[go: up one dir, main page]

Skip to main content
Log in

Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the stator dimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabricated and tested on the experimental platform. The analytical design results are validated by measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, L., Barcaro, M., Pré, M.D., et al., 2010. IPM machine drive design and tests for an integrated starter-alternator application. IEEE Trans. Ind. Appl., 46(3):993–1001. [doi:10.1109/TIA.2010.2045323]

    Article  Google Scholar 

  • Alberti, L., Bianchi, N., Bolognani, S., 2011. Variable-speed induction machine performance computed using finiteelement. IEEE Trans. Ind. Appl., 47(2):789–797. [doi:10. 1109/TIA.2010.2103914]

    Article  Google Scholar 

  • Bianchi, N., Bolognani, S., Frare, P., 2006. Design criteria for high-efficiency SPM synchronous motors. IEEE Trans. Energy Conv., 21(2):396–404. [doi:10.1109/TEC. 2005.853720]

    Article  Google Scholar 

  • Boglietti, A., Cavagnino, A., Lazzari, M., et al., 2003. Predicting iron losses in soft magnetic materials with arbitrary voltage supply: an engineering approach. IEEE Trans. Magn., 39(2):981–989. [doi:10.1109/TMAG.2003. 808599]

    Article  Google Scholar 

  • Cassimere, B.N., Sudhoff, S.D., Sudhoff, D.H., 2009. Analytical design model for surface-mounted permanent-magnet synchronous machines. IEEE Trans. Energy Conv., 24(2):347–357. [doi:10.1109/TEC.2009.2016139]

    Article  Google Scholar 

  • Chan, C.C., 2002. The state of the art of electric and hybrid vehicles. Proc. IEEE, 90(2):247–275. [doi:10.1109/5. 989873]

    Article  Google Scholar 

  • Chau, K.T., Chan, C.C., Liu, C., 2008. Overview of permanentmagnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron., 55(6):2246–2257. [doi:10.1109/TIE.2008.918403]

    Article  Google Scholar 

  • Comanescu, M., Keyhani, A., Dai, M., 2003. Design and analysis of 42-V permanent-magnet generator for automotive applications. IEEE Trans. Energy Conv., 18(1): 107–112. [doi:10.1109/TEC.2002.808380]

    Article  Google Scholar 

  • Dorrel, D.G., Knight, A.M., Popescu, M., 2011. Performance improvement in high-performance brushless rare-earth magnet motors for hybrid vehicles by use of high fluxdensity steel. IEEE Trans. Magn., 47(10):3016–3019. [doi:10.1109/TMAG.2011.2157103]

    Article  Google Scholar 

  • El-Refaie, A.M., 2010. Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges. IEEE Trans. Ind. Electron., 57(1): 107–121. [doi:10.1109/TIE.2009.2030211]

    Article  Google Scholar 

  • El-Refaie, A., Jahns, T.M., Mc Cleer, P.J., et al., 2006. Experimental verification of optimal flux weakening in surface PM machines using concentrated windings. IEEE Trans. Ind. Appl., 42(2):443–453. [doi:10.1109/TIA.2006. 870043]

    Article  Google Scholar 

  • Eriksson, S., Bernhoff, H., 2011. Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power. Appl. Energy, 88(1):265–271. [doi:10.1016/japenergy.2010.06.010]

    Article  Google Scholar 

  • Kim, S., Park, S., Park, T., et al., 2014. Investigation and experimental verification of a novel spoke-type ferritemagnet motor for electric-vehicle traction drive applications. IEEE Trans. Ind. Electron., 61(10):5763–5770. [doi:10.1109/TIE.2014.2304697]

    Article  Google Scholar 

  • Laskaris, K.I., Kladas, A.G., 2010. Internal permanent magnet motor design for electric vehicle drive. IEEE Trans. Ind. Electron., 57(1):138–145. [doi:10.1109/TIE.2009. 2033086]

    Article  Google Scholar 

  • Markovic, M., Perriard, Y., 2009. Optimization design of a segmented Halbach permanent-magnet motor using an analytical model. IEEE Trans. Magn., 45(7):2955–2960. [doi:10.1109/TMAG.2009.2015571]

    Article  Google Scholar 

  • Morimoto, S., Ooi, S., Inoue, Y., et al., 2014. Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications. IEEE Trans. Ind. Electron., 61(10):5749–5756, [doi:10.1109/TIE.2013. 2289856]

    Article  Google Scholar 

  • Mutoh, N., 2012. Driving and braking torque distribution methods for front-and rear-wheel-independent drive-type electric vehicles on roads with low friction coefficient. IEEE Trans. Ind. Electron., 59(10):3919–3933. [doi:10. 1109/TIE.2012.2186772]

    Article  MathSciNet  Google Scholar 

  • Nerg, J., Rilla, M., Ruuskanen, V., et al., 2014. Direct-driven interior magnet permanent-magnet synchronous motors for a full electric sports car. IEEE Trans. Ind. Electron., 61(8):4286–4294. [doi:10.1109/TIE.2013.2248340]

    Article  Google Scholar 

  • Pellegrino, G., Vagati, A., Boazzo, B., et al., 2012a. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Trans. Ind. Appl., 48(6):2322–2332. [doi:10.1109/TIA.2012.2227092]

    Article  Google Scholar 

  • Pellegrino, G., Vagati, A., Guglielmi, P., et al., 2012b. Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application. IEEE Trans. Ind. Electron., 59(2):803–811. [doi:10.1109/ TIE.2011.2151825]

    Article  Google Scholar 

  • Phi, H.N., Hoang, E., Gabsi, M., 2011. Performance synthesis of permanent-magnet synchronous machines during the driving cycle of a hybrid electric vehicle. IEEE Trans. Veh. Technol., 60(5):1991–1998. [doi:10.1109/TVT.2011. 2118776]

    Article  Google Scholar 

  • Reddy, P.B., El-Refaie, A.M., Huh, K.K., et al., 2012. Comparison of interior and surface PM machines equipped with fractional-slot concentrated windings for hybrid traction applications. IEEE Trans. Energy Conv., 27(3):593–602. [doi:10.1109/TEC.2012.2195316]

    Article  Google Scholar 

  • Sizov, G.Y., Ionel, D.M., Demerdash, N.A.O., 2012. Modeling and parametric design of permanent-magnet AC machines using computationally efficient finite-element analysis. IEEE Trans. Ind. Electron., 59(6):2403–2413. [doi:10.1109/TIE.2011.2163912]

    Article  Google Scholar 

  • Vaez-Zadeh, S., Ghasemi, A.R., 2005. Design optimization of permanent magnet synchronous motors for high torque capability and low magnet volume. Electr. Power Syst. Res., 74(2):307–313. [doi:10.1016/jepsr.2004.11.008]

    Article  Google Scholar 

  • Wang, A., Jia, Y., Soong, W.L., 2011. Comparison of five topologies for an interior permanent-magnet machine for a hybrid electric vehicle. IEEE Trans. Magn., 47(10): 3606–3609. [doi:10.1109/TMAG.2011.2157097]

    Article  Google Scholar 

  • Wang, D.Y., Guan, C., 2013. Optimal control for a parallel hybrid hydraulic excavator using particle swarm optimization. Sci. World J., 2013:831564.1–831564.6. [doi:10. 1155/2013/831564]

    Google Scholar 

  • Wang, T., Wang, Q.F., 2012. Optimization design of permanent magnet synchronous generator for a potential energy recovery system. IEEE Trans. Energy Conv., 27(4):856–863. [doi:10.1109/TEC.2012.2211080]

    Article  Google Scholar 

  • Xiao, Q., Wang, Q.F., Zhang, Y.T., 2008. Control strategies of power system in hybrid hydraulic excavator. Autom. Constr., 17(4):361–367. [doi:10.1016/jautcon.2007.05. 014]

    Article  MathSciNet  Google Scholar 

  • Zhu, Z.Q., Howe, D., 2007. Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE, 95(4):746–765. [doi:10.1109/JPROC.2006.892482]

    Article  Google Scholar 

  • Zhu, Z.Q., Wu, L.J., Xia, Z.P., 2010. An accurate subdomain model for magnetic field computation in slotted surfacemounted permanent-magnet machines. IEEE Trans. Magn., 46(4):1100–1115. [doi:10.1109/TMAG.2009. 2038153]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-huai Chen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51475414 and 51221004)

ORCID: Qi-huai CHEN, http://orcid.org/0000-0003-1496-1366

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Qh., Wang, Qf. & Wang, T. Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator. Frontiers Inf Technol Electronic Eng 16, 957–968 (2015). https://doi.org/10.1631/FITEE.1500056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500056

Key words

CLC number

Navigation