Abstract
A key to solving the discrepancies of deterministic and static assembly sequences at manual work places is seen in situation-oriented and cognitive methodologies in assembly. These provide means for efficient and ergonomically feasible worker guidance. An accurate and detailed technique of adjusting the instructional content is seen as a prerequisite. In this context the authors present factors for a multi-dimensional measurement of the degree of detail and complexity of manual assembly tasks. It extends the concept and application of common systems of predetermined times. It includes dimensions of actual human performance and attention allocation, as well as learning effects based on the product and its reference levels. It is assumed that identifying global attributes that contribute to assembly difficulty will provide means for predicting assembly complexity more effectively.
Similar content being viewed by others
References
Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing–classification, design and operation. Ann CIRP 56(2):783–809
Zäh MF, Beetz M, Shea K, Reinhart G, Bender K, Lau C, Ostgathe M, Vogl W, Wiesbeck M, Engelhard M, Ertelt C, Ruehr T, Friedrich M, Herle S (2009) The cognitive factory. In: ElMaraghy HA (ed) Changeable and reconfigurable manufacturing systems. London, Springer
ElMaraghy WH, Urbanic RJ (2004) Assessment of manufacturing operational complexity. Ann CIRP 53(1):401–406
Jensen PL, Alting L (2006) Human factors in the management of production. Ann CIRP 55(1):457–460
Reinhart G, Patron C (2003) Integrating augmented reality in the assembly domain–fundamentals, benefits and applications. Ann CIRP 52(1):5–8
Zaeh M, Prasch M (2007) Systematic workplace and assembly redesign for aging workforces. J Prod Eng 1(1):57–64
Kjellberg A, Abestam L (1997) Human factor framework for analysis of an assembly work. Ann CIRP 46(1):377–380
Zäh M, Wiesbeck M, Wallhoff F, Stork S, Engstler F, Bannat A, Schubö A, Friesdorf F (2007) Kognitive Assistenzsysteme in der manuellen Montage. Wt Werkstattstechnik online, 97(9):644–650
Dopping-Hepenstal LL (1981) Head-up displays: the integrity of flight information. IEE Proc-F Commun Radar Signal Process 128(7):440–442
Yeh M, Wickens CD (2000) Attention and trust biases in the design of augmented reality displays. Technical report. Chicago, Aviation research lab of the University of Illinois
Zaeh MF, Wiesbeck M, Stork S, Schubö A (2009) Factors for a task-induced complexity measure for manual assembly operations. 3rd international conference on changeable, agile, reconfigurable and virtual production (CARV 2009), Munich, Germany, 2009
Picker C (2007) Prospektive Zeitbestimmung für nicht wertschöpfende Montagetätigkeiten, Aachen, Shaker
Hinckley M (1993) A global conformance quality model—a new strategic tool for minimizing defects caused by variation, error and complexity. Stanford University, Stanford
Beiter KA, Cheldelin B, Ishii K (2000) Assembly quality method: a tool in aid of product strategy, design and process improvements.In: ASME design engineering technical conference, Baltimore
Shibata H, Cheldelin B, Ishii K (2003) Assembly quality method: integrating design for assembly cost-effectiveness (DAC) to improve defect prediction. In: ASME design engineering technical conference, Chicago
Kim YH (1999) A system complexity approach for the integration of product development and production system design. Massachusetts Institute of Technology, Cambridge
Kief L (2002) Eine Methode zur Ermittlung statistisch abgesicherter Montagezeiten im Produktentwicklungsprozess. Verlag Praxiswissen, Dortmund
Westkämper E, Sautter K, Meyer R (1998) Eine Empirische Untersuchung zum Methodeneinsatz in Produzierenden Unternehmen. Fachtagung “Mehr Erfolg durch professionellen Methodeneinsatz”. Fraunhofer IRB, Darmstadt
Papenfuß R, Theis K-D (1988) Die WORK-FACTOR-Verfahren. Angewandte Arbeitswissenschaft 117:3–18
Boothroyd G, Alting L (1992) Design for assembly and disassembly. Ann CIRP 41(2):625–636
Miyakawa S, Ohashi T (1986) The Hitachi assembly evaluation method (AEM). In: International conference on product design for assembly, Newport, Rhode Island
Bokranz R, Landau K (2006) Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, Stuttgart
Wickens CD (2002) Multiple resources and performance prediction. Theor Issues Ergon Sci 32:159–177
Stoessel C, Wiesbeck M, Stork S, Zaeh MF, Schuboe A (2008) Towards optimal worker assistance: investigating cognitive processes in manual assembly. In: Mitsuishi M, Ueda K, Kimura F (Eds.) The 41st CIRP conference on manufacturing systems. Springer, Tokyo, Japan
Stork S, Stobel C, Müller H, Wiesbeck M, Schubö A (2007) A neuroergonomic approach for the investigation of cognitive processes in interactive assembly environments.In: 16th IEEE international symposium on robot and human interactive communication 2007 (IEEE RO-MAN 2007)
Norman DA, Bobrow DG (1975) On data-limited and resource-limited processing. Cogn Psychol 74:4–64
Müller HJ, Krummenacher J (2002) Aufmerksamkeit. In: Müsseler J, Prinz W (eds) Allgemeine Psychologie. Elsevier, Heidelberg
Jayaram S, Connacher H, Lyons K (1997) Virtual assembly using virtual reality techniques. Comput Aided Des 29(88):575–584
Gupta R, Whitney D, Zeltzer D (1997) Prototyping and design for assembly analysis using multimodal virtual environments. Comput Aided Des 29(88):585–597
Carpenter ID, Dewer RG, Richie JM, Simmons JEL (1996) Enhancing a virtual environment for manual assembly. In: 12th international conference on CAD/CAM robotics and factories of the future
Homem de Mello LS, Sanderson AC (1991) Representations of mechanical assembly sequences. IEEE Trans Rob Autom 7(2):211–227
Sanderson AC, Zhang H, Homem de Mello LS (1989) Assembly sequence planning. Manuscript prepared for AI Magazine: special issue on assembly planning, Vol 33
Lee S (1992) Backward assembly planning with assembly cost analysis. In: Proceedings of 1992 IEEE international conference on robotics and automation. Nice
Homem de Mello LS, Sanderson AC (1991) A correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Trans Rob Autom 7(2):228–240
Gu T, Xu Z, Yang Z (2008) Symbolic OBDD representations for mechanical assembly sequences. Comput Aided Des 40(4):411–421
Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K (2005) Three-dimensional shape searching: state-of-the-art review and future trends. Comput Aided Des 37(5):509–530
Dmitriy B, Cheuk Yiu I, William CR, Joshua S (2005) Benchmarking CAD search techniques. In: Proceedings of the 2005 ACM Symp on solid and physical modeling. Cambridge, Massachusetts
Stork S, Stössel C, Schubö A (2008) The influence of instruction mode on reaching movements during manual assembly. USAB 2008—Usability—HCI for education and work, lecture notes in computer science LNCS, Austria, Graz
Stork S, Stössel C, Schubö A (2008) Optimizing Human–Machine Interaction in Manual Assembly. In: Proceedings of 17th IEEE international conference on robot and human interactive communication (RO-MAN)
Acknowledgments
The present research is conducted within the Cluster of Excellence CoTeSys—Cognition for Technical Systems in Munich, Germany. It aims for a considerable utilization and establishment of cognitive capabilities in technical systems.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zaeh, M.F., Wiesbeck, M., Stork, S. et al. A multi-dimensional measure for determining the complexity of manual assembly operations. Prod. Eng. Res. Devel. 3, 489 (2009). https://doi.org/10.1007/s11740-009-0171-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11740-009-0171-3