics></math> (color scale). Yellow, positive differences point out rising water levels due to incoming wave fronts. Red, negative differences point out the associated falling water levels at the back of the wave. For clarity, only differences >10% are depicted.</p> "> Figure 3
<p>Comparison of an in situ measured (<b>left</b>, red ‘x’) variance density spectrum from a local buoy (<b>top right</b>) against a corresponding optical variance density spectrum from reconstructed satellite video (<b>bottom right</b>) of a representative area (<math display="inline"><semantics> <mrow> <mn>2</mn> <mo> </mo> <mi>km</mi> <mo> </mo> <mo>×</mo> <mo> </mo> <mn>2</mn> <mo> </mo> <mi>km</mi> <mrow/> </mrow> </semantics></math>) around the buoy location (<b>left</b>, white box). Both spectra are normalized to unit magnitude for comparison.</p> "> Figure 4
<p>Global one-component phase images (GOCPI) of dominant frequency components <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>0.09</mn> <mo>,</mo> <mn>0.11</mn> <mo>,</mo> <mrow> <mn>0.14</mn> </mrow> <mrow/> </mrow> </semantics></math> Hz in the reconstructed video. The phase images are naturally retrieved via the Dynamic Mode Decomposition as part of the depth inversion procedure [<a href="#B13-remotesensing-14-01847" class="html-bibr">13</a>]. In total, nine phase images are used for analysis, of which three are presented as example.</p> "> Figure 5
<p>Comparison of depths, <span class="html-italic">d</span>, from ground truth (<b>left</b>) against depths estimated from reconstructed satellite video (<b>centre</b>). Ground truth depth contours are superimposed on estimated depths for reference. Depths are indicated from red (shallow) to blue (deep) as of centre colour scale. The difference, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>d</mi> </mrow> </semantics></math>, between estimated depths and ground truth, is presented in the right panel, with red/blue, respectively, denoting under-/overestimation of depth (<b>right</b> colour scale). Parts where <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>></mo> <mn>35</mn> <mrow/> </mrow> </semantics></math> m are masked and indicate the underwater canyon where waves are unaffected by the bathymetry.</p> "> Figure 6
<p>Direct comparison of inverted depths, <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </semantics></math> against ground truth, <math display="inline"><semantics> <msub> <mi>d</mi> <mn>0</mn> </msub> </semantics></math> (blue dots). The median is indicated in green and aims to approximate the black 1:1 line. The 25th–75th percentile is shaded red and superimposed on the 10th–90th percentile shaded orange.</p> "> Figure 7
<p>Predicted wave height distributions over ground truth bathymetry and estimated bathymetry of Capbreton using a numerical wave model: (<b>a</b>,<b>b</b>) ground-truth depths and estimated depths, respectively, used in the model, where red/blue indicate shallow/deep regions (top colorbar). Salt-and-pepper noise has been removed from (<b>b</b>) using a <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> median filter; (<b>c</b>,<b>d</b>) significant wave height distribution associated to (<b>a</b>,<b>b</b>), respectively, where red/blue indicate high/low wave heights (bottom colorbar). The 35 m depth contour is superimposed to outline the location of the canyon. Hydrodynamic field conditions with <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>2</mn> <mrow/> </mrow> </semantics></math> m, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>11</mn> <mrow/> </mrow> </semantics></math> s and wave direction = 315° measured by a local buoy (see <a href="#remotesensing-14-01847-f003" class="html-fig">Figure 3</a>) during satellite overpass are used as boundary forcing.</p> "> Figure 8
<p>The beach La Piste at Capbreton, France.</p> "> Figure 9
<p>Sandbars from depth inversion of a locally reconstructed video of the nearshore wave field: (<b>a</b>) reconstructed video with framerate of 2 fps; (<b>b</b>) satellite image showing the position of the sandbar; (<b>c</b>) depth estimates based on (<b>a</b>); For reference, dashed black contours outline the position of the sandbar. and the solid black line indicates the position of the coastline.</p> ">
Abstract
:1. Introduction
2. Field Site and Data
3. Method
3.1. Temporal Image Augmentation
3.2. Frequency-Based Depth Estimation
4. Results
4.1. Results from the Augmentation
4.2. Results from Depth Inversion
5. Discussion
5.1. Using Satellite-Derived Depths for Coastal Wave Height Predictions
5.2. Satellite-Derived Sandbars
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Depth Inversion Paramter Settings
References
- Van Dongeren, A.; Ciavola, P.; Martinez, G.; Viavattene, C.; Bogaard, T.; Ferreira, O.; Higgins, R.; McCall, R. Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coast. Eng. 2018, 134, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.; Aarninkhof, S.; Van Koningsveld, M.; Holman, R. Developing coastal video monitoring systems in support of coastal zone management. J. Coast. Res. 2006, 2004, 49–56. [Google Scholar]
- De Schipper, M.A.; Ludka, B.C.; Raubenheimer, B.; Luijendijk, A.P.; Schlacher, T.A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2021, 2, 70–84. [Google Scholar] [CrossRef]
- Almar, R.; Ranasinghe, R.; Bergsma, E.W.; Diaz, H.; Melet, A.; Papa, F.; Vousdoukas, M.; Athanasiou, P.; Dada, O.; Almeida, L.P.; et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Thoumyre, G.; Baba, M.W.; Cesbron, G.; Daly, C.; Garlan, T.; Lifermann, A. Global satellite-based coastal bathymetry from waves. Remote Sens. 2021, 13, 4628. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Almar, R. Coastal coverage of ESA’ Sentinel 2 mission. Adv. Space Res. 2020, 65, 2636–2644. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and landsat data. Int. J. Remote Sens. 1981, 2, 71–82. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Abileah, R. Mapping shallow water depth from satellite. Am. Soc. Photogramm. Remote Sens. 2006, 1, 1–7. [Google Scholar]
- Stockdon, H.F.; Holman, R.A. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res. Ocean. 2000, 105, 22015–22033. [Google Scholar] [CrossRef]
- Gawehn, M.; de Vries, S.; Aarninkhof, S. A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video. Remote Sens. 2021, 13, 4742. [Google Scholar] [CrossRef]
- Holman, R.A.; Brodie, K.L.; Spore, N.J. Surf Zone Characterization Using a Small Quadcopter: Technical Issues and Procedures. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2017–2027. [Google Scholar] [CrossRef]
- Simarro, G.; Calvete, D.; Luque, P.; Orfila, A.; Ribas, F. UBathy: A new approach for bathymetric inversion from video imagery. Remote Sens. 2019, 11, 2722. [Google Scholar] [CrossRef] [Green Version]
- Almar, R.; Bergsma, E.W.; Gawehn, M.A.; Aarninkhof, S.G.; Benshila, R. High-frequency Temporal Wave-pattern Reconstruction from a Few Satellite Images: A New Method towards Estimating Regional Bathymetry. J. Coast. Res. 2020, 95, 996–1000. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Almar, R.; Maisongrande, P. Radon-augmented Sentinel-2 satellite imagery to derive wave-patterns and regional bathymetry. Remote Sens. 2019, 11, 1918. [Google Scholar] [CrossRef] [Green Version]
- Gabor, D. A Theory of Communication. J. Inst. Electr. Eng.-Part III Radio Commun. Eng. 1946, 93, 429–441. [Google Scholar] [CrossRef]
- Almeida, L.P.; Almar, R.; Bergsma, E.W.; Berthier, E.; Baptista, P.; Garel, E.; Dada, O.A.; Alves, B. Deriving high spatial-resolution coastal topography from sub-meter satellite stereo imagery. Remote Sens. 2019, 11, 590. [Google Scholar] [CrossRef] [Green Version]
- Abileah, R. Mapping near shore bathymetry using wave kinematics in a time series of WorldView-2 satellite images. Int. Geosci. Remote Sens. Symp. (IGARSS) 2013, 2, 2274–2277. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Maisongrande, P.; de Almeida, L.P.M. Wave-derived coastal bathymetry from satellite video imagery: A showcase with Pleiades persistent mode. Remote Sens. Environ. 2019, 231, 111263. [Google Scholar] [CrossRef]
- De Michele, M.; Raucoules, D.; Idier, D.; Smai, F.; Foumelis, M. Shallow bathymetry from multiple sentinel 2 images via the joint estimation of wave celerity and wavelength. Remote Sens. 2021, 13, 2149. [Google Scholar] [CrossRef]
- Abessolo Ondoa, G.; Almar, R.; Castelle, B.; Testut, L.; Léger, F.; Sohou, Z.; Bonou, F.; Bergsma, E.W.; Meyssignac, B.; Larson, M. Sea level at the coast from video-sensed waves: Comparison to tidal gauges and satellite altimetry. J. Atmos. Ocean. Technol. 2019, 36, 1591–1603. [Google Scholar] [CrossRef]
- Holman, R.; Plant, N.; Holland, T. CBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Ocean. 2013, 118, 2595–2609. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Almar, R.; Melo de Almeida, L.P.; Sall, M. On the operational use of UAVs for video-derived bathymetry. Coast. Eng. 2019, 152, 103527. [Google Scholar] [CrossRef]
- Holman, R.A.; Holland, K.T.; Lalejini, D.M.; Spansel, S.D. Surf zone characterization from Unmanned Aerial Vehicle imagery. Ocean Dyn. 2011, 61, 1927–1935. [Google Scholar] [CrossRef]
- Bell, P. Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coast. Eng. 1999, 37, 513–527. [Google Scholar] [CrossRef]
- Gawehn, M.; van Dongeren, A.; de Vries, S.; Swinkels, C.; Hoekstra, R.; Aarninkhof, S.; Friedman, J. The application of a radar-based depth inversion method to monitor nearshore nourishments on an open sandy coast and an ebb-tidal delta. Coast. Eng. 2020, 159, 103716. [Google Scholar] [CrossRef]
- Honegger, D.A.; Haller, M.C.; Holman, R.A. High-resolution bathymetry estimates via X-band marine radar: 1. beaches. Coast. Eng. 2019, 149, 39–48. [Google Scholar] [CrossRef]
- Senet, C.M.; Seemann, J.; Flampouris, S.; Ziemer, F. Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-band radar image sequences of the sea surface (November 2007). IEEE Trans. Geosci. Remote Sens. 2008, 46, 2267–2279. [Google Scholar] [CrossRef]
- Bell, P. Mapping Shallow Water Coastal Areas Using a Standard Marine X-Band Radar. In Proceedings of the Hydro8, Liverpool, UK, 4–6 November 2008; International Federation of Hydrographic Societies: Lemmer, The Netherlands, 2008; pp. 1–9. [Google Scholar]
- Holman, R.; Bergsma, E.W. Updates to and performance of the cbathy algorithm for estimating nearshore bathymetry from remote sensing imagery. Remote Sens. 2021, 13, 3996. [Google Scholar] [CrossRef]
- Palmsten, M.L.; Brodie, K.L. The Coastal Imaging Research Network (CIRN). Remote Sens. 2022, 14, 453. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Maisongrande, P.; Giros, A.; Almeida, L.P. On the application of a two-dimension spatio-temporal cross-correlation method to inverse coastal bathymetry from waves using a satellite-based video sequence. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 8205–8208. [Google Scholar] [CrossRef]
- Coeurdevey, L.; Gabriel-Robez, C. Pléiades Imagery—User Guide; Technical Report; Astrium GEO-Information Services: Toulouse, France, 2012. [Google Scholar]
- Jouanneau, J.M.; Latouche, C. Continental fluxes to the Bay of Biscay: Processes and behaviour. Ocean Shorel. Manag. 1989, 12, 477–485. [Google Scholar] [CrossRef]
- Mazières, A.; Gillet, H.; Castelle, B.; Mulder, T.; Guyot, C.; Garlan, T.; Mallet, C. High-resolution morphobathymetric analysis and evolution of Capbreton submarine canyon head (Southeast Bay of Biscay-French Atlantic Coast) over the last decade using descriptive and numerical modeling. Mar. Geol. 2014, 351, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Almar, R.; Bergsma, E.W.J.; Catalan, P.A.; Cienfuegos, R.; Suarez, L.; Lucero, F.; Nicolae Lerma, A.; Desmazes, F.; Perugini, E.; Palmsten, M.L.; et al. Sea State from Single Optical Images: A Methodology to Derive Wind-Generated Ocean Waves from Cameras, Drones and Satellites. Remote Sens. 2021, 13, 679. [Google Scholar] [CrossRef]
- Kuik, A.J.; van Vledder, G.P.; Holthuijsen, L.H. A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave Data. J. Phys. Oceanogr. 1988, 18, 1020–1034. [Google Scholar] [CrossRef]
- Campbell, R.; Martinez, A.; Letetrel, C.; Rio, A. Methodology for estimating the French tidal current energy resource. Int. J. Mar. Energy 2017, 19, 256–271. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Baldock, T.E.; Holmes, P.; Bunker, S.; Van Weert, P. Cross-shore hydrodynamics within an unsaturated surf zone. Coast. Eng. 1998, 34, 173–196. [Google Scholar] [CrossRef]
- Jonsson, I.G. Wave Boundary Layers and Friction Factors. In Coastal Engineering 1966; American Society of Civil Engineers: New York, NY, USA, 1967; pp. 127–148. [Google Scholar] [CrossRef]
- Lastiri, X.; Abadie, S.; Maron, P.; Delpey, M.; Liria, P.; Mader, J.; Roeber, V. Wave energy assessment in the south aquitaine nearshore zone from a 44-year hindcast. J. Mar. Sci. Eng. 2020, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Manian, D.; Kaihatu, J.M.; Zechman, E.M. Using genetic algorithms to optimize bathymetric sampling for predictive model input. J. Atmos. Ocean. Technol. 2012, 29, 464–477. [Google Scholar] [CrossRef]
- Kaihatu, J.M.; Edwards, K.L.; O’Reilly, W.C. Model predictions of nearshore processes near complex bathymetry. Ocean. Conf. Rec. (IEEE) 2002, 2, 685–691. [Google Scholar] [CrossRef]
- Bosboom, J.; Stive, M.J.F. Coastal Dynamics; TU Delft Open: Delft, The Netherlands, 2021; p. 595. [Google Scholar] [CrossRef]
- Aarninkhof, S.G.J.; Ruessink, B.G.; Roelvink, J.A. Nearshore subtidal bathymetry from time-exposure video images. J. Geophys. Res. Ocean. 2005, 110, 1–13. [Google Scholar] [CrossRef]
- Van Dongeren, A.; Plant, N.; Cohen, A.; Roelvink, D.; Haller, M.C.; Catalán, P. Beach Wizard: Nearshore bathymetry estimation through assimilation of model computations and remote observations. Coast. Eng. 2008, 55, 1016–1027. [Google Scholar] [CrossRef]
- Jawak, S.D.; Vadlamani, S.S.; Luis, A.J. A Synoptic Review on Deriving Bathymetry Information Using Remote Sensing Technologies: Models, Methods and Comparisons. Adv. Remote Sens. 2015, 4, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.G.; Fu, B.; Zhou, C.B.; Yang, J.S.; Shi, A.Q.; Li, D.L. Shallow water bathymetric surveys by spaceborne synthetic aperture radar. Int. Geosci. Remote. Sens. Symp. (IGARSS) 2001, 6, 2810–2812. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawehn, M.; Almar, R.; Bergsma, E.W.J.; de Vries, S.; Aarninkhof, S. Depth Inversion from Wave Frequencies in Temporally Augmented Satellite Video. Remote Sens. 2022, 14, 1847. https://doi.org/10.3390/rs14081847
Gawehn M, Almar R, Bergsma EWJ, de Vries S, Aarninkhof S. Depth Inversion from Wave Frequencies in Temporally Augmented Satellite Video. Remote Sensing. 2022; 14(8):1847. https://doi.org/10.3390/rs14081847
Chicago/Turabian StyleGawehn, Matthijs, Rafael Almar, Erwin W. J. Bergsma, Sierd de Vries, and Stefan Aarninkhof. 2022. "Depth Inversion from Wave Frequencies in Temporally Augmented Satellite Video" Remote Sensing 14, no. 8: 1847. https://doi.org/10.3390/rs14081847