As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Artificial intelligence (AI) techniques can contribute to the early diagnosis of prostate cancer. Recently, there has been a sharp increase in the literature on AI techniques for prostate cancer diagnosis. This review article presents a summary of the AI methods that detect and diagnose prostate cancer using different medical imaging modalities. Following the PRISMA-ScR principle, this review covers 69 studies selected from 1441 searched papers published in the last three years. The application of AI methods reported in these articles can be divided into three broad categories: diagnosis, grading, and segmentation of tissues that have prostate cancer. Most of the AI methods leveraged convolutional neural networks (CNNs) due to their ability to extract complex features. Some studies also reported traditional machine learning methods, such as support vector machines (SVM), decision trees for classification, LASSO, and Ridge regression methods for features extraction. We believe that the implementation of AI-based tools will support clinicians to provide better diagnosis plans for prostate cancer.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.