[go: up one dir, main page]

Skip to main content
  • Original Article
  • Published:

Differential photosynthetic and survival responses to soil drought in two evergreen Nothofagus species

Différence de réponse de la photosynthèse et de la survie en situation de sécheresse édaphique dans deux espéces à feuilles persistantes de Nothofagus

Abstract

We asked if differences in distribution between Nothofagus nitida and N. dombeyi were associated with differences in drought tolerance. Survival, gas exchange and chlorophyll fluorescence were measured on seedlings subjected to a gradual drought. At a predawn leaf water potential (Ψm) of −2.7 MPa, survival of N. nitida was 50%, compared to 100% in N. dombeyi. Under well-watered conditions, the two species displayed similar stomatal conductance (g w ) and transpiration (E), but net photosynthesis (A) and instantaneous water-use efficiency (WUE i ) were slightly higher in N. nitida. A, E and g w declined in N. nitida along the gradual drought but increased in N. dombeyi at a Ψm between −1.5 and −2.5 MPa, and declined then drastically at a Ψm below < −2.5 MPa. As N. dombeyi was able to maintain A at higher levels despite declining g w , this species displayed significantly increased WUE i at Ψm below −2.5 MPa. Photochemical efficiency of PSII in the light (ΔF/Fmr) and photochemical quenching (qP) were always lower in N. nitida and along with the photochemical efficiency in the dark (Fv/Fm) they declined in both species. Non-photochemical quenching (NPQ) increased slowly in N. dombeyi along with the gradual drought, whilst it decreased in N. nitida. These results show that differences in drought tolerance are in agreement with sorting of Nothofagus species along moisture gradients in south-central Chile.

Résumé

Nous nous sommes demandés si des différences de distribution entre Nothofagus nitida et N. dombeyi sont associées à des différences de tolérance à la sécheresse. La survie, les échanges gazeux et la fluorescence de la chlorophylle ont été mesurés sur de jeunes plants soumis à une sécheresse croissante. Lorsque le potentiel hydrique de base (Ψm) atteignait −2.7 MPa la survie était de 50 et de 100 % pour N. nitida, et N. dombeyi, respectivement. Dans des conditions d’alimentation hydrique suffisante, les deux espèces ont présenté des valeurs voisines de conductance stomatique (g w ) et de transpiration (E) mais la photosynthèse nette (A) et l’effitience instantanée d’utilisation de l’eau (WUE i ) étaient légèrement plus élevées pour N. nitida. A, E et g w ont diminué pour N. nitida au cours d’une sécheresse croissante mais ont légèrement augmenté pour N. dombeyi pour des valeurs de Ψm comprises entre −1.5 et −2.5 MPa, puis diminué fortement à des valeurs de Ψm inférieures à −2.5 MPa. Par conséquent, N. dombeyi a présenté des valeurs de WUE i plus élevée que N. nitida à des niveaux de Ψm inferieurs à −2.5 MPa. L’effitience photochimique du PSII à la lumière (ΔF/F m ) et le quenching photochimique (qp) étaient toujours inférieurs pour N. nitida. L’effitience photochimique à l’obscurité (F v /F m ) ainsi que ΔFjFm ont diminué dans les deux espèces. Le quenching non-photochimique (NPQ) a légèrement augmenté pour N. dombeyi avec la sécheresse, alors qu’il diminuait pour N. nitida. Ces résultats montrent que des différences de tolérance à la sécheresse correspondent à la distribution d’espèces de Nothofagus le long de gradients d’humidité dans le centre sud du Chili.

References

  1. Almeyda E., Sáez F., Recopilación de datos climáticos de Chile y Mapas Sinópticos respectivos, Ministerio de Agricultura, Santiago, 1958.

    Google Scholar 

  2. Brodribb T., Hill R.S., The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall, Funct. Ecol. 12 (1998) 465–471.

    Article  Google Scholar 

  3. Demmig-Adams B., Adam W.W. III, Photoprotection and other responses of plants to high light stress, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43 (1992) 599–626.

    Article  CAS  Google Scholar 

  4. Donoso C., Ecología Forestal: el bosque y su medioambiente. Editorial Universitaria, Santiago, 3a edición, 1981.

    Google Scholar 

  5. Dudley S.A., Differing selection on plant physiological traits in response to environmental water availability: a test of adaptive hypotheses, Evolution 50 (1996) 92–102.

    Article  Google Scholar 

  6. Escalona J.M., Flexas J. Medrano H., Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines, Aust. J. Plant Physiol. 26 (1999) 421–433.

    Article  Google Scholar 

  7. Genty B., Briantais J.M., Baker N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochem. Biophys. Acta 990 (1989) 87–92.

    CAS  Google Scholar 

  8. Guehl J.M., Bonal D., Ferhi A., Barigah T.S., Farquhar G., Granier A., Community-level diversity of carbon-water relations in rainforest trees, in: Gourlet-Fleury S., Guehl J.M., Laroussinie O. (Eds.), Ecology and management of a neotropical rainforest, Elsevier SAS, 2004, pp. 75–94.

  9. Körner Ch., Diemer M., In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude, Funct. Ecol. 1 (1987) 179–194.

    Article  Google Scholar 

  10. Lambers H., Chapin F.S. III, Pons L., Plant physiological ecology, Springer-Verlag, New York, 1998.

    Google Scholar 

  11. Lambs L., Loubiat M., Girel J., Tissier J., Peltier J.P., Marigo G., Survival and acclimatation of Populus nigra to drier conditions after damming of an alpine river, southeast France, Ann. For. Sci. 63 (2006) 377–385.

    Article  Google Scholar 

  12. Lauteri M., Scartazza A., Guido C., Brugnoli E., Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments, Funct. Ecol. 11 (1997) 675–683.

    Article  Google Scholar 

  13. Lusk C.H., Kelly C.K., Interespecific variation in seed size and safe sites in a temperate rain forest, New Phytol. 158 (2003) 535–541.

    Article  Google Scholar 

  14. Maxwell K., Johnson G.N., Chlorophyll fluorescence — a practical guide, J. Exp. Bot. 51 (2000) 659–668.

    Article  PubMed  CAS  Google Scholar 

  15. McQueen D.R., The ecology of Nothofagus and associated vegetation in South America, Tuatara 22 (1977) 233–244.

    Google Scholar 

  16. Ngugi M.R., Hunt M.A., Doley D., Ryan P., Dart P.J., Effects of soil water availability on water use efficiency of Eucalyptus cloeziana and Eucalyptus argophloia plants, Aust. J. Bot. 51 (2003) 159–166.

    Article  Google Scholar 

  17. Ogaya R., Peñuelas J., Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions, Environ. Exp. Bot. 50 (2003) 137–148.

    Article  Google Scholar 

  18. Read J., Farquhar G., Comparative studies in Nothofagus (Fagaceae). I. Leaf carbon isotope discrimination, Funct. Ecol. 5 (1991) 684–695.

    Article  Google Scholar 

  19. Read J., Hill R.S., Photosynthetic responses to light of Australian and Chilean species of Nothofagus and their relevance to the rain forest dynamics, New Phytol. 101 (1985) 731–743.

    Article  Google Scholar 

  20. Schulze E.D., Robichaux R.H., Grace J., Rundel P.W., Ehleringer J.R., Plant water balance, BioScience 37 (1987) 30–37.

    Article  Google Scholar 

  21. Schreiber U., Bilger W., Neubauer C., Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis, in: Schulze E.D., Caldwell M.M. (Eds.), Ecophysiology of Photosynthesis, Berlin, Heidelberg, New York, Springer-Verlag, 1995, pp. 49–69.

    Google Scholar 

  22. Sokal R.R., Rohlf F.J., Biometry: the principles and practice of statistics in biological research, 3rd edition, W.H. Freeman, New York, 1995.

    Google Scholar 

  23. Sparks J.P., Ehleringer J.R., Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects, Oecologia 109 (1997) 362–367.

    Article  Google Scholar 

  24. Sultan S.E., Wilczek A.M., Bell D.L., Hand G., Physiological response to complex environments in annual Polygonum species of contrasting ecological breadth, Oecologia 115 (1998) 564–578.

    Article  Google Scholar 

  25. Valladares F., Dobarro I., Sanchez-Gomez D., Pearcy R.W., Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes, J. Exp. Bot. 56 (2005) 483–494.

    Article  PubMed  CAS  Google Scholar 

  26. Veblen T.T., Donoso C., Kitzberger T., Rebertus A.J., Ecology of Southern Chilean and Argentinian Nothofagus forests, in: Veblen T.T., Hill R.S., Read J. (Eds.), The ecology and biogeography of Nothofagus forests, Yale University Press, New Haven, 1996, pp. 293–353.

    Google Scholar 

  27. Veblen T.T., Schlegel F.M., Reseña ecológica de los bosques del sur de Chile, Bosque 2 (1982) 73–115.

    Google Scholar 

  28. Weinberger P., The regeneration of the Araucano-patagonic Nothofagus species in relation to microclimatic conditions, Tuatara 22 (1973) 233–244.

    Google Scholar 

  29. Yin Ch., Peng Y., Zang R., Zhu Y., Li Ch., Adaptative responses of Populus kangdingensis to drought stress, Physiol. Plant. 123 (2005) 445–451.

    Article  CAS  Google Scholar 

  30. Zhang J.W., Feng Z., Cregg B.M., Schumann C.M., Carbon isotopic composition, gas exchange, and growth populations of ponderosa pine differing in drought tolerance, Tree Physiol. 17 (1997) 461–466.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frida I. Piper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piper, F.I., Corcuera, L.J., Alberdi, M. et al. Differential photosynthetic and survival responses to soil drought in two evergreen Nothofagus species. Ann. For. Sci. 64, 447–452 (2007). https://doi.org/10.1051/forest:2007022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007022