A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design
<p>Sample of tested benchmark functions.</p> "> Figure 2
<p>Convergence speed for Sphere (<span class="html-italic">f</span><sub>1</sub>) function (50D).</p> "> Figure 3
<p>Convergence speed for Griewank (<span class="html-italic">f</span><sub>7</sub>) function (30D).</p> "> Figure 4
<p>Convergence speed for Cigar (<span class="html-italic">f</span><sub>14</sub>) function (25D).</p> "> Figure 5
<p>Required Computation time by each method on a set of benchmark function.</p> "> Figure 6
<p>Impact of increasing number of function dimensions vs. CPU time for Sphere function.</p> "> Figure 7
<p>Impact of increasing number of function dimensions vs. CPU time for Dixon and price function.</p> "> Figure 8
<p>Error vs. variable number for Sphere function.</p> "> Figure 9
<p>Error vs. variable number for Griewank function (<span class="html-italic">f</span><sub>7</sub>).</p> "> Figure 10
<p>Error vs. variable number for Dixon and Price function (<span class="html-italic">f</span><sub>13</sub>).</p> "> Figure 11
<p>The welded beam problem results.</p> "> Figure 12
<p>The tension/compression spring problem results.</p> "> Figure 13
<p>Required CPU time by each algorithm for all constrained problems.</p> "> Figure 14
<p>Floating Offshore Wind Turbine (FOWT) with a spar buoy support structure.</p> "> Figure 15
<p>Design characteristics of a spar buoy platform including height, radius, and taper ratio of the cylinder as well as platform’s free board.</p> "> Figure 16
<p>Cost for FOWT problem results.</p> "> Figure 17
<p>Required CPU time for FOWT problem.</p> ">
Abstract
:1. Introduction
2. Notations and Symbols
3. Nature-Inspired Global Optimization Methods
- They have been introduced in the last decade.
- They are frequently and widely used in solving many engineering globe optimization problems.
- They share many similarities in general. For instance, all these methods begin with a randomly population group and operate a fitness value to evaluate this population. They all update the population and randomly search for the optimum. They use a sharing information mechanism wherein the evolution only looks for the best solution.
- They have the potential to solve high-dimensional complex design problems especially when the number of iterations are limited.
3.1. Artificial Bee Colony Method
3.2. Firefly Algorithm Method
- Fireflies are socially oriented insects, and regardless of their sex, all of them move towards more attractive and brighter fireflies.
- The amount of attraction of a firefly is proportionate to its brightness; hence, a firefly that has less brightness will travel toward one that has higher brightness. The attractiveness decreases as the space from the other firefly rises since air absorbs light. If there is no brighter firefly in the vicinity, fireflies will travel randomly in the design space.
- The brightness (light intensity) of a firefly is specified by the objective function value of the optimization problem.
3.3. Cuckoo Search Method
3.4. Bat Algorithm Method
3.5. Flower Pollination Algorithm Method
3.6. Grey Wolf Optimizer Method
4. Benchmark Function and Experiment Materials
5. Experiments
5.1. Setting Parameters in the Experiments
5.2. Experiments Results
6. Discussion
6.1. The Accuracy with Limited Number of Iterations
6.2. The Computational Complexity Analysis
6.3. The Impact of Increasing the Number of Variables on the Performance
6.4. The Overall Performance of the Methods
7. Further Tests Using Nonlinear Constrained Engineering Applications
- ABC consistently requires lower NFE than the other algorithms.
- GWO performs well in TSD, WBD and PVD cases, but it seems that the GWO needs more iterations to reach the exact global solution in the SRD case.
- Results demonstrate that the other tested algorithms are sensitive when the number of variables increases, but they can provide competitive search efficiency in some problems.
8. Real-life Application (Cost for Floating Offshore Wind Turbine Support Structures (FOWTs))
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274, 292–305. [Google Scholar] [CrossRef]
- Liao, T.; Socha, K.; de Montes Oca, M.A.; Stützle, T.; Dorigo, M. Ant Colony Optimization for Mixed-Variable Optimization Problems. IEEE Trans. Evolut. Comput. 2014, 18, 503–518. [Google Scholar] [CrossRef]
- Samora, I.; Franca, M.J.; Schleiss, A.J.; Ramos, H.M. Simulated Annealing in Optimization of Energy Production in a Water Supply Network. Water Resour. Manag. 2016, 30, 1533–1547. [Google Scholar] [CrossRef]
- Garg, H.; Sharma, S.P. Multi-objective reliability-redundancy allocation problem using particle swarm optimization. Comput. Ind. Eng. 2013, 64, 247–255. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Longo, M. Application of Genetic Algorithms for Driverless Subway Train Energy Optimization. Int. J. Veh. Technol. 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, D.; Hao, C. An Improved Ant Colony Algorithm for Solving the Path Planning Problem of the Omnidirectional Mobile Vehicle. Math. Probl. Eng. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Garg, H. Reliability, Availability and Maintainability Analysis of Industrial Systems Using PSO and Fuzzy Methodology. Mapan 2013, 29, 115–129. [Google Scholar] [CrossRef]
- Baeyens, E.; Herreros, A.; Perán, J. A Direct Search Algorithm for Global Optimization. Algorithms 2016, 9, 40. [Google Scholar] [CrossRef]
- Morrison, D.R.; Jacobson, S.H.; Sauppe, J.J.; Sewell, E.C. Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. Discret. Optim. 2016, 19, 79–102. [Google Scholar] [CrossRef]
- Xu, D.; Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data Sci. 2015, 2, 165–193. [Google Scholar] [CrossRef]
- Levy, A.V.; Montalvo, A. The Tunneling Algorithm for the Global Minimization of Functions. SIAM J. Sci. Stat. Comput. 1985, 6, 15–29. [Google Scholar] [CrossRef]
- Scaria, A.; George, K.; Sebastian, J. An Artificial Bee Colony Approach for Multi-objective Job Shop Scheduling. Procedia Technol. 2016, 25, 1030–1037. [Google Scholar] [CrossRef]
- Ritthipakdee, A.; Thammano, A.; Premasathian, N.; Jitkongchuen, D. Firefly Mating Algorithm for Continuous Optimization Problems. Comput. Intell. Neurosci. 2017, 2017, 8034573. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-S.; Deb, S. Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 2013, 40, 1616–1624. [Google Scholar] [CrossRef]
- Garg, H. An approach for solving constrained reliability-redundancy allocation problems using cuckoo search algorithm. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 14–25. [Google Scholar] [CrossRef]
- Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Yang, X.-S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim. 2014, 46, 1222–1237. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comprehensive review of swarm optimization algorithms. PLoS ONE 2015, 10, e0122827. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, F.; Xing, J. A hybrid artificial bee colony algorithm and pattern search method for inversion of particle size distribution from spectral extinction data. J. Mod. Opt. 2017, 64, 2051–2065. [Google Scholar] [CrossRef]
- Gao, W.-F.; Liu, S.-Y. A modified artificial bee colony algorithm. Comput. Oper. Res. 2012, 39, 687–697. [Google Scholar] [CrossRef]
- Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 2010, 217, 3166–3173. [Google Scholar] [CrossRef]
- Li, G.; Niu, P.; Xiao, X. Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl. Soft Comput. 2012, 12, 320–332. [Google Scholar] [CrossRef]
- Banharnsakun, A.; Achalakul, T.; Sirinaovakul, B. The best-so-far selection in Artificial Bee Colony algorithm. Appl. Soft Comput. 2011, 11, 2888–2901. [Google Scholar] [CrossRef]
- Xiang, W.-L.; An, M.-Q. An efficient and robust artificial bee colony algorithm for numerical optimization. Comput. Oper. Res. 2013, 40, 1256–1265. [Google Scholar] [CrossRef]
- Li, X.; Yang, G. Artificial bee colony algorithm with memory. Appl. Soft Comput. 2016, 41, 362–372. [Google Scholar] [CrossRef]
- Garg, H.; Rani, M.; Sharma, S.P. An efficient two phase approach for solving reliability-redundancy allocation problem using artificial bee colony technique. Comput. Oper. Res. 2013, 40, 2961–2969. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Fister, I.; Fister, I., Jr.; Yang, X.-S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evolut. Comput. 2013, 13, 34–46. [Google Scholar] [CrossRef]
- Yang, X.-S.; He, X. Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intell. 2013, 1, 36–50. [Google Scholar] [CrossRef]
- Bhushan, B.; Pillai, S.S. Particle Swarm Optimization and Firefly Algorithm: Performance analysis. In Proceedings of the 2013 IEEE 3rd International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013; pp. 746–751. [Google Scholar]
- Mashhadi Farahani, S.; Nasiri, B.; Meybodi, M. A multiswarm based firefly algorithm in dynamic environments. In Proceedings of the Third International Conference on Signal Processing Systems (ICSPS2011), Yantai, China, 27–28 August 2011; Volume 3, pp. 68–72. [Google Scholar]
- Younes, M.; Khodja, F.; Kherfane, R.L. Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration. Energy 2014, 67, 595–606. [Google Scholar] [CrossRef]
- Talatahari, S.; Gandomi, A.H.; Yun, G.J. Optimum design of tower structures using Firefly Algorithm. Struct. Des. Tall Spec. Build. 2014, 23, 350–361. [Google Scholar] [CrossRef]
- Hassanzadeh, T.; Vojodi, H.; Moghadam, A.M.E. An image segmentation approach based on maximum variance Intra-cluster method and Firefly algorithm. In Proceedings of the 2011 Seventh International Conference on Natural Computation, Shanghai, China, 26–28 July 2011. [Google Scholar]
- Jati, G.K. Evolutionary Discrete Firefly Algorithm for Travelling Salesman Problem. In Proceedings of the Adaptive and Intelligent Systems, Second International Conference (ICAIS 2011), Klagenfurt, Austria, 6–8 September 2011; Bouchachia, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 393–403. [Google Scholar]
- Arora, S.; Singh, S. The Firefly Optimization Algorithm: Convergence Analysis and Parameter Selection. Int. J. Comput. Appl. 2013, 69, 48–52. [Google Scholar] [CrossRef]
- Bidar, M.; Kanan, H.R. Modified firefly algorithm using fuzzy tuned parameters. In Proceedings of the 13th Iranian Conference on Fuzzy Systems (IFSC), Qazvin, Iran, 27–29 August 2013. [Google Scholar]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Mixed variable structural optimization using Firefly Algorithm. Comput. Struct. 2011, 89, 2325–2336. [Google Scholar] [CrossRef]
- Farahani, M.S.; Abshoiri, A.A.; Nasiri, B.; Meybodi, M.R. A Gaussian Firefly Algorithm. Int. J. Mach. Learn. Comput. 2011, 1, 448–453. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef]
- Yatim, J.; Zain, A.; Bazin, N.E.N. Cuckoo Search Algorithm for Optimization Problems—A Literature Review and its Applications. Appl. Artif. Intell. 2014, 28, 419–448. [Google Scholar]
- Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R. Modified cuckoo search: A new gradient free optimisation algorithm. Chaos Solitons Fractals 2011, 44, 710–718. [Google Scholar] [CrossRef]
- Yildiz, A. Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int. J. Adv. Manuf. Technol. 2012, 64, 1–7. [Google Scholar] [CrossRef]
- Vazquez, R.A. Training spiking neural models using cuckoo search algorithm. In Proceedings of the 2011 IEEE Congress on Eovlutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; pp. 679–686. [Google Scholar]
- Kaveh, A.; Bakhshpoori, T. Optimum design of steel frames using Cuckoo Search algorithm with Lévy flights. Struct. Des. Tall Spec. Build. 2013, 22, 1023–1036. [Google Scholar] [CrossRef]
- Chifu, V.R.; Pop, C.B.; Salomie, I.; Suia, D.S.; Niculici, A.N. Optimizing the Semantic Web Service Composition Process Using Cuckoo Search. In Intelligent Distributed Computing V. Studies in Computational Intelligence; Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 382. [Google Scholar]
- Tein, L.H.; Ramli, R. Recent Advancements of Nurse Scheduling Models and a Potential Path. In Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA 2010), Kuala Lumpur, Malaysia, 3–4 November 2010. [Google Scholar]
- Choudhary, K.; Purohit, G. A new testing approach using cuckoo search to achieve multi-objective genetic algorithm. J. Comput. 2011, 3, 117–119. [Google Scholar]
- Bulatović, R.; Djordjevic, S.; Djordjevic, V. Cuckoo Search algorithm: A metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage. Mech. Mach. Theory 2013, 61, 1–13. [Google Scholar] [CrossRef]
- Speed, E.R. Evolving a Mario agent using cuckoo search and softmax heuristics. In Proceedings of the 2010 International IEEE Consumer Electronics Society’s Games Innovations Conference (ICE-GIC), Hong Kong, China, 21–23 December 2010; pp. 1–7. [Google Scholar]
- Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. Nat. Inspired Cooper. Strateg. Optim. 2010, 284, 65–74. [Google Scholar]
- Yılmaz, S.; Kucuksille, E.U.; Cengiz, Y. Modified Bat Algorithm. Elektronika Elektrotechnika 2014, 20, 71–78. [Google Scholar] [CrossRef]
- Afrabandpey, H.; Ghaffari, M.; Mirzaei, A.; Safayani, M. A Novel Bat Algorithm Based on Chaos for Optimization Tasks. In Proceedings of the 2014 Iranian Conference on Intelligent Systems (ICIS), Bam, Iran, 4–6 February 2014. [Google Scholar]
- Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Al-Betar, M.; Awadallah, M.A.; Faris, H.; Yang, X.-S.; Khader, A.T.; Al-Omari, O.A. Bat-inspired Algorithms with Natural Selection mechanisms for Global optimization. Int. J. Neurocomput. 2017. [Google Scholar] [CrossRef]
- Xie, J.; Zhou, Y.-Q.; Chen, H. A Novel Bat Algorithm Based on Differential Operator and Lévy Flights Trajectory. Comput. Intell. Neurosci. 2013, 2013, 453812. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Chou, C.-W.; Yang, C.-H.; Tsai, H.-L. A chaotic Levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems. Comput. Inf. Technol. 2012, 2, 56–63. [Google Scholar]
- Yilmaz, S.; Kucuksille, E.U. Improved Bat Algorithm (IBA) on Continuous Optimization Problems. Lect. Notes Softw. Eng. 2013, 1, 279. [Google Scholar] [CrossRef]
- Wang, G.; Guo, L. A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization. J. Appl. Math. 2013, 2013, 696491. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, W.; Liu, Z.; Duan, Q.; Cao, L. A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization. Comput. Intell. Neurosc. 2016, 2016, 6097484. [Google Scholar] [CrossRef] [PubMed]
- Gandomi, A.; Yang, X.-S. Chaotic bat algorithm. J. Comput. Sci. 2013, 5, 224–232. [Google Scholar] [CrossRef]
- Kielkowicz, K.; Grela, D. Modified Bat Algorithm for Nonlinear Optimization. Int. J. Comput. Sci. Netw. Secur. 2016, 16, 46. [Google Scholar]
- He, X.; Yang, X.-S.; Karamanoglu, M.; Zhao, Y. Global Convergence Analysis of the Flower Pollination Algorithm: A Discrete-Time Markov Chain Approach. Procedia Comput. Sci. 2017, 108, 1354–1363. [Google Scholar] [CrossRef]
- Nabil, E. A Modified Flower Pollination Algorithm for Global Optimization. Expert Syst. Appl. 2016, 57, 192–203. [Google Scholar] [CrossRef]
- Alam, D.F.; Yousri, D.A.; Eteiba, M. Flower Pollination Algorithm based solar PV parameter estimation. Energy Convers. Manag. 2015, 101, 410–422. [Google Scholar] [CrossRef]
- Henawy, I.; Abdel-Raouf, O.; Abdel-Baset, M. A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems. Int. J. Appl. Oper. Res. Open Access J. 2014, 4, 1–13. [Google Scholar]
- Wang, R.; Zhou, Y.-Q. Flower Pollination Algorithm with Dimension by Dimension Improvement. Math. Probl. Eng. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Kanagasabai, L.; RavindhranathReddy, B. Reduction of real power loss by using Fusion of Flower Pollination Algorithm with Particle Swarm Optimization. J. Inst. Ind. Appl. Eng. 2014, 2, 97–103. [Google Scholar] [CrossRef]
- Meng, O.K.; Pauline, O.; Kiong, S.C.; Wahab, H.A.; Jafferi, N. Application of Modified Flower Pollination Algorithm on Mechanical Engineering Design Problem. IOP Conf. Ser. Mater. Sci. Eng. 2017, 165, 012032. [Google Scholar] [CrossRef]
- Binh, H.T.T.; Hanh, N.T.; Dey, N. Improved Cuckoo Search and Chaotic Flower Pollination Optimization Algorithm for Maximizing Area Coverage in Wireless Sensor Network. Neural Comput. Appl. 2016, 1–13. [Google Scholar] [CrossRef]
- Łukasik, S.; Kowalski, P.A. Study of Flower Pollination Algorithm for Continuous Optimization. In Intelligent Systems' 2014; Springer: Cham, Switzerland, 2015; Volume 322, pp. 451–459. [Google Scholar]
- Sakib, N.; Kabir, W.U.; Rahman, S.; Alam, M.S. A Comparative Study of Flower Pollination Algorithm and Bat Algorithm on Continuous Optimization Problems. Int. J. Soft Comput. Eng. 2014, 4, 13–19. [Google Scholar] [CrossRef]
- Mirjalili, S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. 2015, 43, 150–161. [Google Scholar] [CrossRef]
- Li, L.; Sun, L.; Guo, J.; Qi, J.; Xu, B.; Li, S. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding. Computational Intelligence and Neuroscience. Comput. Intell. Neurosc. 2017, 2017, 3295769. [Google Scholar] [CrossRef] [PubMed]
- Precup, R.-E.; David, R.-C.; Szedlak-Stinean, A.-I.; Petriu, E.M.; Dragan, F. An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. Algorithms 2017, 10, 68. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Bath, S.K.; Dhillon, J.S. Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Comput. Appl. 2016, 27, 1301–1316. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Grosan, C.; Ali, A. Feature Subset Selection Approach by Gray-Wolf Optimization. In Proceedings of the 1st Afro-European Conference for Industrial Advancement, Addis Ababa, Ethiopia, 17–19 November 2014; pp. 1–13. [Google Scholar]
- Gholizadeh, S. Optimal design of double layer grids considering nonlinear behaviour by sequential grey wolf algorithm. Int. J. Optim. Civ. Eng. 2015, 5, 511–523. [Google Scholar]
- Yusof, Y.; Mustaffa, Z. Time Series Forecasting of Energy Commodity using Grey Wolf Optimizer. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 18–20 March 2015; pp. 25–30. [Google Scholar]
- Komaki, G.; Kayvanfar, V. Grey Wolf Optimizer Algorithm for the Two-stage Assembly Flowshop Scheduling Problem with Release Time. J. Comput. Sci. 2015, 8, 109–120. [Google Scholar] [CrossRef]
- El-Fergany, A.; Hasanien, H. Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms. Electric Power Compon. Syst. 2015, 43, 1548–1559. [Google Scholar] [CrossRef]
- Zawbaa, H.; Emary, E.; Hassanien, A.E. Binary Grey Wolf Optimization Approaches for Feature Selection. Neurocomputing 2016, 172, 371–381. [Google Scholar]
- Kohli, M.; Arora, S. Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 2017. [Google Scholar] [CrossRef]
- Mittal, N.; Singh, U.; Singh Sohi, B. Modified Grey Wolf Optimizer for Global Engineering Optimization. Appl. Comput. Intell. Soft Comput. 2016, 2016, 7950348. [Google Scholar] [CrossRef]
- Jamil, M.; Yang, X.-S. A Literature Survey of Benchmark Functions for Global Optimization Problems. Int. J. Math. Modell. Numer. Optim. 2013, 4, 150–194. [Google Scholar]
- Dong, H.; Song, B.; Dong, Z.; Wamg, P. Multi-start Space Reduction (MSSR) surrogate-based global optimization method. Struct. Multidiscip. Optim 2016, 54, 907–926. [Google Scholar] [CrossRef]
- Eiben, A.; Hinterding, R.; Michalewicz, Z. Parameter Control in Evolutionary Algorithms. In Parameter Setting in Evolutionary Algorithms; Fernando, G.L., Cláudio, F.L., Zbigniew, M., Eds.; Springer: Berlin, Germany, 2007; pp. 19–46. [Google Scholar]
- Yang, X.S.; Deb, S.; Fong, S. Bat Algorithm is better than Intermittent Search Strategy. J. Mult.-Valued Log. Soft Comput. 2014, 22, 223–237. [Google Scholar]
- Akay, B.; Karaboga, D. Parameter Tuning for the Artificial Bee Colony Algorithm. Int. Conf. Comput. Collect. Intell. 2009, 5796, 608–619. [Google Scholar]
- Mo, Y.-B.; Ma, Y.-Z.; Zheng, Q. Optimal Choice of Parameters for Firefly Algorithm. In Proceedings of the 2013 Fourth International Conference on Digital Manufacturing & Automation (ICDMA), Qingdao, China, 29–30 June 2013; pp. 887–892. [Google Scholar]
- Wang, J.; Zhou, B.; Zhou, S. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation. Computat. Intell. Neurosc. 2016, 2016, 2959370. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-S. Nature-Inspired Optimization Algorithms; Elsevier: London, UK, 2014; p. 300. [Google Scholar]
- Rodríguez, L.; Castillo, O.; Soria, J. A Study of Parameters of the Grey Wolf Optimizer Algorithm for Dynamic Adaptation with Fuzzy Logic. In Nature-Inspired Design of Hybrid Intelligent Systems; Melin, P., Castillo, O., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 371–390. [Google Scholar]
- Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [Google Scholar] [CrossRef]
- Garg, H. Solving structural engineering design optimization problems using an Artificial Bee Colony algorithm. J. Ind. Manag. Optim. 2013, 10, 777–794. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Coello, C.A.C. A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems. IEEE Trans. Evolut. Comput. 2005, 9, 1–17. [Google Scholar] [CrossRef]
- Garg, H. A Hybrid GA-GSA Algorithm for Optimizing the Performance of an Industrial System by Utilizing Uncertain Data. In Handbook of Research on Artificial Intelligence Techniques and Algorithms; IGI Global: Hershey, PA, USA, 2015; pp. 620–654. [Google Scholar]
- Leung, D.Y.C.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5 MW Reference Wind Turbine for Offshore System Development; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009.
- Karimi, M.; Hall, M.; Buckham, B.; Crawford, C. A multi-objective design optimization approach for floating offshore wind turbine support structures. J. Ocean Eng. Mar. Energy 2017, 3, 69–87. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
NFE | Number of Function Evolution |
D | Dimensional |
CPU | Computation time |
GO | Global Optimization |
TSP | Travelling Salesman problem |
Step size in CSA | |
Scaling factor to control the step size in FFA | |
Attractiveness of firefly in FFA | |
Wavelengths in BA | |
p | Switch probability |
N | population size |
No | Function | Formula | f* | D | Space | Properties |
---|---|---|---|---|---|---|
f1 | Sphere | 0 | 50 | [−5.12 5.12]50 | Unimodal | |
f2 | Sargan | 0 | 50 | [−100 100]50 | Unimodal | |
f3 | S. Square | 0 | 50 | [−10 10]50 | Unimodal | |
f4 | Powell | 0 | 50 | [−4 5]50 | Unimodal | |
f5 | Schwefel | 0 | 50 | [−100 100]50 | Unimodal | |
f6 | Ackley | 0 | 30 | [−32 32]30 | Multi-modal | |
f7 | Griewank | 0 | 30 | [−100 100]30 | Multi-modal | |
f8 | Alpine | 0 | 30 | [−10 10] | Multi-modal | |
f9 | Egg Crate | 0 | 30 | [−5 5] | Multi-modal | |
f10 | Rastrigin | 0 | 30 | [−10 10] | Multi-modal | |
f11 | Leon | 0 | 25 | [−1.2 1.2] | Hard convergence unimodal | |
f12 | Zakharov | 0 | 25 | [−5 10] | Hard convergence unimodal | |
f13 | Dixon-Price | 0 | 25 | [−5 5] | Hard convergence unimodal | |
f14 | Cigar | 0 | 25 | [−100 100] | Hard convergence multi-modal | |
f15 | Levy | 0 | 25 | [−10 10] | Hard convergence multi-modal |
Algorithm | Setting Parameters |
---|---|
ABC | Food Source = 20, the limit value = 10 |
FFA | = 0.5, = 1, = 1 |
CSA | p = 0.25, |
BA | Population Loudness (A) = 0.25, Pulse rate F [0, 2] |
FPA | p = 0.8, = 1.5 |
GWO | , C [0, 3] |
Alg. | f1 (D = 50) | f2 (D = 50) | f3 (D = 50) | ||||||||||||
Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | |
BA | 3.168 | 13.91 | ±8.94 | 20,000 | 0.219 | 79160 | 829400 | ±2.74 × 10 5 | 20,000 | 0.484 | 4242 | 5812 | ±210 | 20,000 | 0.234 |
CSA | 0.6846 | 5.443 | ±35.09 | 20,000 | 0.375 | 14.06 | 2430 | ±1.72 × 10 5 | 20,000 | 1.219 | 1.5841 | 29.54 | ±237 | 20,000 | 0.719 |
FFA | 1.1 × 10−3 | 0.1129 | ±38.27 | 20,000 | 1.266 | 0.1299 | 200.2 | ±2.16 × 105 | 20,000 | 1.453 | 3.1861 | 13.67 | ±298 | 20,000 | 1.266 |
FPA | 7.373 | 10.10 | ±35.66 | 20,000 | 0.344 | 187900 | 34570 | ±2.70 × 105 | 20,000 | 0.547 | 1099 | 2518 | ±413 | 20,000 | 0.313 |
ABC | 5.60 × 10−5 | 0.2723 | ±68.51 | 12,170 | 0.172 | 4.5 × 10−3 | 0.0321 | ±3.42 × 102 | 19,956 | 0.449 | 5.60 × 105 | 16.18 | ±637 | 17,534 | 0.172 |
GWO | 6.14 × 10−56 | 6.27 × 10−19 | ±20.60 | 20,000 | 0.297 | 0 | 4.76 × 10−19 | ±1.49 × 105 | 20,000 | 0.469 | 0 | 4.20 × 10−26 | ±175 | 20,000 | 0.281 |
f4 (D = 50) | f5 (D = 50) | f6 (D = 30) | |||||||||||||
Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | |
BA | 11.92 | 147.1 | ±303.8 | 20,000 | 0.50 | 1.44 × 10−7 | 4.4 × 10−7 | ±0.177 | 20,000 | 0.234 | 16.77 | 16.77 | ±0.576 | 20,000 | 0.25 |
CSA | 6.38 × 10−2 | 1.094 | ±1792 | 20,000 | 1.109 | 5.03 × 10−43 | 9.51 × 10−25 | ±0.052 | 20,000 | 0.406 | 4.567 | 6.99 | ±3.99 | 20,000 | 0.375 |
FFA | 2.644 | 5.696 | ±1332 | 20,000 | 1.406 | 1.64 × 10−5 | 1.77 × 10−4 | ±0.078 | 20,000 | 1.266 | 1.30 × 10−3 | 9.61 × 10−2 | ±1.51 | 20,000 | 1.234 |
FPA | 54.89 | 109.7 | ±2759 | 20,000 | 0.578 | 0 | 2.17 × 10−13 | ±0.128 | 20,000 | 0.344 | 3.022 | 4.206 | ±4.268 | 20,000 | 0.313 |
ABC | 5.10 × 10−3 | 0.631 | ±1356 | 20,096 | 0.297 | 3.12 × 10−4 | 3.45 × 10−2 | ±0.755 | 20,005 | 0.156 | 5.79 × 10−5 | 9.34 × 10−2 | ±4.36 | 19,645 | 0.188 |
GWO | 1.23 × 10−6 | 1.10 × 10−3 | ±1190 | 20,000 | 0.453 | 0 | 0 | ±0.760 | 20,000 | 0.303 | 7.99 × 10−15 | 8.10 × 10−15 | ±2.43 | 20,000 | 0.203 |
f7 (D = 30) | f8 (D = 30) | f9 (D = 30) | |||||||||||||
Min | Median | SD | NFE | CPU | Min | Median | SD. | NFE | CPU | Min | Median | SD | NFE | CPU | |
BA | 6.867 | 6.960 | ±0.173 | 20,000 | 0.266 | 2.53 × 10−7 | 3.04 × 10−6 | ±1.90 × 10−3 | 20,000 | 0.219 | 7.416 × 10−14 | 5.91 × 10 −12 | ±1.10 × 10−6 | 20,000 | 1.391 |
CSA | 0.1534 | 1.073 | ±2.647 | 20,000 | 0.375 | 3.94 × 10−13 | 2.74 × 10−10 | ±2.80 × 10−4 | 20,000 | 0.375 | 1.346 × 10−75 | 1.70 × 10−34 | ±0.166 | 20,000 | 1.531 |
FFA | 3.21 × 10−4 | 0.2293 | ±1.922 | 20,000 | 1.281 | 5.57 × 10−9 | 1.31 × 10−6 | ±1.90 × 10−4 | 20,000 | 1.5 | 9.818 × 10−14 | 1.10 × 10−9 | ±0.062 | 20,000 | 2.188 |
FPA | 1.1599 | 1.353 | ±1.455 | 20,000 | 0.328 | 3.43 × 10−10 | 3.08 × 10−8 | ±1.17 × 10−2 | 20,000 | 0.344 | 1.06 × 10−36 | 1.30 × 10−21 | ±1.80 × 10−6 | 20,000 | 1.469 |
ABC | 1.96 × 10−10 | 1.20 × 10−3 | ±3.159 | 16,890 | 0.203 | 5.50 × 10−6 | 5.50 × 10−6 | ±4.62 × 10−2 | 18,006 | 0.188 | 5.00 × 10−8 | 1.90 × 10−5 | ±0.153 | 20,175 | 0.734 |
GWO | 0 | 0 | ±0.996 | 20,000 | 0.234 | 0 | 0 | ±0.9112 | 20,000 | 0.219 | 0 | 0 | ±2.00 × 10−2 | 20,000 | 0.984 |
f10 (D = 30) | f11 (D = 25) | f12 (D = 25) | |||||||||||||
Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | |
BA | 117.4 | 117.4 | ±34.98 | 20,000 | 0.234 | 6.44 × 10−11 | 6.45 × 10−11 | ±4.50 × 102 | 20,000 | 0.281 | 40.45 | 69.48 | ±22.80 | 20,000 | 0.219 |
CS | 33.28 | 48.59 | ±44.13 | 20,000 | 0.328 | 0 | 0 | ±8.80 × 102 | 20,000 | 0.391 | 7.844 | 31.57 | ±5.41 × 107 | 20,000 | 0.313 |
FFA | 21.89 | 24.42 | ±53.68 | 20,000 | 1.234 | 4.59 × 10−14 | 2.43 × 10−9 | ±7.10 × 103 | 20,000 | 1.203 | 0.7202 | 3.704 | ±1.05 × 105 | 20,000 | 1.125 |
FPA | 62.22 | 94.78 | ±50.91 | 20,000 | 0.297 | 2.42 × 10−28 | 8.57 × 10−19 | ±2.61 × 102 | 20,000 | 0.359 | 15.71 | 40.18 | ±1.26 × 105 | 20,000 | 0.281 |
ABC | 1.93 × 10−9 | 2.249 | ±3937 | 19,700 | 0.161 | 3.71 × 10−5 | 3.71 × 10−5 | ±0.776 | 18,765 | 0.219 | 105.9 | 133.4 | ±2.52 × 107 | 16,742 | 0.166 |
GWO | 0 | 0 | ±33.09 | 20,000 | 0.291 | 1.10 × 10−6 | 1.11 × 10−6 | ±7.90 × 102 | 20,000 | 0.217 | 3.85 × 10−38 | 2.20 × 10−18 | ±2.31 × 107 | 20,000 | 0.154 |
f13 (D = 25) | f14 (D = 25) | f15 (D = 25) | |||||||||||||
Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | Min | Median | SD | NFE | CPU | |
BA | 286.64 | 12,600 | ±1.15 × 104 | 20,000 | 0.219 | 49000 | 51900 | ±1.68 × 104 | 20,000 | 0.344 | 8.881 | 23.88 | ±10.29 | 20,000 | 0.221 |
CS | 4.9342 | 80.59 | ±3.84 × 104 | 20,000 | 0.297 | 0.9062 | 460.3 | ±4.34 × 105 | 20,000 | 0.469 | 2.05 × 10−5 | 0.226 | ±15.44 | 20,000 | 0.313 |
FFA | 1.2766 | 1.095 | ±3.45 × 104 | 20,000 | 1.094 | 3.91 × 10−2 | 248.9 | ±3.79 × 105 | 20,000 | 1.734 | 7.86 × 10−7 | 3.30 × 10−3 | ±11.21 | 20,000 | 1.188 |
FPA | 52.5473 | 314.1 | ±4.57 × 104 | 20,000 | 0.281 | 7490 | 47800 | ±6.07 × 105 | 20,000 | 0.406 | 2.977 | 6.616 | ±18.71 | 20,000 | 0.313 |
ABC | 9.84 × 10−4 | 3.10 × 10−3 | ±1.53 × 103 | 18,900 | 0.188 | 2.14 × 10−12 | 1.20 × 10−3 | ±4.98 × 105 | 19,150 | 0.25 | 1.436 × 10−15 | 1.3 × 10−6 | ±19.96 | 19,406 | 0.256 |
GWO | 0.6666 | 2.70 × 10−3 | ±1.10 × 103 | 20,000 | 0.172 | 0 | 5.05 × 10−45 | ±2.41 × 105 | 20,000 | 0.234 | 0.1418 | 0.1804 | ±6.38 | 20,000 | 0.188 |
Methods | Prob. | Analytical | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
f* | x1 | x2 | x3 | x4 | x5 | x6 | x7 | Obtained f* | NFE | CPU Time | ||
BA | TSD | 0.012665 | 0.05123 | 0.34582 | 13.5571 | - | 0.013242 | 20,000 | 0.6078 | |||
WBD | 1.738522 | 0.31623 | 5.5111 | 6.4044 | 0.49061 | - | - | -- | 1.8268 | 20,000 | 6.6091 | |
PVD | 6059.71433 | 1.04938 | 0.51773 | 49.5176 | 187.5231 | - | - | - | 6190.4687 | 20,000 | 2.0781 | |
SRD | 2996.34816 | 3.5 | 0.7 | 17 | 7.56 | 7.6892 | 3.5424 | 5.2458 | 3019.5833 | 20,000 | 4.0369 | |
CS | TSD | 0.012665 | 0.05178 | 0.359011 | 11.1579 | - | - | - | - | 0.01266 | 20,000 | 0.6875 |
WBD | 1.724852 | 0.20573 | 3.4705 | 9.0366 | 0.20573 | - | - | - | 1.7449 | 20,000 | 4.2563 | |
PVD | 6059.71433 | 0.77714 | 0.384442 | 40.44869 | 178.2513 | - | - | - | 6074.587 | 20,000 | 6.7438 | |
SRD | 2996.34816 | 3.5001 | 0.7032 | 17.1 | 7.4 | 7.80 | 3.46 | 5.27 | 3000.9597 | 20,000 | 3.0927 | |
FFA | TSD | 0.012665 | 0.052209 | 0.370468 | 10.821 | - | - | - | - | 0.012713 | 20,000 | 1.675 |
WBD | 1.727852 | 0.19588 | 3.7176 | 9.0367 | 0.20573 | - | - | - | 1.7291 | 20,000 | 9.2266 | |
PVD | 6059.71433 | 0.902631 | 0.445717 | 46.92328 | 177.7547 | - | - | - | 6026.3068 | 20,000 | 6.225 | |
SRD | 2996.34816 | 3.5 | 0.7 | 17 | 7.31 | 7.820 | 3.351 | 5.327 | 2996.3478 | 20,000 | 7.771 | |
FPA | TSD | 0.012665 | 0.051643 | 0.35558 | 11.3619 | - | - | - | - | 0.012669 | 20,000 | 0.4843 |
WBD | 1.724852 | 0.20573 | 3.4705 | 9.0366 | 0.20573 | - | - | - | 1.7568 | 20,000 | 8.5938 | |
PVD | 6059.71433 | 0.77447 | 0.38323 | 40.32289 | 179.959 | - | - | - | 5990.4928 | 20,000 | 4.5969 | |
SRD | 2996.34816 | 3.5 | 0.761 | 17.001 | 7.1 | 7.54 | 3.3521 | 5.3412 | 3019.5833 | 20,000 | 5.4109 | |
ABC | TSD | 0.012665 | 0.052855 | 0.37997 | 10.1552 | - | - | - | - | 0.012657 | 16,092 | 0.3796 |
WBD | 1.729852 | 0.20866 | 3.3293 | 8.9139 | 0.20453 | - | - | - | 1.7251 | 17,145 | 6.8906 | |
PVD | 6059.71433 | 0.84036 | 0.426735 | 42.56989 | 176.4665 | - | - | - | 6059.037 | 16,200 | 3.6609 | |
SRD | 2996.34816 | 3.512 | 0.7 | 17 | 7.3 | 7.8 | 3.3502 | 5.2866 | 2996.3088 | 18,700 | 3.2701 | |
GWO | TSD | 0.012665 | 0.051149 | 0.305127 | 10.7273 | - | - | - | - | 0.012665 | 20,000 | 0.2031 |
WBD | 1.724852 | 0.20431 | 3.5018 | 9.0378 | 0.20576 | - | - | - | 1.7266 | 20,000 | 6.5938 | |
PVD | 6059.71433 | 0.8125 | 0.434511 | 42.0891 | 176.7587 | - | - | - | 6059.7639 | 20,000 | 3.2563 | |
SRD | 2996.34816 | 3.46427 | 0.7129 | 17.1001 | 7.25581 | 7.18738 | 3.2359 | 5.7814 | 3005.6092 | 20,000 | 4.9021 |
Variable | Description | Min. | Max. |
---|---|---|---|
HI | Central cylinder draft | 2 m | 150 m |
RI | Central cylinder radius | 3 m | 25 m |
TI | Top tapper ratio | 0.2 | 2 |
XM | Mooring System | 0.2 | 2 |
Methods | f* Min | NFE | CPU Time |
---|---|---|---|
BA | 5,533,111.9378 | 1000 | 121.1719 |
CSA | 4,426,006.2921 | 1000 | 123.5938 |
FFA | 4,811,655.8121 | 1000 | 131.8125 |
FPA | 4,727,085.732 | 1000 | 132.875 |
ABC | 3,817,499.5279 | 951 | 119.2969 |
GWO | 4,395,036.2793 | 1000 | 123.5313 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, A.E.H.; Dong, Z.; Karimi, M. A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design. Algorithms 2017, 10, 120. https://doi.org/10.3390/a10040120
Saad AEH, Dong Z, Karimi M. A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design. Algorithms. 2017; 10(4):120. https://doi.org/10.3390/a10040120
Chicago/Turabian StyleSaad, Abdulbaset El Hadi, Zuomin Dong, and Meysam Karimi. 2017. "A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design" Algorithms 10, no. 4: 120. https://doi.org/10.3390/a10040120