Waste from Artichoke Processing Industry: Reuse in Bread-Making and Evaluation of the Physico-Chemical Characteristics of the Final Product
<p>Flour prepared from artichoke waste. From left to right, flour of: artichoke bracts; artichoke stems; mix of artichoke bracts and stems 1:1.</p> "> Figure 2
<p>Water binding capacity (WBC; g water/g flour) and oil binding capacity (OBC; g oil/g flour) of re-milled semolina and of mixes prepared at increasing levels of replacement (5, 7.5, 10%) with flours from artichoke stems and bracts. SC-100% = re-milled semolina 100%, i.e., control; FAB = flour of artichoke bracts; FAS = flour of artichoke stems; FAM = flour of mixed artichoke bracts and stems. Different letters indicate a significant difference (<span class="html-italic">p</span> ≤ 0.001).</p> "> Figure 3
<p>(<b>A</b>) Leavening rate (%) at increasing levels of replacement (5, 7.5, 10%) of re-milled semolina (SC-100%) with flour prepared from artichoke bracts (FAB). (<b>B</b>) Leavening rate (%) at increasing levels of replacement (5, 7.5, 10%) of re-milled semolina (SC-100%) with flour prepared from artichoke stems (FAS). (<b>C</b>) Leavening rate (%) at increasing levels of replacement (5, 7.5, 10%) of re-milled semolina (SC-100%) with flour of mixed artichoke bracts and stems (FAM).</p> "> Figure 4
<p>(<b>a</b>) Breads prepared, from left to right, with pure re-milled semolina and with flour mixes containing 5, 7.5 and 10% flours from artichoke bracts. (<b>b</b>) Breads prepared, from left to right, with pure re-milled semolina and with flour mixes containing 5, 7.5 and 10% flours from artichoke stems. (<b>c</b>) Breads prepared, from left to right, with pure re-milled semolina and with flour mixes containing 5, 7.5 and 10% flours from artichoke bracts and stems 1:1.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
Characteristics of Flours
3. Materials and Methods
3.1. Preparation of Flour of Artichoke Stems and Bracts
3.2. Preparation of Breads
3.3. Determination of Moisture Content
3.4. Water Binding Capacity and Oil Binding Capacity
3.5. Color Determination
3.6. Farinograph, Mixograph and Alveograph Analyses
3.7. Leavening Test
3.8. Bread Volume and Height
3.9. Crumb Porosity
3.10. Determination of Bread Staling Rate
3.11. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petropoulos, S.A.; Pereira, C.; Barros, L.; Ferreira, I.C. Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food Funct. 2017, 8, 2022–2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargari, B.P.; Dehghan, P.; Aliasgharzadeh, A.; Jafar-Abadi, M.A. Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes. Diabetes Metab. J. 2013, 37, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Ikonte, C.; Hacker, C.; Chandra, A.; Trexler, L. Phytochemical characterization of artichoke leaf extract and assessment of its protective effects from alcohol and chemically-induced damage in human liver cells. Planta Med. 2008, 74, PC49. [Google Scholar] [CrossRef]
- Kraft, K. Artichoke leaf extract—Recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts. Phytomedicine 1997, 4, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Mulinacci, N.; Prucher, D.; Peruzzi, M.; Romani, A.; Pinelli, P.; Giaccherini, C.; Vincieri, F.F. Commercial and laboratory extracts from artichoke leaves: Estimation of caffeoyl esters and flavonoidic compounds content. J. Pharm. Biomed. Anal. 2004, 34, 349–357. [Google Scholar] [CrossRef] [PubMed]
- De Falco, E.; Senatore, A.; Roscigno, G.; Pergola, M. The Artichoke “Bianco di Pertosa”: The Enhancement of Crop Residues through Environmentally Friendly Uses. Hortic. Res. 2022, 8, 900. [Google Scholar] [CrossRef]
- Van Hal, O.; De Boer, I.J.M.; Muller, A.; De Vries, S.; Erb, K.H.; Schader, C.; Gerrits, W.J.J.; Van Zanten, H.H.E. Upcycling food leftovers and grass resources through livestock: Impact of livestock system and productivity. J. Clean. Prod. 2019, 219, 485–496. [Google Scholar] [CrossRef]
- Pasqualone, A.; Laddomada, B.; Boukid, F.; Angelis, D.D.; Summo, C. Use of almond skins to improve nutritional and functional properties of biscuits: An example of upcycling. Foods 2020, 9, 1705. [Google Scholar] [CrossRef]
- Spratt, O.; Suri, R.; Deutsch, J. Defining upcycled food products. J. Culin. Sci. Technol. 2021, 19, 485–496. [Google Scholar] [CrossRef]
- Dadalı, C. Artichoke bracts as fat and wheat flour replacer in cake: Optimization of reduced fat and reduced wheat flour cake formulation. J. Food Meas. Charact. 2022, 1–10. [Google Scholar] [CrossRef]
- Pasqualone, A.; Punzi, R.; Trani, A.; Summo, C.; Paradiso, V.M.; Caponio, F.; Gambacorta, G. Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. Int. J. Food Sci. 2017, 52, 2078–2087. [Google Scholar] [CrossRef]
- Difonzo, G.; de Gennaro, G.; Caponio, G.R.; Vacca, M.; Dal Poggetto, G.; Allegretta, I.; Immirzi, B.; Pasqualone, A. Inulin from Globe Artichoke Roots: A Promising Ingredient for the Production of Functional Fresh Pasta. Foods 2022, 11, 3032. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.; Simões, I. Cardoon-based rennets for cheese production. Appl. Microbiol. Biotechnol. 2018, 102, 4675–4686. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Di Pierro, P.; Dejonghe, W.; Mariniello, L.; Porta, R. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease. Food Chem. 2016, 204, 115–121. [Google Scholar] [CrossRef]
- Zayed, A.; Farag, M.A. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. LWT 2020, 132, 109883. [Google Scholar] [CrossRef]
- Llorente, B.E.; Brutti, C.B.; Caffini, N.O. Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2004, 52, 8182–8189. [Google Scholar] [CrossRef]
- Sidrach, L.; García-Cánovas, F.; Tudela, J.; Rodríguez-López, J.N. Purification of cynarases from artichoke (Cynara scolymus L.): Enzymatic properties of cynarase A. Phytochem. Lett. 2005, 66, 41–49. [Google Scholar] [CrossRef]
- Boubaker, M.; Omri, A.E.; Blecker, C.; Bouzouita, N. Fibre concentrate from artichoke (Cynara scolymus L.) stem by-products: Characterization and application as a bakery product ingredient. Food Sci. Technol. Int. 2016, 22, 759–768. [Google Scholar] [CrossRef]
- Frutos, M.J.; Guilabert-Antón, L.; Tomás-Bellido, A.; Hernández-Herrero, J.A. Effect of artichoke (Cynara scolymus L.) fiber on textural and sensory qualities of wheat bread. Food Sci. Technol. Int. 2008, 14 (Suppl. 5), 49–55. [Google Scholar] [CrossRef]
- Pasqualone, A. Italian Durum Wheat Breads; Nova Science Publisher Inc.: Hauppauge, NY, USA, 2012; pp. 57–79. [Google Scholar]
- Pasqualone, A.; Caponio, F.; Pagani, M.A.; Summo, C.; Paradiso, V.M. Effect of salt reduction on quality and acceptability of durum wheat bread. Food Chem. 2019, 289, 575–581. [Google Scholar] [CrossRef]
- Guzmán, C.; Autrique, J.E.; Mondal, S.; Singh, R.P.; Govindan, V.; Morales-Dorantes, A.; Posadas-Romano, G.; Crossa, J.; Ammar, K.; Peña, R.J. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Res. 2016, 186, 157–165. [Google Scholar] [CrossRef]
- Pasqualone, A.; Caponio, F.; Simeone, R. Quality evaluation of re-milled durum wheat semolinas used for bread-making in Southern Italy. Eur. Food Res. Technol. 2004, 219, 630–634. [Google Scholar] [CrossRef]
- Borsini, A.; Llavata, B.; Umaña, M.; Cárcel, J.A. Artichoke by products as a source of antioxidant and fiber: How it can be affected by drying temperature. Foods 2021, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Umaña, M.; Wawrzyniak, P.; Rosselló, C.; Llavata, B.; Simal, S. Evaluation of the addition of artichoke by-products to O/W emulsions for oil microencapsulation by spray drying. LWT 2021, 151, 112146. [Google Scholar] [CrossRef]
- Decreto del Presidente della Repubblica 9 febbraio 2001, n. 187, Regolamento per la revisione della normativa sulla produzione e commercializzazione di sfarinati e paste alimentari, a norma dell’articolo 50 della legge 22 febbraio 1994, n. 146. Gazz. Uff. 2001, 117, 6–12.
- Zeaiter, Z.; Regonesi, M.E.; Cavini, S.; Labra, M.; Sello, G.; Di Gennaro, P. Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health. BioMed Res. Int. 2019, 2019, 1083952. [Google Scholar] [CrossRef] [Green Version]
- Giannone, V.; Giarnetti, M.; Spina, A.; Todaro, A.; Pecorino, B.; Summo, C.; Pasqualone, A. Physico-chemical properties and sensory profile of durum wheat Dittaino PDO (Protected Designation of Origin) bread and quality of re-milled semolina used for its production. Food Chem. 2018, 241, 242–249. [Google Scholar] [CrossRef]
- Leroy, G.; Grongnet, J.F.; Mabeau, S.; Corre, D.L.; Baty-Julien, C. Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. J. Sci. Food Agric. 2010, 90, 1203–1209. [Google Scholar] [CrossRef]
- Reza, A.; Soodabeh, H.; Mehdi, A.; Ehsan, S.; Matin, Y. Studies on physical, chemical and rheological characteristics of pasta dough influenced by inulin. Afr. J. Food Sci. 2014, 8, 9–13. [Google Scholar]
- Akalın, A.S.; Erişir, D. Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. J. Food Sci. 2008, 73, M184–M188. [Google Scholar] [CrossRef]
- De Kanterewicz, R.J.; Pilosof, A.M.R.; Bartholomai, G.B. A simple method for determining the spontaneous oil absorption capacity of proteins and the kinetics of oil uptake. JAOCS 1989, 66, 809–812. [Google Scholar] [CrossRef]
- Borchani, C.; Masmoudi, M.; Besbes, S.; Attia, H.; Deroanne, C.; Blecker, C. Effect of date flesh fiber concentrate addition on dough performance and bread quality. J. Texture Stud. 2011, 42, 300–308. [Google Scholar] [CrossRef]
- Rosell, C.M.; Rojas, J.A.; De Barber, C.B. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll. 2001, 15, 75–81. [Google Scholar] [CrossRef]
- Wang, J.; Rosell, C.M.; de Barber, C.B. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem. 2002, 79, 22. [Google Scholar] [CrossRef]
- Gajula, H.; Liu, S.; Alavi, S.; Herald, T.; Madl, R.; Bean, S.R.; Tilley, M. Pre-cooked fiber-enriched wheat flour obtained by extrusion: Rheological and functional properties. Int. J. Food Prop. 2009, 12, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Kou, X.; Zhang, T.; Nie, Y.; Xu, B.; Li, P.; Liu, J. Effect of inulin on rheological properties of soft and strong wheat dough. Int. J. Food Sci. 2018, 53, 1648–1656. [Google Scholar] [CrossRef]
- Peressini, D.; Sensidoni, A. Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. J. Cereal Sci. 2009, 49, 190–201. [Google Scholar] [CrossRef]
- Bojnanska, T.; Tokar, M.; Vollmannova, A. Rheological parameters of dough with inulin addition and its effect on bread quality. J. Phys. Conf. Ser. 2015, 602, 012015. [Google Scholar] [CrossRef] [Green Version]
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Rapisarda, P.; Fallico, B.; Arena, E. Partial replacement of NaCl in bread from durum wheat (Triticum turgidum L. subsp. Durum Desf.) with KCl and yeast extract: Evaluation of quality parameters during long storage. Food Bioproc. Tech. 2015, 8, 1089–1101. [Google Scholar] [CrossRef]
- Khatkar, B.S.; Bell, A.E.; Schofield, J.D. A Comparative Study of the Inter-Relationships Between Mixograph Parameters and Bread-Making Qualities of Wheat Flours and Glutens. J. Sci. Food Agric. 1996, 72, 71–85. [Google Scholar] [CrossRef]
- Ram, S.; Dawar, V.; Singh, R.P.; Shoran, J. Application of solvent retention capacity tests for the prediction of mixing properties of wheat flour. J. Cereal Sci. 2005, 42, 261–266. [Google Scholar] [CrossRef]
- Morreale, F.; Benavent-Gil, Y.; Rosell, C.M. Inulin enrichment of gluten free breads: Interaction between inulin and yeast. Food Chem. 2019, 278, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ma, S.; Li, L.; Wang, X. Study on the effect of wheat bran dietary fiber on the rheological properties of dough. GOST 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Manonmani, D.; Bhol, S.; Bosco, S.J.D. Effect of red kidney bean (Phaseolus vulgaris L.) flour on bread quality. Open Access Libr. J. 2014, 1, 1–6. [Google Scholar] [CrossRef]
- Abdel-Kader, Z.M. Enrichment of Egyptian ‘Balady’ bread. Part 1. Baking studies, physical and sensory evaluation of enrichment with decorticated cracked broad beans flour (Vicia faba L.). Food/Nahr. 2000, 44, 418–421. [Google Scholar] [CrossRef]
- Anil, M. Using of hazelnut testa as a source of dietary fiber in breadmaking. J. Food Eng. 2007, 80, 61–67. [Google Scholar] [CrossRef]
- Gómez, M.; Ronda, F.; Blanco, C.A.; Caballero, P.A.; Apesteguía, A. Effect of dietary fibre on dough rheology and bread quality. Eur. Food Res. Technol. 2003, 216, 51–56. [Google Scholar] [CrossRef]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Gallagher, E. Recent advances in the development of high-fibre baked products. Trends Food Sci. Technol. 2012, 28, 4–14. [Google Scholar] [CrossRef]
- Chinma, C.E.; Ramakrishnan, Y.; Ilowefah, M.; Hanis-Syazwani, M.; Muhammad, K. Properties of cereal brans: A review. Cereal Chem. 2015, 92, 1–7. [Google Scholar] [CrossRef]
- Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Cacak-Pietrzak, G.; Miś, A.; Rudy, S. Physical properties of gluten-free bread caused by water addition. Int. Agrophys. 2015, 29, 353–364. [Google Scholar] [CrossRef]
- Różyło, R.; Gawlik-Dziki, U.; Dziki, D.; Jakubczyk, A.; Karaś, M.; Różyło, K. Wheat bread with pumpkin (Cucurbita maxima L.) pulp as a functional food product. FTB 2014, 52, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Czubaszek, A.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Kawa-Rygielska, J. Effect of Added Brewer’s Spent Grain on the Baking Value of Flour and the Quality of Wheat Bread. Molecules 2022, 27, 1624. [Google Scholar] [CrossRef]
- Karolini-Skaradzinska, Z.; Bihuniak, P.; Piotrowska, E.; Wdowik, L. Properties of dough and qualitative characteristics of wheat bread with addition of inulin. Pol. J. Food Nutr. Sci. 2007, 57, 4 [B]. [Google Scholar]
- Fendri, L.B.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Chaabouni, S.E.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Crowley, P.; Schober, T.J.; Clarke, C.I.; Arendt, E.K. The effect of storage time on textural and crumb grain characteristics of sourdough wheat bread. Eur. Food Res. Technol. 2002, 214, 489–496. [Google Scholar] [CrossRef]
- Paciulli, M.; Rinaldi, M.; Cirlini, M.; Scazzina, F.; Chiavaro, E. Chestnut flour addition in commercial gluten-free bread: A shelf-life study. LWT 2016, 70, 88–95. [Google Scholar] [CrossRef]
- Guiné Raquel, P.F.; Lima, M.J. Study of the drying kinetics and calculation of mass transfer properties in hot air drying of Cynara cardunculus. Open Agric. 2020, 5, 740–750. [Google Scholar] [CrossRef]
- AACC. Approved Methods of Analysis, 11th ed.; The American Association of Cereal Chemists: St Paul, MN, USA, 2000. [Google Scholar]
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Fabroni, S.; Fallico, B.; Rapisarda, P.; Arena, E. Wholegrain durum wheat bread fortified with citrus fibres: Evaluation of quality parameters during long storage. Front. Nutr. 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC International: Arlington, WA, USA, 1995. [Google Scholar]
- Kahraman, G.; Harsa, S.; Lucisano, M.; Cappa, C. Physicochemical and rheological properties of rice-based gluten-free blends containing differently treated chickpea flours. LWT 2018, 98, 276–282. [Google Scholar] [CrossRef]
- Du, S.K.; Jiang, H.; Yu, X.; Jane, J.L. Physicochemical and functional properties of whole legume flour. LWT 2014, 55, 308–313. [Google Scholar] [CrossRef]
- UNI. Durum Wheat and Semolina—Determination of Rheological Properties Using an Alveograph; UNI Method No. 10453; UNI: Milan, Italy, 1995. [Google Scholar]
- Miś, A.; Nawrocka, A.; Lamorski, K.; Dziki, D. Dynamics of gas cell coalescence during baking expansion of leavened dough. Int. Food Res. J. 2018, 103, 30–39. [Google Scholar] [CrossRef]
- Chevallier, S.; Zúñiga, R.; Le-Bail, A. Assessment of bread dough expansion during fermentation. Food Bioproc. Tech. 2012, 5, 609–617. [Google Scholar] [CrossRef]
- Aboaba, O.O.; Obakpolor, E.A. The leavening ability of baker’s yeast on dough prepared with composite flour (wheat/cassava). Afr. J. Food Sci. 2010, 4, 325–329. [Google Scholar]
- Bot, B.; Sánchez, H.; de la Torre, M.; Osella, C. Mother dough in bread making. Food Sci. Nutr. 2014, 2, 24–29. [Google Scholar] [CrossRef]
- Dallmann, H. Porentabelle, 4th ed.; Verlag Moritz Schäfer: Detmold, Germany, 1981. [Google Scholar]
Sample | Moisture (g/100 g) |
---|---|
Fresh stems | 67.0 ± 0.1 |
Fresh bracts | 57.0 ± 0.1 |
FAS | 6.0 ± 0.1 |
FAB | 4.0 ± 0.1 |
FAM | 5.0 ± 0.1 |
Type of Flour | Brown Index (100 − L*) | a* | b* |
---|---|---|---|
Pure flours | |||
SC-100% | 10.26 ± 0.01 i | −2.38 ± 0.00 k | 17.17 ± 0.00 b |
FAB-100% | 34.56 ± 0.01 c | −1.21 ± 0.01 h | 16.94 ± 0.01 c |
FAS-100% | 44.69 ± 0.01 a | 2.68 ± 0.02 a | 17.53 ± 0.01 a |
FAM-100% | 39.31 ± 0.04 b | 0.71 ± 0.02 b | 17.55 ± 0.01 a |
Mixes | |||
FAB-5% | 22.75 ± 0.01 g | −2.01 ± 0.01 j | 15.27 ± 0.01 f |
FAB-7.5% | 22.72 ± 0.02 g | −1.93 ± 0.01 ij | 15.55 ± 0.02 ce |
FAB-10% | 23.84 ± 0.01 fg | −1.87 ± 0.01 i | 15.68 ± 0.01 d |
FAS-5% | 20.71 ± 0.01 h | −0.44 ± 0.03 e | 15.09 ± 0.04 g |
FAS-7.5% | 24.15 ± 0.69 f | −0.11 ± 0.01 d | 14.71 ± 0.01 i |
FAS-10% | 27.55 ± 0.02 d | 0.34 ± 0.02 c | 14.93 ± 0.04 h |
FAM-5% | 20.76 ± 0.01 h | −1.12 ± 0.01 h | 15.09 ± 0.01 g |
FAM-7.5% | 23.59 ± 0.01 fg | −1.01 ± 0.01 g | 15.35 ± 0.01 f |
FAM-10% | 26.20 ± 0.01 e | −0.78 ± 0.01 f | 15.08 ± 0.01 g |
Type of Flour | Dough Development Time (min) | Stability (min) | Softening Degree (B.U.) | Water Absorption at 500 B.U. (g/100 g) |
---|---|---|---|---|
SC-100% | 1.8 ± 0.1 h | 3.2 ± 0.0 ef | 55 ± 0.0 d | 61.7 ± 0.1 e |
FAB-5% | 2.0 ± 0.1 gh | 1.9 ± 0.1 f | 34 ± 0.5 e | 65.1 ± 0.1 d |
FAB-7.5% | 2.5 ± 0.1 fg | 4.6 ± 0.1 e | 67 ± 0.1 cd | 65 ± 0.1 d |
FAB-10% | 2.8 ± 0.1 f | 18.4 ± 0.0 a | 141 ± 0.1 a | 64.6 ± 0.1 d |
FAS-5% | 5.6 ± 0.1 e | 7.2 ± 0.1 cd | 76 ± 0.1 bc | 66.1 ± 0.1 c |
FAS-7.5% | 6 ± 0.1 cd | 5.9 ± 0.1 d | 86 ± 0.1 b | 68.8 ± 0.1 b |
FAS-10% | 7.3 ± 0.1 b | 6.1 ± 0.1 d | 83 ± 0.1 bc | 70.2 ± 0.1 a |
FAM-5% | 5.9 ± 0.1 de | 3.7 ± 0.1 ef | 33 ± 0.2 e | 66.4 ± 0.1 c |
FAM-7.5% | 6.5 ± 0.1 c | 7.7 ± 0.1 c | 66 ± 0.1 cd | 68.6 ± 0.1 b |
FAM-10% | 3.9 ± 0.1 ed | 15.1 ± 0.1 b | 109 ± 0.1 ab | 71.2 ± 0.1 a |
Type of Flour | Mixograph Data | Alveograph Data | ||
---|---|---|---|---|
Mixing Time (min) | Peak Height (M.U.) | W (10−4 × J) | P/L | |
SC-100% | 2.65 ± 0.03 g | 6.35 ± 0.03 d | 225.5 ± 3.5 a | 2.40 ± 0.03 e |
FAB-5% | 4.01 ± 0.01 cd | 6.78 ± 0.01 c | 170.0 ± 6.1 b | 6.88 ± 0.43 cde |
FAB-7.5% | 3.53 ± 0.02 f | 7.17 ± 0.02 b | 101.0 ± 9.1 cde | 10.87 ± 0.85 abc |
FAB-10% | 3.90 ± 0.02 de | 7.35 ± 0.01 a | 75.0 ± 6.4 de | 15.20 ± 0.30 a |
FAS-5% | 4.48 ± 0.01 b | 7.15 ± 0.02 b | 129.0 ± 20.4 bc | 7.00 ± 1.26 cde |
FAS-7.5% | 4.15 ± 0.02 c | 6.79 ± 0.01 c | 103.0 ± 18.9 cde | 9.45 ± 2.38 bcd |
FAS-10% | 4.98 ± 0.01 a | 6.71 ± 0.01 c | 78.0 ± 7.7 de | 14.37 ± 1.42 a |
FAM-5% | 2.49 ± 0.01 h | 7.20 ± 0.01 b | 115.0 ± 7.9 cd | 4.76 ± 1.04 de |
FAM-7.5% | 3.54 ± 0.03 f | 5.76 ± 0.03 f | 105.0 ± 5.3 cde | 5.83 ± 0.33 de |
FAM-10% | 3.78 ± 0.03 e | 6.20 ± 0.03 e | 61.0 ± 4.4 e | 12.37 ± 0.57 ab |
Type of Bread | Crust | Crumb | ||||
---|---|---|---|---|---|---|
Brown Index (100 − L*) | a* | b* | Brown Index (100 − L*) | a* | b* | |
SC-100% | 58.56 ± 3.03 abcd | 16.38 ± 0.33 a | 22.43 ± 0.81 bc | 25.88 ± 0.01 l | −2.20 ± 0.03 h | 24.11 ± 0.06 a |
FAB-5% | 48.09 ± 3.25 d | 8.29 ± 0.10 bc | 28.30 ± 1.14 a | 42.95 ± 0.39 i | 1.27 ± 0.28 e | 20.41 ± 0.06 bcd |
FAB-7.5% | 48.37 ± 2.78 d | 8.45 ± 0.65 bc | 27.91 ± 0.47 ab | 47.20 ± 0.35 fghi | 2.02 ± 0.04 ef | 19.46 ± 0.45 defgh |
FAB-10% | 56.93 ± 1.67 abcd | 6.97 ± 0.74 c | 21.93 ± 0.08 bc | 55.67 ± 0.30 abc | 2.46 ± 0.28 def | 18.91 ± 0.16 gh |
FAS-5% | 51.89 ± 1.94 bcd | 8.55 ± 5.10 bc | 24.88 ± 2.28 abc | 48.51 ± 0.54 efghi | 2.47 ± 0.40 def | 19.73 ± 0.20 cdefgh |
FAS-7.5% | 57.50 ± 0.21 abc | 11.37 ± 1.39 abc | 22.20 ± 2.97 bc | 51.28 ± 0.18 cdefg | 3.47 ± 0.39 abcd | 20.62 ± 0.48 bc |
FAS-10% | 61.35 ± 1.64 a | 10.14 ± 0.62 abc | 19.83 ± 3.59 c | 58.49 ± 0.06 a | 3.95 ± 0.01 abc | 18.83 ± 0.08 g |
FAM-5% | 54.21 ± 2.33 abcd | 11.22 ± 0.11 bc | 26.02 ± 0.23 ab | 46.20 ± 0.07 hi | 2.00 ± 0.02 ef | 21.00 ± 0.03 b |
FAM-7.5% | 54.03 ± 0.98 abcd | 10.60 ± 0.03 ab | 25.60 ± 0.07 abc | 52.13 ± 0.08 bcde | 2.78 ± 0.14 cdef | 20.17 ± 0.09 bcde |
FAM-10% | 57.85 ± 0.33 abc | 10.07 ± 0.47 abc | 22.21 ± 0.89 bc | 56.63 ± 0.11 ab | 3.14 ± 0.05 bcde | 19.30 ± 0.03 efgh |
Type of Bread | Volume (cm3) | Weight (g) | Specific Volume (cm3/g) | Height (mm) | Porosity * |
---|---|---|---|---|---|
SC-100% | 440.00 ± 3.54 a | 144.50 ± 1.13 b | 3.05 ± 0.05 a | 81.9 ± 1.20 a | 5.75 ± 0.35 b |
FAB-5% | 272.50 ± 3.54 e | 153.03 ± 0.74 a | 1.78 ± 0.03 d | 61.2 ± 2.83 bcd | 6.75 ± 0.35 ab |
FAB-7.5% | 232.50 ± 3.54 f | 153.43 ± 0.18 a | 1.52 ± 0.02 e | 54.3 ± 1.20 cde | 7.25 ± 0.35 ab |
FAB-10% | 210.00 ± 0.00 g | 153.38 ± 0.95 a | 1.37 ± 0.01 e | 47.6 ± 2.26 e | 7.75 ± 0.35 a |
FAS-5% | 366.25 ± 1.77 b | 152.78 ± 1.10 a | 2.40 ± 0.03 b | 69.1 ± 1.13 b | 6.00 ± 0.00 b |
FAS-7.5% | 316.25 ± 5.30 c | 154.23 ± 0.32 a | 2.05 ± 0.04 c | 63.1 ± 1.34 bc | 6.25 ± 0.35 ab |
FAS-10% | 292.50 ± 3.54 de | 158.40 ± 0.07 a | 1.85 ± 0.02 d | 57.3 ± 0.35 cde | 7.25 ± 0.35 ab |
FAM-5% | 302.50 ± 3.54 cd | 153.98 ± 1.03 a | 1.96 ± 0.01 cd | 59.9 ± 0.00 bcd | 6.25 ± 0.35 ab |
FAM-7.5% | 280.00 ± 0.00 e | 156.80 ± 0.57 a | 1.79 ± 0.01 d | 54.3 ± 0.49 cde | 7.00 ± 0.00 ab |
FAM-10% | 243.75 ± 1.77 f | 157.63 ± 1.31 a | 1.55 ± 0.02 e | 52.0 ± 0.71 de | 7.25 ± 0.35 ab |
Days Elapsed from Baking | Type of Bread | Moisture (g/100 g) | Hardness (N) |
---|---|---|---|
0 | SC-100% | 31.2 ± 0.02 b(A) | 12.1 ± 0.64 b(B) |
FAB-5% | 32.8 ± 0.03 ab(A) | 16.9 ± 0.94 ab(B) | |
FAB-7.5% | 34.4 ± 0.01 ab(A) | 16.8 ± 0.54 ab(B) | |
FAB-10% | 33.9 ± 0.01 ab(A) | 21.4 ± 0.43 a(B) | |
FAS-5% | 34.9 ± 0.00 ab(A) | 12.2 ± 1.15 b(C) | |
FAS-7.5% | 35.0 ± 0.00 ab(A) | 13.1 ± 1.86 ab(C) | |
FAS-10% | 36.7 ± 0.00 a(A) | 11.9 ± 1.38 b(C) | |
FAM-5% | 35.9 ± 0.01 ab(A) | 11.8 ± 2.18 b(C) | |
FAM-7.5% | 35.0 ± 0.01 ab(A) | 11.4 ± 0.10 b(C) | |
FAM-10% | 37.1 ± 0.00 a(A) | 13.3 ± 0.99 ab(C) | |
2 | SC-100% | 27.3 ± 0.01 b(AB) | 33.7 ± 0.03 abc(A) |
FAB-5% | 33.6 ± 0.01 a(A) | 35.2 ± 0.80 ab(A) | |
FAB-7.5% | 33.3 ± 0.00 a(A) | 37.1 ± 2.03 a(AB) | |
FAB-10% | 33.8 ± 0.01 a(A) | 36.8 ± 0.13 a(AB) | |
FAS-5% | 32.8 ± 0.01 ab(A) | 23.1 ± 0.41 d(B) | |
FAS-7.5% | 33.6 ± 0.00 a(A) | 26.6 ± 1.85 bcd(B) | |
FAS-10% | 36.6 ± 0.01 a(A) | 25.1 ± 0.36 cd(B) | |
FAM-5% | 34.9 ± 0.00 a(A) | 24.6 ± 2.28 cd(B) | |
FAM-7.5% | 35.3 ± 0.01 a(A) | 25.4 ± 1.80 cd(B) | |
FAM-10% | 35.0 ± 0.02 a(A) | 32.93 ± 1.45 abc(B) | |
4 | SC-100% | 25.9 ± 0.00 b(B) | 28.2 ± 0.24 e(A) |
FAB-5% | 30.7 ± 0.03 ab(A) | 44.3 ± 4.09 bcd(A) | |
FAB-7.5% | 31.3 ± 0.01 ab(A) | 56.1 ± 0.45 ab(A) | |
FAB-10% | 30.6 ± 0.00 ab(A) | 52.1 ± 1.91 abc(A) | |
FAS-5% | 25.2 ± 0.01 b(B) | 40.3 ± 0.48 cd(A) | |
FAS-7.5% | 30.4 ± 0.01 ab(A) | 36.9 ± 0.23 d(A) | |
FAS-10% | 34.9 ± 0.00 a(A) | 44.9 ± 0.83 bcd(A) | |
FAM-5% | 30.1 ± 0.01 ab(B) | 44.9 ± 0.97 bcd(A) | |
FAM-7.5% | 33.4 ± 0.00 a(A) | 52.9 ± 1.14 abc(A) | |
FAM-10% | 31.0 ± 0.01 ab(B) | 65.1 ± 3.58 a(A) |
Bread Type | Re-Milled Semolina | FAB | FAS | FAM | Yeast | NaCl | Ascorbic Acid | Sugar | Shortening | Water * |
---|---|---|---|---|---|---|---|---|---|---|
SC-100% | 100 | - | - | - | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 61.7 |
FAB-5% | 95 | 5 | - | - | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 65.1 |
FAB-7.5% | 92.5 | 7.5 | - | - | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 65.0 |
FAB-10% | 90 | 10 | - | - | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 64.6 |
FAS-5% | 95 | - | 5 | - | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 66.1 |
FAS-7.5% | 92.5 | - | 7.5 | - | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 68.8 |
FAS-10% | 90 | - | 10 | - | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 70.2 |
FAM-5% | 95 | - | - | 5 | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 66.4 |
FAM-7.5% | 92.5 | - | - | 7.5 | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 68.6 |
FAM-10% | 90 | - | - | 10 | 0.6 | 0.4 | 8 × 10−4 | 1.2 | 3.5 | 71.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canale, M.; Spina, A.; Summo, C.; Strano, M.C.; Bizzini, M.; Allegra, M.; Sanfilippo, R.; Amenta, M.; Pasqualone, A. Waste from Artichoke Processing Industry: Reuse in Bread-Making and Evaluation of the Physico-Chemical Characteristics of the Final Product. Plants 2022, 11, 3409. https://doi.org/10.3390/plants11243409
Canale M, Spina A, Summo C, Strano MC, Bizzini M, Allegra M, Sanfilippo R, Amenta M, Pasqualone A. Waste from Artichoke Processing Industry: Reuse in Bread-Making and Evaluation of the Physico-Chemical Characteristics of the Final Product. Plants. 2022; 11(24):3409. https://doi.org/10.3390/plants11243409
Chicago/Turabian StyleCanale, Michele, Alfio Spina, Carmine Summo, Maria Concetta Strano, Michele Bizzini, Maria Allegra, Rosalia Sanfilippo, Margherita Amenta, and Antonella Pasqualone. 2022. "Waste from Artichoke Processing Industry: Reuse in Bread-Making and Evaluation of the Physico-Chemical Characteristics of the Final Product" Plants 11, no. 24: 3409. https://doi.org/10.3390/plants11243409
APA StyleCanale, M., Spina, A., Summo, C., Strano, M. C., Bizzini, M., Allegra, M., Sanfilippo, R., Amenta, M., & Pasqualone, A. (2022). Waste from Artichoke Processing Industry: Reuse in Bread-Making and Evaluation of the Physico-Chemical Characteristics of the Final Product. Plants, 11(24), 3409. https://doi.org/10.3390/plants11243409