[go: up one dir, main page]

  • Open Access

Search for neutrino emission from cores of active galactic nuclei

R. Abbasi et al. (IceCube Collaboration)
Phys. Rev. D 106, 022005 – Published 22 July 2022

Abstract

The sources of the majority of the high-energy astrophysical neutrinos observed with the IceCube neutrino telescope at the South Pole are unknown. So far, only a flaring gamma-ray blazar was compellingly associated with the emission of high-energy neutrinos. However, several studies suggest that the neutrino emission from the gamma-ray blazar population only accounts for a small fraction of the total astrophysical neutrino flux. In this work we probe the production of high-energy neutrinos in the cores of active galactic nuclei (AGN), induced by accelerated cosmic rays in the accretion disk region. We present a likelihood analysis based on eight years of IceCube data, searching for a cumulative neutrino signal from three AGN samples created for this work. The neutrino emission is assumed to be proportional to the accretion disk luminosity estimated from the soft x-ray flux. Next to the observed soft x-ray flux, the objects for the three samples have been selected based on their radio emission and infrared color properties. For the largest sample in this search, an excess of high-energy neutrino events with respect to an isotropic background of atmospheric and astrophysical neutrinos is found, corresponding to a post-trial significance of 2.60σ. If interpreted as a genuine signal with the assumptions of a proportionality of x-ray and neutrino fluxes and a model for the subthreshold flux distribution, then this observation implies that at 100 TeV, 27%–100% of the observed neutrinos arise from particle acceleration in the core of AGN at 1σ confidence interval.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 22 November 2021
  • Accepted 8 June 2022

DOI:https://doi.org/10.1103/PhysRevD.106.022005

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 106, Iss. 2 — 15 July 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×