Abstract
The μ-calculus is one of the most important logics describing specifications of transition systems. It has been extensively explored for formal verification in model checking due to its exceptional balance between expressiveness and algorithmic properties. From the perspective of systems/knowledge evolving, one may want to discard some atoms (elements) that become irrelevant or unnecessary in a specification; one may also need to know what makes something true, or the minimal condition under which something holds. This paper aims to address these scenarios for μ-calculus in terms of knowledge forgetting. In particular, it proposes a notion of forgetting based on a generalized bisimulation and explores the semantic and logical properties of forgetting, including some reasoning complexity results. It also shows that forgetting can be employed to perform knowledge update.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Code Availability
Not applicable.
Availability of data and materials
Not applicable.
Notes
Personal communication: Giovanna D’Agostino, 2020.
References
Emerson, E.A.: Model checking and the μ-calculus. In: Immerman, N., Kolaitis, P.G. (eds.) Descriptive Complexity and Finite Models, Proceedings of a DIMACS Workshop 1996, Princeton, New Jersey, USA, January 14-17, 1996. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. https://doi.org/10.1090/dimacs/031/06, vol. 31, pp 185–214 (1996)
Feng, R., Acar, E., Schlobach, S., Wang, Y., Liu, W.: On sufficient and necessary conditions in bounded CTL: a forgetting approach. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pp. 361–370. https://doi.org/10.24963/kr.2020/37 (2020)
Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.360975
Lin, F., Reiter, R.: Forget it!. In: Proceedings of the AAAI Fall Symposium on Relevance, New Orleans, US, pp 154–159 (1994)
Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128(1-2), 143–159 (2001). https://doi.org/10.1016/S0004-3702(01)00070-4
Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003). https://doi.org/10.1613/jair.1113
Su, K., Lv, G., Zhang, Y.: Reasoning about knowledge by variable forgetting. In: Dubois, D., Welty, C.A., Williams, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), Whistler, Canada, June 2-5, 2004, pp. 576–586. http://www.aaai.org/Library/KR/2004/kr04-060.php (2004)
Baral, C., Zhang, Y.: Knowledge updates: Semantics and complexity issues. Artif. Intell. 164(1-2), 209–243 (2005). https://doi.org/10.1016/j.artint.2005.01.005
Zhang, Y., Zhou, Y.: Knowledge forgetting: Properties and applications. Artif. Intell. 173(16-17), 1525–1537 (2009). https://doi.org/10.1016/j.artint.2009.07.005
Fang, L., Liu, Y., Van Ditmarsch, H.: Forgetting in multi-agent modal logics. Artif. Intell. 266, 51–80 (2019)
Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-scale description logic terminologies. In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, pp. 830–835 (2009)
Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive description logics. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 989–995. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170(2011)
Zhao, Y., Schmidt, R.A., Wang, Y., Zhang, X., Feng, H.: A practical approach to forgetting in description logics with nominals. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3073–3079. https://aaai.org/ojs/index.php/AAAI/article/view/5702 (2020)
Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell. 172(14), 1644–1672 (2008). https://doi.org/10.1016/j.artint.2008.05.002
Wang, Y., Wang, K., Zhang, M.: Forgetting for answer set programs revisited. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pp. 1162–1168. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6807 (2013)
Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Knowledge forgetting in answer set programming. J. Artif. Intell. Res. 50, 31–70 (2014). https://doi.org/10.1613/jair.4297
Wang, Y., Wang, K., Wang, Z., Zhuang, Z.: Knowledge forgetting in circumscription: A preliminary report. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pp. 1649–1655. http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9866(2015)
Delgrande, J.P., Wang, K.: A syntax-independent approach to forgetting in disjunctive logic programs. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pp. 1482–1488. http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9555 (2015)
Gonçalves, R., Knorr, M., Leite, J., Woltran, S.: On the limits of forgetting in answer set programming. Artif. Intell. 286, 103307 (2020). https://doi.org/10.1016/j.artint.2020.103307
Maksimova, L.: Temporal logics of “the next” do not have the beth property. Journal of Applied Non-Classical Logics 1, 73–76 (1991)
Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1/2), 72–99 (1983). https://doi.org/10.1016/S0019-9958(83)80051-5
Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91). Cambridge, MA, USA, April 22-25, 1991, pp. 387–394 (1991)
Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259
Woodcock, J., Morgan, C.: Refinement of state-based concurrent systems. In: Bjørner, D., Hoare, C.A.R., Langmaack, H. (eds.) VDM ’90, VDM and Z - Formal Methods in Software Development, Third International Symposium of VDM Europe, Kiel, FRG, April 17-21, 1990, Proceedings. Lecture Notes in Computer Science, vol. 428, pp. 340–351. https://doi.org/10.1007/3-540-52513-0_18 (1990)
Legato, W.J.: A weakest precondition model for assembly language programs. April (2002)
Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288 (2005). https://doi.org/10.1016/j.ipl.2004.10.015
Dailler, S., Hauzar, D., Marché, C., Moy, Y.: Instrumenting a weakest precondition calculus for counterexample generation. J. Log. Algebraic Methods Program. 99, 97–113 (2018). https://doi.org/10.1016/j.jlamp.2018.05.003
Lin, F.: Compiling causal theories to successor state axioms and STRIPS-like systems. J. Artif. Intell. Res. 19, 279–314 (2003). https://doi.org/10.1613/jair.1135
Doherty, P., Lukaszewicz, W., Szalas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001, pp. 145–154 (2001)
Su, K., Sattar, A., Lv, G., Zhang, Y.: Variable forgetting in reasoning about knowledge. J. Artif. Intell. Res. 35, 677–716 (2009). https://doi.org/10.1613/jair.2750
Eiter, T.: Kern-isberner, G.: A brief survey on forgetting from a knowledge representation and reasoning perspective. Künstliche Intell. 33(1), 9–33 (2019). https://doi.org/10.1007/s13218-018-0564-6
Boole, G.: An Investigation of the Laws of Thought. (Reprinted by Dover Books, New York, 1954.) (1854)
Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematischen logik. Math. Ann. 110(1), 390–413 (1935)
Zhang, Y., Zhou, Y.: Forgetting revisited. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1292 (2010)
Gabbay, D.M., Schmidt, R.A., Szalas, A.: Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications. Studies in logic : Mathematical logic and foundations, vol 12. http://collegepublications.co.uk/logic/mlf/?00009 (2008)
Visser, A.: Uniform interpolation and layered bisimulation. In: Gödel’96: Logical Foundations of Mathematics, Computer Science and Physics—Kurt GöDel’s Legacy, Brno, Czech Republic, August 1996, Proceedings, pp. 139–164 (1996)
Zhang, Y., Zhou, Y.: Properties of knowledge forgetting. In: Pagnucco, M., Thielscher, M (eds.) Proceedings of the Twelfth International Workshop on Non-Monotonic Reasoning, pp 68–75. Sydney, Australia (2008)
Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in dl-lite. Ann. Math. Artif. Intell. 58(1-2), 117–151 (2010). https://doi.org/10.1007/s10472-010-9187-9
Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the lightweight description logic EL. J. Artif. Intell. Res. 44, 633–708 (2012). https://doi.org/10.1613/jair.3552
Zhao, Y., Schmidt, R.A.: Role forgetting for alcoqh(universal role)-ontologies using an ackermann-based approach. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 1354–1361. https://doi.org/10.24963/ijcai.2017/188 (2017)
Zhang, Y., Foo, N.Y.: Solving logic program conflict through strong and weak forgettings. Artif. Intell. 170(8-9), 739–778 (2006). https://doi.org/10.1016/j.artint.2006.02.002
Wong, K.-S.: Forgetting in Logic Programs. PhD thesis, The University of New South Wales (2009)
Delgrande, J.P.: A knowledge level account of forgetting. J. Artif. Intell. Res. 60, 1165–1213 (2017). https://doi.org/10.1613/jair.5530
Gonçalves, R., Knorr, M., Leite, J.: Forgetting in answer set programming - A survey. arXiv:abs/2107.07016 (2021)
D’Agostino, G., Hollenberg, M.: Uniform Interpolation, Automata and the Modal μ-Calculus. In: Kracht, M., De Rijke, M., Wansing, H., Zakharyaschev, M. (eds.) Advances in Modal Logic 1, Papers from the First Workshop on ”Advances in Modal Logic,” Held in Berlin, Germany, 8-10 October 1996, pp 73–84 (1996)
Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6
D’Agostino, G., Lenzi, G.: On modal mu-calculus with explicit interpolants. J. Appl. Log. 4(3), 256–278 (2006). https://doi.org/10.1016/j.jal.2005.06.008
Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results. In: Wiedermann, J., Hájek, P. (eds.) Mathematical Foundations of Computer Science 1995, 20th International Symposium, MFCS’95, Prague, Czech Republic, August 28 - September 1, 1995, Proceedings. Lecture Notes in Computer Science. https://doi.org/10.1007/3-540-60246-1_160, vol. 969, pp 552–562 (1995)
Bradfield, J.C., Walukiewicz, I.: The μ-calculus and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. https://doi.org/10.1007/978-3-319-10575-8_26, pp 871–919 (2018)
D’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus: Interpolation, lyndon and los-tarski. J. Symb. Log. 65(1), 310–332 (2000). https://doi.org/10.2307/2586539
Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. In: International Conference on Concurrency Theory, pp. 263–277. Springer (1996)
Wang, Y.: On forgetting in tractable propositional fragments. arXiv:abs/1502.02799 (2015)
Hubert, C., Max, D., Remi, G., Florent, J., Denis, L., Christof, L., Sophie, T., Marc, T.: Tree Automata Techniques and Applications. https://jacquema.gitlabpages.inria.fr/files/tata.pdf (1997)
Acknowledgments
We thank the reviewers for their insightful comments, with which the presentation of this paper was highly improved. This work was partially supported by the Natural Science Foundation of China under grants 61976065, U1836205 and 61370161. Yisong’s work was also partially supported by Guizhou Science Support Project (2022-259).
Funding
This work is funded by the National Natural Science Foundation of P.R. China under Grants 61976065 and U1836205.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation and analysis were performed by Renyan Feng and Yisong Wang. The first draft of the manuscript was written by Renyan Feng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval
We promise that our work is original, not submitted to more than one journal for simultaneous consideration, and has not been published elsewhere in any form or language (partially or in full).
Consent to participate
Yes.
Consent for Publication
Yes.
Conflict of Interests
The authors have no financial or proprietary interests in any material discussed in this article.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: Proofs in Section 3
Lemma 1 Let \({\mathcal M}=(S,r,R,L)\), \({\mathcal M}_{s} = (S,s, R, L)\), \(v:{\mathcal V} \rightarrow 2^{S}\), s ∈ S, and φ be a μ-formula. We have
-
(i)
for each s1 ∈ S, \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\) iff \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\);
-
(ii)
\(({\mathcal M},s,v) \models \varphi\) iff \(({\mathcal M}_{s},v)\models \varphi\).
Proof
-
(i)
- Base.:
-
-
(a)
φ = p with \(p \in \mathcal {A}\).
\(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇔ \(s_{1} \in \{s^{\prime } \mid p \in L(s^{\prime })\}\)
⇔ \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\).
-
(b)
φ = X with \(X\in {\mathcal V}\).
\(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇔ s1 ∈ v(X)
⇔ \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\).
-
(a)
- Step.:
-
-
(a)
φ = ¬φ1.
\(s_{1}\in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇔ \(s_{1} \not \in \left \|\varphi _{1}\right \|_{v}^{{\mathcal M}}\)
⇔ \(s_{1} \not \in \left \|\varphi _{1}\right \|_{v}^{{\mathcal M}_{s}}\) (induction hypothesis)
⇔ \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\).
-
(b)
φ = φ1 ∨ φ2.
\(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇔ \(s_{1} \in \left \|\varphi _{1}\right \|_{v}^{{\mathcal M}}\) or \(s_{1} \in \left \|\varphi _{2}\right \|_{v}^{{\mathcal M}}\)
⇔ \(s_{1} \in \left \|\varphi _{1}\right \|_{v}^{{\mathcal M}_{s}}\) or \(s_{1} \in \left \|\varphi _{2}\right \|_{v}^{{\mathcal M}_{s}}\) (induction hypothesis)
⇔ \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\).
-
(c)
φ = axφ1.
\(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇔ \(s_{1} \in \{s^{\prime } \mid \forall s^{\prime \prime }.(s^{\prime },s^{\prime \prime }) \in R \Rightarrow s^{\prime \prime }\in \left \|\varphi _{1}\right \|_{v}^{{\mathcal M}}\}\)
⇔ \(s_{1} \in \{s^{\prime } \mid \forall s^{\prime \prime }.(s^{\prime },s^{\prime \prime }) \in R \Rightarrow s^{\prime \prime }\in \left \|\varphi _{1}\right \|_{v}^{{\mathcal M}_{s}}\}\) (induction hypothesis)
⇔ \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\).
-
(d)
φ = νX.φ1.
\(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇔ \(s_{1}\in \bigcup \{S^{\prime } \subseteq S \mid S^{\prime } \subseteq \left \|\varphi _{1}\right \|_{v[X:=S^{\prime }]}^{{\mathcal M}}\}\)
⇔ There is some \(S^{\prime } \subseteq S\) s.t. \(s_{1} \in S^{\prime }\) and \(S^{\prime } \subseteq \left \|\varphi _{1}\right \|_{v[X:=S^{\prime }]}^{{\mathcal M}}\)
⇔ There is some \(S^{\prime } \subseteq S\) s.t. \(s_{1} \in S^{\prime }\) and \(S^{\prime } \subseteq \left \|\varphi _{1}\right \|_{v[X:=S^{\prime }]}^{{\mathcal M}_{s}}\) (induction hypothesis)
⇔ \(s_{1} \in \bigcup \{S^{\prime } \subseteq S \mid S^{\prime } \subseteq \left \|\varphi _{1}\right \|_{v[X:=S^{\prime }]}^{{\mathcal M}_{s}}\}\)
⇔ \(s_{1} \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\).
-
(a)
- (ii):
-
\(({\mathcal M},s,v) \models \varphi\)
⇔ \(s \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇔ \(s \in \left \|\varphi \right \|_{v}^{{\mathcal M}_{s}}\) (i)
⇔ \(({\mathcal M}_{s}, v) \models \varphi\).
□
Appendix B:: Proofs in Section 4
Proposition 1 Let \({\mathcal V}_{1}, {\mathcal V}_{2}\subseteq {\mathcal V}\), \(V, V_{1} \subseteq \mathcal {A}\), and \({\mathcal M}_{1}\), \({\mathcal M}_{2}\), and \({\mathcal M}_{3}\) be three Kripke structures. If v1, v2, and v3 are valuations of the variables in \({\mathcal V}\) to the states of \({\mathcal M}_{1}\), \({\mathcal M}_{2}\), and \({\mathcal M}_{3}\), respectively, then we have:
-
(i)
\(\leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle }\) is an equivalence relation between valuations;
-
(ii)
If \(({\mathcal M}_{1}, s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\), \({\mathcal V}_{1} \subseteq {\mathcal V}_{2}\), and \(V \subseteq V_{1}\), then \(({\mathcal M}_{1}, s_{1}, v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{2},V_{1}}\rangle } ({\mathcal M}_{2}, s_{2}, v_{2})\);
-
(iii)
if \(({\mathcal M}_{1}, s_{1}, v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{2},s_{2}, v_{2})\) and \(({\mathcal M}_{2},s_{2}, v_{2}) \leftrightarrow _{\langle {{\mathcal V}_{2},V_{1}}\rangle } ({\mathcal M}_{3},s_{3}, v_{3})\), then \(({\mathcal M}_{1},s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1} \cup {\mathcal V}_{2}, V \cup V_{1}}\rangle } ({\mathcal M}_{3},s_{3},v_{3})\).
Proof
Let \({\mathcal M}_{i} = (S_{i}, r_{i}, R_{i}, L_{i})\) be Kripke structures, and \(v_{i}: {\mathcal V} \rightarrow 2^{S_{i}}\) be valuations of the variables in \({\mathcal V}\) to the states of \({\mathcal M}_{i}\) (i = 1, 2, 3).
-
(i)
-
(a)
Reflexivity: It is easy to check that \(({\mathcal M},s, v)\leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M},s,v)\) for any valuation \(({\mathcal M},s,v)\).
-
(b)
Symmetry: We will show that for each \(({\mathcal M}_{1},s_{1}, v_{1})\) and \(({\mathcal M}_{2},s_{2},v_{2})\), if \(({\mathcal M}_{1},s_{1}, v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\) then \(({\mathcal M}_{2},s_{2}, v_{2}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{1},s_{1}, v_{1})\). Supposing \(({\mathcal M}_{1}, s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\) by the \({\langle {{\mathcal V}_{1},V}\rangle }\)-bisimulation \({\mathscr{B}}\), we construct a relation \({\mathscr{B}}_{1}\) as follows: \({\mathscr{B}}_{1}=\{(s,t) \mid (t, s)\in {\mathscr{B}}\text {with} t\in S_{1} \text {and} s\in S_{2}\}\). We can prove that \({\mathscr{B}}_{1}\) is a V-bisimulation between \({\mathcal M}_{2}\) and \({\mathcal M}_{1}\) from the following several points:
-
\((r_{2},r_{1}) \in {\mathscr{B}}_{1}\) since \((r_{1},r_{2}) \in {\mathscr{B}}\),
-
for each s ∈ S2 and t ∈ S1, if \((s,t) \in {\mathscr{B}}_{1}\), then we have \((t,s) \in {\mathscr{B}}\), and hence p ∈ L1(t) iff p ∈ L2(s) for each \(p \in \mathcal {A} - V\), and
-
the third and forth points in the definition of V-bisimulation can be checked easily for \({\mathscr{B}}_{1}\).
Moreover, for any \((t,s) \in {\mathscr{B}}\), we have s ∈ v1(X) iff t ∈ v2(X), for every \(X\in {\mathcal V}-{\mathcal V}_{1}\). Therefore, we have for any \((s,t) \in {\mathscr{B}}_{1}\), t ∈ v2(X) iff s ∈ v1(X) for every \(X \in {\mathcal V} -{\mathcal V}_{1}\). Hence, \(({\mathcal M}_{2},s_{2}, v_{2}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{1},s_{1}, v_{1})\) holds.
-
-
(c)
Transitivity: We will show that if \(({\mathcal M}_{1},s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\) and \(({\mathcal M}_{2},s_{2},v_{2}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{3},s_{3},v_{3})\), then \(({\mathcal M}_{1},s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{3},s_{3},v_{3})\). Supposing \(({\mathcal M}_{1},s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\) by the \({\langle {{\mathcal V}_{1},V}\rangle }\)-bisimulation \({\mathscr{B}}_{1}\) and \(({\mathcal M}_{2},s_{2},v_{2}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{3},s_{3},v_{3})\) by the \({\langle {{\mathcal V}_{1},V}\rangle }\)-bisimulation \({\mathscr{B}}_{2}\), we construct a relation \({\mathscr{B}}\) as follows: \({\mathscr{B}}=\{(s, z) \mid (s,t) \in {\mathscr{B}}_{1}\ \text {and}\ (t, z)\in {\mathscr{B}}_{2} \text {with} s\in S_{1}, t\in S_{2}, \text {and} z \in S_{3}\}\). We can also prove in a similar way to (b) that \({\mathscr{B}}\) is a V-bisimulation between \({\mathcal M}_{1}\) and \({\mathcal M}_{3}\). Therefore, \({\mathcal M}_{1} \leftrightarrow _{V} {\mathcal M}_{3}\).
Moreover, for any \((s,z) \in {\mathscr{B}}\), there exists t ∈ S2 s.t. \((s, t) \in {\mathscr{B}}_{1}\) and \((t,z)\in {\mathscr{B}}_{2}\), then we have s ∈ v1(X) iff t ∈ v2(X) iff z ∈ v3(X), for every \(X\in {\mathcal V}-{\mathcal V}_{1}\). Therefore, \(({\mathcal M}_{1},s_{1}, v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{3},s_{3}, v_{3})\) holds.
-
(a)
-
(ii)
Suppose that \({\mathscr{B}}_{V}\) is a \({\langle {{\mathcal V}_{1},V}\rangle }\)-bisimulation between \(({\mathcal M}_{1},s_{1},v_{1})\) and \(({\mathcal M}_{2},s_{2},v_{2})\). We will show that \({\mathscr{B}}_{V}\) is also a \({\langle {{\mathcal V}_{2},V_{1}}\rangle }\)-bisimulation between \(({\mathcal M}_{1},s_{1},v_{1})\) and \(({\mathcal M}_{2},s_{2},v_{2})\). It is obvious that:
-
\((r_{1}, r_{2}) \in {\mathscr{B}}_{V}\),
-
for each w1 ∈ S1 and w2 ∈ S2, if \((w_{1}, w_{2}) \in {\mathscr{B}}_{V}\) then p ∈ L1(w1) iff p ∈ L2(w2) for each \(p \in \mathcal {A} - V_{1}\) since p ∈ L1(w1) iff p ∈ L2(w2) for each \(p \in \mathcal {A} - V\) and \(V \subseteq V_{1}\),
-
if (w1,r1) ∈ R1 and \((w_{1}, w_{2})\in {\mathscr{B}}_{V}\), then ∃r2 ∈ S2 s.t. (w2,r2) ∈ R2 and \((r_{1},r_{2}) \in {\mathscr{B}}_{V}\) since \({\mathscr{B}}_{V}\) is a V-bisimulation between \({\mathcal M}_{1}\) and \({\mathcal M}_{2}\), and
-
if (w2,r2) ∈ R2 and \((w_{1}, w_{2})\in {\mathscr{B}}_{V}\), then ∃r1 ∈ S1 s.t. (w1,r1) ∈ R1 and \((r_{1},r_{2}) \in {\mathscr{B}}_{V}\) since \({\mathscr{B}}_{V}\) is a V-bisimulation between \({\mathcal M}_{1}\) and \({\mathcal M}_{2}\).
Therefore, \({\mathscr{B}}_{V}\) is a V1-bisimulation between \({\mathcal M}_{1}\) and \({\mathcal M}_{2}\).
Moreover, for any \((s,t) \in {\mathscr{B}}_{V}\), we have s ∈ v1(X) iff t ∈ v2(X), for every \(X\in {\mathcal V}-{\mathcal V}_{2}\) since \({\mathcal V}_{1} \subseteq {\mathcal V}_{2}\). Therefore, \(({\mathcal M}_{1}, s_{1}, v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{2},V_{1}}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\) holds.
-
-
(iii)
\(({\mathcal M}_{1},s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1},V}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\) implies \(({\mathcal M}_{1},s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1} \cup {\mathcal V}_{2},V \cup V_{1}}\rangle } ({\mathcal M}_{2},s_{2},v_{2})\) by (ii), then we have \(({\mathcal M}_{1},s_{1},v_{1}) \leftrightarrow _{\langle {{\mathcal V}_{1} \cup {\mathcal V}_{2},V \cup V_{1}}\rangle } ({\mathcal M}_{3},s_{3},v_{3})\) by (i).
□
Lemma 3
Let \({\mathcal M} = (S,r,R,L)\), \(v:{\mathcal V} \rightarrow 2^{S}\), φ be a μ-formula, and \(S_{1}\subseteq S_{2} \subseteq S\). If X appears positively in φ, then we have \(\left \|\varphi \right \|_{v[X:=S_{1}]}^{{\mathcal M}} \subseteq \left \|\varphi \right \|_{v[X:=S_{2}]}^{{\mathcal M}}\).
Proof
We show this by inducting on the structures of φ.
- Base. :
-
-
(a)
φ = p with \(p\in \mathcal {A}\).
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& \{p\mid p \in L(s)\}\\ & =& \left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$ -
(b)
φ = Y with \(Y \in {\mathcal V}-\{X\}\).
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& v[X:= S_{1}](Y) \\ & =& v[X:= S_{2}](Y)\\ & =& \left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$ -
(c)
φ = X.
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& v[X:=S_{1}](X)\\ & =& S_{1}\\ & \subseteq& S_{2} \\ & =& v[X = S_{2}](X)\\ & =& \left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$
-
(a)
- Step. :
-
-
(a)
φ = φ1 ∗ φ2 with ∗∈{∨,∧}, where X appears in φi (i = 1, 2).
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& \left\| \varphi_{1}\right\|_{v[X:= S_{1}]}^{\mathcal{M}} * \left\| \varphi_{2}\right\|_{v[X:= S_{1}]}^{\mathcal{M}}\\ & \subseteq& \left\| \varphi_{1}\right\|_{v[X:= S_{2}]}^{\mathcal{M}} * \left\| \varphi_{2}\right\|_{v[X:= S_{2}]}^{\mathcal{M}} \quad \text{(induction hypothesis)}\\ & =& \left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$ -
(b)
φ = axφ1, and X appears positively in φ1.
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& \{s \mid \forall s^{\prime}.(s,s^{\prime}) \in R \Rightarrow s^{\prime} \in \left\| \varphi_{1}\right\|_{v[X:= S_{1}]}^{\mathcal{M}}\}\\ & \subseteq& \{s \mid \forall s^{\prime}.(s,s^{\prime}) \in R \Rightarrow s^{\prime} \in \left\| \varphi_{1}\right\|_{v[X:= S_{2}]}^{\mathcal{M}}\} \quad \text{(induction hypothesis)}\\ & =& \left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$ -
(c)
φ = exφ1, and X appears positively in φ1.
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& \{s \mid \exists s^{\prime}.(s,s^{\prime}) \in R \wedge s^{\prime} \in \left\| \varphi_{1}\right\|_{v[X:= S_{1}]}^{\mathcal{M}}\}\\ & \subseteq& \{s \mid \exists s^{\prime}.(s,s^{\prime}) \in R \wedge s^{\prime} \in \left\| \varphi_{1}\right\|_{v[X:= S_{2}]}^{\mathcal{M}}\} \quad \text{(induction hypothesis)}\\ & =& \left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$ -
(d)
φ = νY.φ1, and X appears positively in φ1.
-
(d.1)
Y = X.
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& \bigcup\{S^{\prime} \subseteq S \mid S^{\prime} \subseteq \left\| \varphi_{1}\right\|_{v[X:= S_{1}][X:= S^{\prime}]}^{\mathcal{M}}\}\\ & =& \bigcup\{S^{\prime} \subseteq S \mid S^{\prime} \subseteq \left\| \varphi_{1}\right\|_{v[X:= S^{\prime}]}^{\mathcal{M}}\}\\ & =& \bigcup\{S^{\prime} \subseteq S \mid S^{\prime} \subseteq \left\| \varphi_{1}\right\|_{v[X:= S_{2}][X:= S^{\prime}]}^{\mathcal{M}}\}\\ & = &\left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$ -
(d.2)
Y ≠X.
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& = &\bigcup\{S^{\prime} \subseteq S \mid S^{\prime} \subseteq \left\| \varphi_{1}\right\|_{v[X:= S_{1}][Y:= S^{\prime}]}^{\mathcal{M}}\}\\ & \subseteq& \bigcup\{S^{\prime} \subseteq S \mid S^{\prime} \subseteq \left\| \varphi_{1}\right\|_{v[X:= S_{2}][Y:= S^{\prime}]}^{\mathcal{M}}\} \quad \text{(induction hypothesis)}\\ & = &\left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$
-
(d.1)
-
(e)
φ = μX.φ1, and X appears positively in φ1.
-
(e.1)
Y = X.
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& =& \bigcap\{S^{\prime} \subseteq S \mid \left\| \varphi_{1}\right\|_{v[X:= S_{1}][X:= S^{\prime}]}^{\mathcal{M}}\subseteq S^{\prime}\}\\ & =& \bigcap\{S^{\prime} \subseteq S \mid \left\| \varphi_{1}\right\|_{v[X:= S^{\prime}]}^{\mathcal{M}} \subseteq S^{\prime}\}\\ & =& \bigcap\{S^{\prime} \subseteq S \mid \left\| \varphi_{1}\right\|_{v[X:= S_{2}][X:= S^{\prime}]}^{\mathcal{M}} \subseteq S^{\prime}\} \\ & = &\left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$ -
(e.2)
Y ≠X. Please note that \(\left \| \psi \right \|_{v[X:= S]}^{{\mathcal M}} \subseteq S\) for any μ-formula ψ.
$$\begin{array}{@{}rcl@{}} \left\| \varphi\right\|_{v[X:= S_{1}]}^{\mathcal{M}}& = &\bigcap\{S^{\prime} \subseteq S \mid \left\| \varphi_{1}\right\|_{v[X:= S_{1}][Y:= S^{\prime}]}^{\mathcal{M}}\subseteq S^{\prime}\}\\ & \subseteq& \bigcap\{S^{\prime} \subseteq S \mid \left\| \varphi_{1}\right\|_{v[X:= S_{2}][Y:= S^{\prime}]}^{\mathcal{M}} \subseteq S^{\prime}\} \quad \text{(induction hypothesis)}\\ & = &\left\| \varphi\right\|_{v[X:= S_{2}]}^{\mathcal{M}}. \end{array}$$
-
(e.1)
-
(a)
□
Proposition 2 (invariant) Let φ be a μ-formula, \({\mathcal V}_{1}\subseteq {\mathcal V}\) a set of variables, and V a set of atoms. If \(({\mathcal M}, s, v) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M}^{\prime }, s^{\prime }, v^{\prime })\) and \(\text {IR}(\varphi , V \cup {\mathcal V}_{1})\), then \(({\mathcal M},s, v) \models \varphi\) iff \(({\mathcal M}^{\prime },s^{\prime }, v^{\prime }) \models \varphi\).
Proof
Let \({\mathcal M}=(S,r,R,L)\) and \({\mathcal M}^{\prime }=(S^{\prime },r^{\prime },R^{\prime },L^{\prime })\). Suppose \(\textit {Var}(\varphi ) \cap (V\cup {\mathcal V}_{1}) = \emptyset\) and \(({\mathcal M}, s, v) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M}^{\prime }, s^{\prime }, v^{\prime })\) by binary relation \({\mathscr{B}}\).
- Base. :
-
-
(a)
φ = p with p∉V.
\(({\mathcal M},s,v) \models \varphi\)
⇔ p ∈ L(s)
⇔ \(p\in L(s^{\prime })\) (\(({\mathcal M}, s, v) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M}^{\prime }, s^{\prime }, v^{\prime })\), p∉V)
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
-
(b)
φ = X with \(X \not \in {\mathcal V}_{1}\).
\(({\mathcal M},s, v)\models \varphi\)
⇔ s ∈ v(X)
⇔ \(s^{\prime } \in v^{\prime }(X)\) (\((s,s^{\prime })\in {\mathscr{B}}\), \(X\not \in {\mathcal V}_{1}\))
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
-
(a)
- Step. :
-
-
(a)
φ = ¬φ1.
\(({\mathcal M},s,v) \models \varphi\)
⇔ \(({\mathcal M},s,v) \not \models \varphi _{1}\)
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \not \models \varphi _{1}\) (induction hypothesis)
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
-
(b)
φ = φ1 ∨ φ2.
\(({\mathcal M},s,v) \models \varphi\)
⇔ \(({\mathcal M},s,v) \models \varphi _{1}\) or \(({\mathcal M},s,v)\models \varphi _{2}\)
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi _{1}\) or \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi _{2}\) (induction hypothesis)
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime })\models \varphi\).
-
(c)
φ = axφ1.
\(({\mathcal M},s,v) \models \varphi\)
⇒ For each (s,s1) ∈ R, we have \(({\mathcal M},s_{1},v) \models \varphi _{1}\)
⇒ For each \((s^{\prime },s_{1}^{\prime }) \in R^{\prime }\), there exists (s,s1) ∈ R s.t. \(({\mathcal M}, s_{1}, v) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M}^{\prime }, s_{1}^{\prime }, v^{\prime })\) (and vice versa) and \(({\mathcal M},s_{1},v) \models \varphi _{1}\) (\(({\mathcal M}, s, v) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M}^{\prime }, s^{\prime }, v^{\prime })\))
⇒ For each \((s^{\prime },s_{1}^{\prime }) \in R^{\prime }\), we have \(({\mathcal M}^{\prime },s_{1}^{\prime },v^{\prime })\models \varphi _{1}\) (induction hypothesis)
⇒ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime })\models \varphi\).
The other direction can be proved similarly.
-
(d)
φ = νX.φ1.
\(({\mathcal M},s,v) \models \varphi\)
⇒ \(s\in \bigcup \{S_{1} \subseteq S \mid S_{1} \subseteq \left \|\varphi _{1}\right \|_{v[X:= S_{1}]}^{{\mathcal M}}\}\)
⇒ There is \(S_{1} \subseteq S\) s.t. \(S_{1} \subseteq \left \|\varphi _{1}\right \|_{v[X:= S_{1}]}^{{\mathcal M}}\) and s ∈ S1
⇒ s ∈ S1 and for each \(w\in S_{2} = S_{1} \cup \{s_{2}\mid (t,s_{i}) \in {\mathscr{B}},~s_{2}\in S \text {and} s_{1}\in S_{1} \text {with} i=1,2\}\), there is \(w^{\prime }\in S_{1}\) s.t. \(({\mathcal M},w,v) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M},w^{\prime },v)\) (Prop. 1)
⇒ s ∈ S2 and for each w ∈ S2, there is \(w^{\prime }\in S_{1}\) s.t. \(({\mathcal M},w,v[X:=S_{2}]) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M},w^{\prime },v[X:=S_{2}])\)
⇒ s ∈ S2 and for each w ∈ S2, we have \(w \in \left \|\varphi _{1}\right \|_{v[X:= S_{2}]}^{{\mathcal M}}\) (\(S_{1} \subseteq \left \|\varphi _{1}\right \|_{v[X:= S_{1}]}^{{\mathcal M}}\), induction hypothesis, Lemma 3)
⇒ s ∈ S2 and there is \(S_{2} \subseteq S\) s.t. \(S_{2} \subseteq \left \|\varphi _{1}\right \|_{v[X:= S_{2}]}^{{\mathcal M}}\)
⇒ s ∈ S2 and for each \(u^{\prime }\in {\mathscr{B}}(S_{2})\), there is u ∈ S2 s.t. \(({\mathcal M}^{\prime },u^{\prime },v^{\prime }[X:= {\mathscr{B}}(S_{2})]) \leftrightarrow _{\langle {{\mathcal V}_{1}, V}\rangle } ({\mathcal M},u,v[X:=S_{2}])\) and \(u\in \left \|\varphi _{1}\right \|_{v[X:= S_{2}]}^{{\mathcal M}}\)
⇒ s ∈ S2 and for each \(u^{\prime }\in {\mathscr{B}}(S_{2})\), \(u^{\prime }\in \left \|\varphi _{1}\right \|_{v^{\prime }[X:= {\mathscr{B}}(S_{2})]}^{{\mathcal M}^{\prime }}\) (induction hypothesis)
⇒ There is \({\mathscr{B}}(S_{2})\subseteq S^{\prime }\) s.t. \({\mathscr{B}}(S_{2}) \subseteq \left \|\varphi _{1}\right \|_{v^{\prime }[X:= {\mathscr{B}}(S_{2})]}^{{\mathcal M}^{\prime }}\) and \(s^{\prime }\in {\mathscr{B}}(S_{2})\) (\((s,s^{\prime })\in {\mathscr{B}}\))
⇒ \(s^{\prime } \in \bigcup \{S_{1}^{\prime }\subseteq S^{\prime } \mid S_{1}^{\prime } \subseteq \left \|\varphi _{1}\right \|_{v^{\prime }[X:= S_{1}^{\prime }]}^{{\mathcal M}^{\prime }}\}\)
⇒ \(({\mathcal M}^{\prime },s^{\prime }, v^{\prime }) \models \varphi\).
-
(a)
We can prove the other direction similarly. □
Corollary 3 If \(({\mathcal M},s,v) \leftrightarrow _{\langle {\{X\},V}\rangle } ({\mathcal M}^{\prime },s^{\prime },v^{\prime })\) and φ is μ-formula with IR(φ,V ) and X is bound in φ, then \(({\mathcal M},s,v) \models \varphi\) iff \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
Proof
Suppose \(({\mathcal M},s,v) \leftrightarrow _{\langle {\{X\},V}\rangle } ({\mathcal M}^{\prime },s^{\prime },v^{\prime })\) by relation \({\mathscr{B}}_{X}\).
- Base. :
-
-
(a)
φ = p with \(p \in \mathcal {A}-V\).
\(({\mathcal M},s,v) \models \varphi\)
⇔ p ∈ L(s)
⇔ \(p \in L^{\prime }(s)\) (\(({\mathcal M},s,v) \leftrightarrow _{\langle {\{X\},V}\rangle } ({\mathcal M}^{\prime },s^{\prime },v^{\prime })\))
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
-
(b)
φ = Y with \(Y \in {\mathcal V}-\{X\}\).
\(({\mathcal M},s,v) \models \varphi\)
⇔ s ∈ v(Y )
⇔ \(s^{\prime } \in v^{\prime }(Y)\) (\(({\mathcal M},s,v) \leftrightarrow _{\langle {\{X\},V}\rangle } ({\mathcal M}^{\prime },s^{\prime },v^{\prime })\))
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
-
(a)
- Step. :
-
-
(a)
φ = ¬φ1.
\(({\mathcal M},s,v) \models \varphi\)
⇔ \(({\mathcal M},s,v) \not \models \varphi _{1}\)
⇔ \(({\mathcal M}^{\prime },s^{\prime }, v^{\prime }) \not \models \varphi _{1}\)
⇔ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
-
(b)
φ = φ1 ∨ φ2 can be proved easily.
-
(c)
φ = axφ1.
\(({\mathcal M},s,v) \models \varphi\)
⇒ For each (s,s1) ∈ R, \(({\mathcal M},s_{1},v) \models \varphi _{1}\)
⇒ For each \((s^{\prime },s_{1}^{\prime }) \in R^{\prime }\), there is (s,s1) ∈ R s.t. \(({\mathcal M}, s_{1},v) \leftrightarrow _{\langle {\{X\},V}\rangle } ({\mathcal M}^{\prime },s_{1}^{\prime },v^{\prime })\) and \(({\mathcal M},s_{1},v) \models \varphi _{1}\)
⇒ For each \((s^{\prime },s_{1}^{\prime }) \in R^{\prime }\), \(({\mathcal M}^{\prime },s_{1}^{\prime },v^{\prime }) \models \varphi _{1}\) (induction hypothesis)
⇒ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \varphi\).
The other direction can be proved similarly.
-
(d)
φ = νY.φ1.
-
(d.1)
Y = X. \(({\mathcal M},s,v) \models \nu X. \varphi _{1}\)
⇒ \(s \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇒ \(s \in \bigcup \{S_{1} \subseteq S\mid S_{1} \subseteq \left \|\varphi _{1}\right \|_{v[X:=S_{1}]}^{{\mathcal M}}\}\)
⇒ There is \(S_{1} \subseteq S\) s.t. \(S_{1} \subseteq \left \|\varphi _{1}\right \|_{v[X:=S_{1}]}^{{\mathcal M}}\) and s ∈ S1
⇒ There is \(S_{2}=S_{1} \cup \{s_{2}\mid (s_{i},t) \in {\mathscr{B}}_{X}, ~s_{2}\in S, \text {and} s_{1} \in S_{1} \text {with}i=1,2\}\), s.t. \(S_{2} \subseteq \left \|\varphi _{1}\right \|_{v[X:=S_{2}]}^{{\mathcal M}}\) and s ∈ S2 (see the proof of Prop. 2)
⇒ There is \({\mathscr{B}}_{X}(S_{2}) \subseteq S^{\prime }\) s.t. \({\mathscr{B}}_{X}(S_{2}) \subseteq \left \|\varphi _{1}\right \|_{v^{\prime }[X:={\mathscr{B}}_{X}(S_{2})]}^{{\mathcal M}^{\prime }}\), \(s^{\prime }\in {\mathscr{B}}_{X}(S_{2})\), and \(({\mathcal M},v[X:=S_{2}]) \leftrightarrow _{V} ({\mathcal M}^{\prime },v^{\prime }[X:={\mathscr{B}}_{X}(S_{2})])\) (\((s,s^{\prime }) \in {\mathscr{B}}_{X}\), invariant)
⇒ \(s^{\prime }\in \bigcup \{S_{1}^{\prime } \subseteq S^{\prime }\mid S_{1}^{\prime } \subseteq \left \|\varphi _{1}\right \|_{v^{\prime }[X:=S_{1}^{\prime }]}^{{\mathcal M}^{\prime }}\}\)
⇒ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \nu X. \varphi _{1}\).
The other direction can be proved similarly.
-
(d.2)
Y ≠X. \(({\mathcal M},s,v) \models \nu Y. \varphi _{1}\)
⇒ \(s \in \left \|\varphi \right \|_{v}^{{\mathcal M}}\)
⇒ \(s \in \bigcup \{S_{1} \subseteq S\mid S_{1} \subseteq \left \|\varphi _{1}\right \|_{v[Y:=S_{1}]}^{{\mathcal M}}\}\)
⇒ There is \(S_{1} \subseteq S\) s.t. \(S_{1} \subseteq \left \|\varphi _{1}\right \|_{v[Y:=S_{1}]}^{{\mathcal M}}\) and s ∈ S1
⇒ There is \(S_{2}=S_{1} \cup \{s_{2}\mid (s_{i},t) \in {\mathscr{B}}_{X}, ~s_{2}\in S, \text {and} s_{1} \in S_{1} \text {with}i=1,2\}\), s.t. \(S_{2} \subseteq \left \|\varphi _{1}\right \|_{v[Y:=S_{2}]}^{{\mathcal M}}\) and s ∈ S2 (see the proof of Prop. 2)
⇒ There is \({\mathscr{B}}_{X}(S_{2}) \subseteq S^{\prime }\) s.t. \({\mathscr{B}}_{X}(S_{2}) \subseteq \left \|\varphi _{1}\right \|_{v^{\prime }[Y:={\mathscr{B}}_{X}(S_{2})]}^{{\mathcal M}^{\prime }}\), \(s^{\prime }\in {\mathscr{B}}_{X}(S_{2})\), and \(({\mathcal M},v[Y:=S_{2}]) \leftrightarrow _{\langle {\{X\}, V}\rangle } ({\mathcal M}^{\prime },v^{\prime }[Y:={\mathscr{B}}_{X}(S_{2})])\) (\((s,s^{\prime }) \in {\mathscr{B}}_{X}\), induction hypothesis)
⇒ \(s^{\prime }\in \bigcup \{S_{1}^{\prime } \subseteq S^{\prime }\mid S_{1}^{\prime } \subseteq \left \|\varphi _{1}\right \|_{v^{\prime }[Y:=S_{1}^{\prime }]}^{{\mathcal M}^{\prime }}\}\)
⇒ \(({\mathcal M}^{\prime },s^{\prime },v^{\prime }) \models \nu X. \varphi _{1}\).
The other direction can be proved similarly.
-
(a)
□
Theorem 4 Let \(q \in \mathcal A\) and φ be a μ-sentence. There is a μ-sentence ψ s.t. Var(ψ) ∩{q} = ∅ and ψ ≡Fμ(φ,{q}).
Proof
It has been proved that (Theorem 3.1 in [45]), for each μ-sentence φ and atom q, there is a μ-sentence \(\varphi ^{\prime }\) with \(\textit {Var}(\varphi ^{\prime }) \cap \{q\} = \emptyset\) s.t. :
Then we can check that \(\varphi ^{\prime }\) is a result of forgetting {q} from φ by the definition of forgetting. □
Corollary 6 Let \(V \subseteq \mathcal {A}\) and φ be a μ-sentence. We have \(\widetilde {\exists }V \varphi \equiv \textsc {F}_{\mu }(\varphi , V)\).
Proof
It is obvious that φ⊧Fμ(φ,V ) and Fμ(φ,V ) ∩ V = ∅. In addition, for any ϕ, if φ⊧ϕ and IR(ϕ,V ), there is Fμ(φ,V )⊧ϕ by Theorem 5.
Hence, Fμ(φ,V ) is an uniform interpolation of φ with respect to Var(φ) − V by the definition of uniform interpolation. □
Theorem 7 Let φ be a PL formula and \(V\subseteq \mathcal {A}\), then
Proof
Let \({\mathcal M} = (S, r, R, L)\) and \({\mathcal M}^{\prime } = (S^{\prime }, r^{\prime }, R^{\prime }, L^{\prime })\) be two Kripke structures. It is easy to see that a Kripke structure \({\mathcal M}\) is a model of a PL formula ψ, i.e., \({\mathcal M} \models \psi\), if L(r) satisfies ψ.
(⇒) For each \({\mathcal M} \in \textit {Mod}(\textsc {F}_{\mu }(\varphi , V))\)
⇒ \(\exists {\mathcal M}^{\prime } \in \textit {Mod}(\varphi )\) s.t. \({\mathcal M} \leftrightarrow _{V} {\mathcal M}^{\prime }\) (by a V-bisimulation \({\mathcal B}\)) by Def. 4
⇒ \(r {\mathcal B} r^{\prime }\)
⇒ \({\mathcal M} \models \textit {Forget}(\varphi , V)\) due to IR(Forget(φ,V ),V ) and V-invariant.
(⇐) For each \({\mathcal M} \in \textit {Mod}(\textit {Forget}(\varphi , V))\)
⇒ \(\exists {\mathcal M}^{\prime } \in \textit {Mod}(\varphi )\) s.t. \(\forall p \in \mathcal {A}-V\), p ∈ L(r) iff \(p \in L^{\prime }(r^{\prime })\) by the definition of Forget.
Constructing a Kripke structure \({\mathcal M}_{1} = (S, r, R, L_{1})\) such that L1(s) = L(s) for each s ∈ S and \(L_{1}(r) = L^{\prime }(r^{\prime })\).
⇒ \({\mathcal M}_{1} \models \varphi\) and \({\mathcal M}_{1} \leftrightarrow _{V} {\mathcal M}\)
⇒ \({\mathcal M} \models \textsc {F}_{\mu }(\varphi , V)\) due to IR(Fμ(φ,V ),V ) and V-invariant. □
Proposition 8 Let φ and φi (i = 1, 2) be μ-formulas and \(V\subseteq \mathcal {A}\). We have:
-
(i)
Fμ(φ,V ) is satisfiable iff φ is,
-
(ii)
If φ1 ≡ φ2, then Fμ(φ1,V ) ≡Fμ(φ2,V ),
-
(iii)
If φ1⊧φ2, then Fμ(φ1,V )⊧Fμ(φ2,V ),
-
(iv)
Fμ(φ1 ∨ φ2,V ) ≡Fμ(φ1,V ) ∨Fμ(φ2,V ),
-
(v)
Fμ(φ1 ∧ φ2,V )⊧Fμ(φ1,V ) ∧Fμ(φ2,V ),
-
(vi)
Fμ(φ1 ∧ φ2,V ) ≡Fμ(φ1,V ) ∧ φ2 if IR(φ2,V ).
Proof
(i) \(({\mathcal M},v) \in \textit {Mod}(\textsc {F}_{\mu }(\varphi , V))\)
⇔ \(\exists ({\mathcal M}^{\prime },v^{\prime }) \in \textit {Mod}(\varphi )\) s.t. \(({\mathcal M}, v) \leftrightarrow _{V} ({\mathcal M}^{\prime },v^{\prime })\).
\(({\mathcal M},v) \in \textit {Mod}(\varphi )\) implies \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi , V)\) since φ⊧Fμ(φ,V ).
The (ii) and (iii) can be proved similarly.
(iv) \(({\mathcal M},v)\in \textit {Mod}(\textsc {F}_{\mu }(\varphi _{1} \vee \varphi _{2}, V))\)
⇔ \(\exists ({\mathcal M}^{\prime },v^{\prime })\) ∈ Mod(φ1 ∨ φ2) s.t. \(({\mathcal M},v) \leftrightarrow _{V} ({\mathcal M}^{\prime },v^{\prime })\) and \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{1}\) or \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{2}\)
⇔ \(\exists ({\mathcal M},v) \leftrightarrow _{V} ({\mathcal M}^{\prime },v^{\prime })\) s.t. \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{1}\) or \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{2}\), and then \(\exists ({\mathcal M}_{1},v_{1}) \in \textit {Mod}(\textsc {F}_{\mu }(\varphi _{1}, V))\) s.t. \(({\mathcal M}^{\prime },v^{\prime }) \leftrightarrow _{V} ({\mathcal M}_{1},v_{1})\), or \(\exists ({\mathcal M}_{2},v_{2}) \in \textit {Mod}(\textsc {F}_{\mu }(\varphi _{2}, V))\) s.t. \(({\mathcal M}^{\prime },v^{\prime }) \leftrightarrow _{V} ({\mathcal M}_{2},v_{2})\)
⇔ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{1}, V)\) or \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{2}, V)\)
⇔ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{1}, V) \vee \textsc {F}_{\mu }(\varphi _{2}, V)\).
The (v) can be proved as (iv).
(vi) \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{1} \wedge \varphi _{2},V)\)
⇔ There is \(({\mathcal M}, v) \leftrightarrow _{V} ({\mathcal M}^{\prime },v^{\prime })\) s.t. \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{1} \wedge \varphi _{2}\)
⇔ There is \(({\mathcal M}, v) \leftrightarrow _{V} ({\mathcal M}^{\prime },v^{\prime })\) s.t. \(({\mathcal M}^{\prime }, v^{\prime }) \models \varphi _{1}\) and \(({\mathcal M}^{\prime }, v^{\prime }) \models \varphi _{2}\)
⇔ \(({\mathcal M}, v) \models \textsc {F}_{\mu }(\varphi _{1},V)\) and \(({\mathcal M},v) \models \varphi _{2}\) due to IR(φ2,V )
⇔ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{1},V) \wedge \varphi _{2}\). □
Proposition 9 (Decomposition) Given a μ-formula φ, a set of atoms V and an atom p s.t. p∉V, then,
Proof
Let \(({\mathcal M}_{1},v_{1})\) with \({\mathcal M}_{1}=(S_{1}, s_{1}, R_{1}, L_{1})\) be a model of Fμ(φ,{p}∪ V ). By the definition of forgetting, there exists a model \(({\mathcal M},v)\) (\({\mathcal M} = (S, s, R,L)\)) of φ s.t. \(({\mathcal M}_{1},v_{1})\) \(\leftrightarrow _{\{p\} \cup V}\) \(({\mathcal M},v)\). We construct a Kripke structure \({\mathcal M}_{2} = (S_{2}, s_{2}, R_{2}, L_{2})\) as follows:
-
1.
for s2, let s2 be the state such that:
-
p ∈ L2(s2) iff p ∈ L1(s1),
-
for all q ∈ V, q ∈ L2(s2) iff q ∈ L(s),
-
for all other atoms \(q^{\prime }\), \(q^{\prime } \in L_{2}(s_{2})\) iff \(q^{\prime } \in L_{1}(s_{1})\) iff \(q^{\prime }\in L(s)\).
-
-
2.
for another: Suppose that \({\mathcal M}_{1}\) \(\leftrightarrow _{\{p\} \cup V}\) \({\mathcal M}\) by the {p}∪ V-bisimulation \({\mathcal B}\).
-
(i)
for all pairs w ∈ S and w1 ∈ S1 s.t. \((w,w_{1})\in {\mathcal B}\), let w2 ∈ S2 and
-
p ∈ L2(w2) iff p ∈ L1(w1),
-
for all q ∈ V, q ∈ L2(w2) iff q ∈ L(w),
-
for all other atoms \(q^{\prime }\), \(q^{\prime } \in L_{2}(w_{2})\) iff \(q^{\prime } \in L_{1}(w_{1})\) iff \(q^{\prime }\in L(w)\).
-
-
(ii)
if \((w_{1}^{\prime }, w_{1})\in R_{1}\), w2 is constructed based on w1 and \(w_{2}^{\prime }\in S_{2}\) is constructed based on \(w_{1}^{\prime }\), then \((w_{2}^{\prime }, w_{2})\in R_{2}\).
-
(i)
-
3.
delete duplicated states in S2 and pairs in R2.
Then we have \({\mathcal M} \leftrightarrow _{\{p\}} {\mathcal M}_{2}\) and \({\mathcal M}_{2} \leftrightarrow _{V} {\mathcal M}_{1}\) by V-bisimulation \({\mathscr{B}}_{1}\) and \({\mathscr{B}}_{2}\), respectively. Moreover, let \(v_{2}(X) = {\mathscr{B}}_{1}(v(X))\) for all \(X \in {\mathcal V}\). Thus, \(({\mathcal M},v) \leftrightarrow _{\{p\}} ({\mathcal M}_{2},v_{2})\) and \(({\mathcal M}_{2},v_{2}) \leftrightarrow _{V} ({\mathcal M}_{1},v_{1})\), and hence \(({\mathcal M}_{2}, s_{2}) \models \textsc {F}_{\mu }(\varphi , p)\). Therefore \(({\mathcal M}_{1}, v_{1}) \models \textsc {F}_{\mu }(\textsc {F}_{\mu }(\varphi , p), V)\).
On the other hand, suppose that \(({\mathcal M}_{1},v_{1})\) is a model of Fμ(Fμ(φ,p),V )
⇒ \(\exists ({\mathcal M}_{2},v_{2})\) s.t. \(({\mathcal M}_{2},v_{2}) \models \textsc {F}_{\mu }(\varphi , p)\) and \(({\mathcal M}_{2},v_{2}) \leftrightarrow _{V} ({\mathcal M}_{1},v_{1})\) by Def. 4
⇒ \(\exists ({\mathcal M},v)\) s.t. \(({\mathcal M},v) \models \varphi\) and \(({\mathcal M},v) \leftrightarrow _{\{p\}} ({\mathcal M}_{2},v_{2})\) by Def. 4.
Therefore, \(({\mathcal M},v) \leftrightarrow _{\{p\} \cup V} ({\mathcal M}_{1},v_{1})\) by (iii) of Proposition 1, and consequently, \(({\mathcal M}_{1},v_{1}) \models \textsc {F}_{\mu }(\varphi , \{p\} \cup V)\). □
Proposition 11 (Homogeneity) Let \(V\subseteq \mathcal A\) and φ be a μ-formula; then, we have
-
(i)
Fμ(axφ,V ) ≡axFμ(φ,V ).
-
(ii)
Fμ(exφ,V ) ≡exFμ(φ,V ).
-
(iii)
Fμ(νX.φ,V ) ≡ νX.Fμ(φ,V ) if νX.φ is a μ-sentence.
-
(iv)
Fμ(μX.φ,V ) ≡ μX.Fμ(φ,V ) if μX.φ is a μ-sentence.
Proof
Let \(({\mathcal M},v)\) (\({\mathcal M}=(S, r,R, L)\)), \(({\mathcal M}_{i}, v_{i})\) (\({\mathcal M}_{i} = (S_{i}, r_{i}, R_{i}, L_{i})\)) with \(i\in \mathbb {N}\), and \(({\mathcal M}^{\prime },v^{\prime })\) (\({\mathcal M}^{\prime }=(S^{\prime }, r^{\prime }, R^{\prime }, L^{\prime })\)) be valuations. We prove (i), (iii), and (ii), (iv) can be proved similarly.
(i) To prove Fμ(axφ,V ) ≡ax(Fμ(φ,V )), we only need to prove Mod(Fμ(axφ,V )) = Mod(axFμ(φ,V )):
(⇒) \(({\mathcal M},v) \models \textsc {F}_{\mu }(\textsc {a}\textsc {x} \varphi , V)\)
⇒ There is \(({\mathcal M},v) \leftrightarrow _{V} ({\mathcal M}^{\prime }, v^{\prime })\) and \(({\mathcal M}^{\prime }, v^{\prime }) \models \textsc {a}\textsc {x} \varphi\)
⇒ There is \(({\mathcal M},v) \leftrightarrow _{V} ({\mathcal M}^{\prime }, v^{\prime })\) and \(({\mathcal M}^{\prime },r^{\prime \prime }, v^{\prime }) \models \varphi\) for every \((r^{\prime }, r^{\prime \prime }) \in R^{\prime }\)
⇒ For every (r,r1) ∈ R, there is \((r^{\prime }, r_{1}^{\prime }) \in R^{\prime }\) s.t. \(({\mathcal M},r_{1}, v) \leftrightarrow _{V} ({\mathcal M}^{\prime },r_{1}^{\prime },v^{\prime })\) and \(({\mathcal M}^{\prime },r^{\prime \prime }, v^{\prime }) \models \varphi\) for every \((r^{\prime }, r^{\prime \prime }) \in R^{\prime }\)
⇒ For every (r,r1) ∈ R, there is \(({\mathcal M},r_{1}, v) \leftrightarrow _{V} ({\mathcal M}^{\prime },r_{1}^{\prime },v^{\prime })\) and \(({\mathcal M}^{\prime },r_{1}^{\prime },v^{\prime }) \models \varphi\)
⇒ For every (r,r1) ∈ R, \(({\mathcal M},r_{1}, v) \models \textsc {F}_{\mu }(\varphi ,V)\) (IR(Fμ(φ,V ),V ))
⇒ \(({\mathcal M},v)\models \textsc {a} \textsc {x} (\textsc {F}_{\mu }(\varphi ,V))\).
(⇐) \(({\mathcal M},v) \models \textsc {a} \textsc {x} \textsc {F}_{\mu }(\varphi ,V)\)
⇒ For every (r,r1) ∈ R, \(({\mathcal M},r_{1},v) \models \textsc {F}_{\mu }(\varphi ,V)\)
⇒ For every (r,r1) ∈ R, \(({\mathcal M}_{r_{1}},r_{1},v) \models \textsc {F}_{\mu }(\varphi ,V)\) (Lemma 1)
⇒ For every (r,r1) ∈ R, there is \(({\mathcal M}_{r_{1}},r_{1},v) \leftrightarrow _{V} ({\mathcal M}^{\prime }, r^{\prime }, v^{\prime })\) and \(({\mathcal M}^{\prime }, r^{\prime }, v^{\prime }) \models \varphi\)
⇒ For every i ≥ 0, there is \(({\mathcal M}_{r_{i}},r_{i},v) \leftrightarrow _{V} ({\mathcal M}_{i}^{\prime }, r_{i}^{\prime },v_{i}^{\prime })\) and \(({\mathcal M}_{i}^{\prime }, r_{i}^{\prime }, v_{i}^{\prime }) \models \varphi\), where \(\{r_{0}, r_{1}, \dots \} = \{s\mid (r, s) \in R\}\), \({\mathcal M}_{i}^{\prime } = (S_{i}^{\prime }, r_{i}^{\prime }, R_{i}^{\prime }, L_{i}^{\prime })\) (we assume \(S_{i}^{\prime } \cap S_{j}^{\prime }= \emptyset\) when i≠j) and \({\mathscr{B}}_{i}\) is the Var-V-bisimulation between \(({\mathcal M}_{r_{i}},r_{i},v)\) and \(({\mathcal M}_{i}^{\prime }, r_{i}^{\prime }, v_{i}^{\prime })\)
⇒ \(({\mathcal M}^{*}, v^{*}) \leftrightarrow _{V} ({\mathcal M},v)\) and \(({\mathcal M}^{*}, v^{*}) \models \textsc {a}\textsc {x} \varphi\) where \({\mathcal M}^{*} = (S^{*}, r, R^{*},L^{*})\) and
-
\(S^{*} = \{r\} \cup \bigcup _{i\geq 0} S_{i}^{\prime }\),
-
\(R^{*} = \{(r, r_{i}^{\prime }) \mid i \geq 0\} \cup \bigcup _{i\geq 0} R_{i}^{\prime }\),
-
\(L^{*}(s) = \bigcup _{i\geq 0} L_{i}^{\prime }(s)\) for every s ∈ S∗ and L∗(r) = L(r),
-
for all \(X \in {\mathcal V}\),
$$v^{*}(X) = \left\{ \begin{array}{ll} \bigcup_{i\geq 0} v_{i}(X), \ \ \qquad \qquad \quad \text{if} r \not \in v(X); \\ \bigcup_{i\geq 0} v_{i}(X) \cup \{r\}, \ \ \ \quad \ \ \ \text{otherwise.} \end{array} \right.$$
⇒ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\textsc {a}\textsc {x} \varphi , V)\).
(iii) (⇒) \(({\mathcal M},v) \models \textsc {F}_{\mu }(\nu X. \varphi , V)\)
⇒ There is \(({\mathcal M}^{\prime }, v^{\prime }) \leftrightarrow _{V} ({\mathcal M},v)\) and \(({\mathcal M}^{\prime },v^{\prime }) \models \nu X. \varphi\)
⇒ \(r^{\prime } \in \bigcup \{S_{1} \subseteq S^{\prime } \mid S_{1} \subseteq \left \|\varphi \right \|_{v^{\prime }[X:=S_{1}]}^{{\mathcal M}^{\prime }}\}\)
⇒ There is \(S_{1} \subseteq S^{\prime }\) s.t. \(S_{1} \subseteq \left \|\varphi \right \|_{v^{\prime }[X:=S_{1}]}^{{\mathcal M}^{\prime }}\), \(r^{\prime }\in S_{1}\), and \(r^{\prime }\in \left \|\varphi \right \|_{v^{\prime }[X:=S_{1}]}^{{\mathcal M}^{\prime }}\)
⇒ \(r^{\prime } \in \left \|\textsc {F}_{\mu }(\varphi ,V)\right \|_{v^{\prime }[X:=S_{1}]}^{{\mathcal M}^{\prime }}\) and \(S_{1} \subseteq \left \|\textsc {F}_{\mu }(\varphi ,V)\right \|_{v^{\prime }[X:=S_{1}]}^{{\mathcal M}^{\prime }}\) since φ⊧Fμ(φ,V )
⇒ \(r^{\prime }\in \bigcup \{S_{1} \subseteq S^{\prime } \mid S_{1} \subseteq \left \|\textsc {F}_{\mu }(\varphi ,V)\right \|_{v^{\prime }[X:=S_{1}]}^{{\mathcal M}^{\prime }}\}\)
⇒ \(({\mathcal M}^{\prime },v^{\prime })\models \nu X. \textsc {F}_{\mu }(\varphi ,V)\)
⇒ \(({\mathcal M},v) \models \nu X. \textsc {F}_{\mu }(\varphi ,V)\) since IR(νX.Fμ(φ,V ),V ).
(⇐) \(({\mathcal M},v)\models \nu X. \textsc {F}_{\mu }(\varphi ,V)\)
⇒ \(r\in \bigcup \{S_{1} \subseteq S \mid S_{1} \subseteq \left \|\textsc {F}_{\mu }(\varphi ,V)\right \|_{v[X:=S_{1}]}^{{\mathcal M}}\}\)
⇒ There is \(S_{1} \subseteq S\) s.t. \(S_{1} \subseteq \left \|\textsc {F}_{\mu }(\varphi ,V)\right \|_{v[X:=S_{1}]}^{{\mathcal M}}\) and r ∈ S1
⇒ r ∈ S1 and there is \(S_{1}\subseteq S_{2} \subseteq S\) and \(({\mathcal M}^{\prime },v^{\prime }) \leftrightarrow _{V} ({\mathcal M},v[X:= S_{2}])\) by a Var-V-bisimulation \({\mathscr{B}}\) (with \(v^{\prime }(X) = {\mathscr{B}}(S_{2})\)) s.t. \(({\mathcal M}^{\prime },v^{\prime })\models \varphi\) and \(S_{2} \subseteq \left \|\textsc {F}_{\mu }(\varphi ,V)\right \|_{v[X:=S_{2}]}^{{\mathcal M}}\) since X appears in φ positively
⇒ r ∈ S2 and there is \(({\mathcal M}^{\prime },v^{\prime }) \leftrightarrow _{V} ({\mathcal M},v[X:= S_{2}])\) s.t. \({\mathscr{B}}(S_{2}) \subseteq \left \|\varphi \right \|_{v^{\prime }[X:={\mathscr{B}}(S_{2})]}^{{\mathcal M}^{\prime }}\)
⇒ There is \({\mathscr{B}}(S_{2}) \subseteq S^{\prime }\) s.t. \({\mathscr{B}}(S_{2}) \subseteq \left \|\varphi \right \|_{v^{\prime }[X:={\mathscr{B}}(S_{2})]}^{{\mathcal M}^{\prime }}\) and \(r^{\prime }\in {\mathscr{B}}(S_{2})\) (\((r,r^{\prime })\in {\mathscr{B}}\))
⇒ \(r^{\prime }\in \bigcup \{S_{1}^{\prime } \subseteq S^{\prime } \mid S_{1}^{\prime } \subseteq \left \|\varphi \right \|_{v^{\prime }[X:=S_{1}^{\prime }]}^{{\mathcal M}^{\prime }}\}\)
⇒ \(({\mathcal M}^{\prime },v^{\prime }) \models \nu X. \varphi\)
⇒ \(({\mathcal M}^{\prime },v^{\prime }) \models \textsc {F}_{\mu }(\nu X. \varphi , V)\) and \(({\mathcal M}^{\prime },v^{\prime }) \leftrightarrow _{\langle {\{X\},V}\rangle } ({\mathcal M},v)\)
⇒ \(({\mathcal M}, v) \models \textsc {F}_{\mu }(\nu X. \varphi , V)\) (Corollary 3, Theorem 4) □
Lemma 2 Let \(V\subseteq \mathcal {A}\) be a set of atoms and \(\varphi _{0} \wedge \textsc {a}\textsc {x} \varphi _{1} \wedge \textsc {e}\textsc {x} \varphi _{2} \wedge {\dots } \wedge \textsc {e} \textsc {x} \varphi _{n}\) be a satisfiable formula with the form (1), then
Proof
It is obvious (by Proposition 11 (i) and (ii)) that
(⇒) \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{0} \wedge \textsc {a}\textsc {x} \varphi _{1} \wedge \textsc {e}\textsc {x} \varphi _{2} \wedge {\dots } \wedge \textsc {e} \textsc {x} \varphi _{n},V)\)
⇒ There is \(({\mathcal M}, v) \leftrightarrow _{V} ({\mathcal M}^{\prime }, v^{\prime })\) s.t. \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{0} \wedge \textsc {a}\textsc {x} \varphi _{1} \wedge \textsc {e}\textsc {x} \varphi _{2} \wedge {\dots } \wedge \textsc {e} \textsc {x} \varphi _{n}\)
⇒ \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{0}\), \(({\mathcal M}^{\prime }, v^{\prime }) \models \textsc {a}\textsc {x} \varphi _{1}\), and \(({\mathcal M}^{\prime },v^{\prime }) \models \textsc {e}\textsc {x} \varphi _{i}\) with 2 ≤ i ≤ n
⇒ \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi _{0}\), \(({\mathcal M}^{\prime }, v^{\prime }) \models \textsc {a}\textsc {x} \varphi _{1}\), and \(({\mathcal M}^{\prime },v^{\prime }) \models \textsc {e}\textsc {x} (\varphi _{i} \wedge \varphi _{1})\) with 2 ≤ i ≤ n since \(({\mathcal M},v) \models \textsc {a}\textsc {x} \varphi _{1}\)
⇒ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{0},V)\), \(({\mathcal M}, v) \models \textsc {F}_{\mu }(\textsc {a}\textsc {x} \varphi _{1}, V)\), and \(({\mathcal M},v) \models \textsc {F}_{\mu }(\textsc {e}\textsc {x} (\varphi _{i} \wedge \varphi _{1}), V)\) with 2 ≤ i ≤ n since \(({\mathcal M}, v) \leftrightarrow _{V} ({\mathcal M}^{\prime }, v^{\prime })\), IR(Fμ(φ0,V ),V ), IR(Fμ(axφ1,V ),V ), and IR(Fμ(ex(φi ∧ φ1),V ),V )
⇒ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{0}, V) \wedge \textsc {F}_{\mu }(\textsc {a}\textsc {x} \varphi _{1}, V) \wedge \bigwedge _{2\leq i\leq n} \textsc {F}_{\mu }(\textsc {e}\textsc {x}(\varphi _{i} \wedge \varphi _{1}), V)\)
(⇐) \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{0}, V) \wedge \textsc {F}_{\mu }(\textsc {a}\textsc {x} \varphi _{1}, V) \wedge \bigwedge _{2\leq i\leq n} \textsc {F}_{\mu }(\textsc {e}\textsc {x}(\varphi _{i} \wedge \varphi _{1}), V)\) with \({\mathcal M}=(S,r, R,L)\)
⇒ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{0}, V) \wedge \textsc {a}\textsc {x}\textsc {F}_{\mu }(\varphi _{1}, V) \wedge \bigwedge _{2\leq i\leq n} \textsc {e}\textsc {x} \textsc {F}_{\mu }(\varphi _{i} \wedge \varphi _{1}, V)\)
⇒ \(({\mathcal M},r,v) \models \textsc {F}_{\mu }(\varphi _{0}, V)\), for every \((r, r^{\prime })\in R\), \(({\mathcal M}, r^{\prime }, v) \models \textsc {F}_{\mu }(\varphi _{1}, V)\), and there is \((r, r^{\prime \prime })\in R\) s.t. \(({\mathcal M},r^{\prime \prime }, v) \models \textsc {F}_{\mu }(\varphi _{i} \wedge \varphi _{1}, V)\) for each 2 ≤ i ≤ n
⇒ \(({\mathcal M},r,v) \models \textsc {F}_{\mu }(\varphi _{0}, V)\), for every \((r, r^{\prime })\in R\), \(({\mathcal M}_{r^{\prime }}, r^{\prime }, v) \models \textsc {F}_{\mu }(\varphi _{1}, V)\), and there is \((r, r^{\prime \prime })\in R\) s.t. \(({\mathcal M}_{r^{\prime \prime }},r^{\prime \prime }, v) \models \textsc {F}_{\mu }(\varphi _{i} \wedge \varphi _{1}, V)\) for each 2 ≤ i ≤ n (Lemma 1)
⇒ There is \(({\mathcal M}^{\prime },v) \models \varphi _{0}\) and \(({\mathcal M}^{\prime },v) \leftrightarrow _{V} ({\mathcal M},v)\) with \({\mathcal M}^{\prime }=(S,r,R,L^{\prime })\), for every (r,rj) ∈ R, there is \(({\mathcal M}_{j}^{\prime },r_{j}^{\prime },v_{j}^{\prime })\) s.t. \(({\mathcal M}_{j}^{\prime },r_{j}^{\prime },v_{j}^{\prime }) \leftrightarrow _{V} ({\mathcal M}_{r_{j}},r_{j}, v)\) and \(({\mathcal M}_{j}^{\prime },r_{j}^{\prime },v_{j}^{\prime }) \models \varphi _{1}\), and for each (r,rj) ∈ R with \(({\mathcal M}_{r_{j}},r_{j}, v) \models \textsc {F}_{\mu }(\varphi _{i} \wedge \varphi _{1}, V)\) and 2 ≤ i ≤ n, there is \(({\mathcal M}_{j}^{\prime }, r_{j}^{\prime }, v_{j}^{\prime }) \leftrightarrow _{V} ({\mathcal M}_{r_{j}},r_{j},v)\) s.t. \(({\mathcal M}_{j}^{\prime }, r_{j}^{\prime }, v_{j}^{\prime })\models \varphi _{i} \wedge \varphi _{1}\) (j ≥ 0, and we assume Sx ∩ Sy = ∅ when x≠y), where \(\{r_{0}, r_{1}, \dots \} = \{r^{\prime }\mid (r,r^{\prime })\in R\}\), \({\mathcal M}_{j}^{\prime }=(S_{j}^{\prime },r_{j}^{\prime }, R_{j}^{\prime }, L_{j}^{\prime })\)
⇒ There is \(({\mathcal M}^{*},v^{*}) \leftrightarrow _{V} ({\mathcal M},v)\) s.t. \(({\mathcal M}^{*}, v^{*}) \models \varphi _{0} \wedge \textsc {a}\textsc {x} \varphi _{1} \wedge \bigwedge _{2\leq i\leq n} \textsc {e}\textsc {x}(\varphi _{i} \wedge \varphi _{1})\), where \({\mathcal M}^{*}=(S^{*},r, R^{*}, L^{*})\) and
-
\(S^{*} = \{r\} \cup \bigcup _{j\geq 0} S_{j}^{\prime }\),
-
\(R^{*} = \{(r,r_{j}^{\prime }) \mid j \geq 0\}\cup \bigcup _{j\geq 0} R_{j}^{\prime }\),
-
\(L^{*}(s) = L_{j}^{\prime }(s)\) for \(s\in S_{j}^{\prime }\) and \(L^{*}(r) = L^{\prime }(r)\), and
-
for all \(X \in {\mathcal V}\),
$$v^{*}(X) = \left\{ \begin{array}{ll} \bigcup_{i\geq 0} v_{j}^{\prime}(X), \ \ \qquad \qquad \quad \text{if} r \not \in v(X); \\ \bigcup_{i\geq 0} v_{j}^{\prime}(X) \cup \{r\}, \ \ \ \quad \ \ \ \text{otherwise.} \end{array} \right.$$
⇒ \(({\mathcal M},v) \models \textsc {F}_{\mu }(\varphi _{0} \wedge \textsc {a}\textsc {x} \varphi _{1} \wedge \textsc {e}\textsc {x} \varphi _{2} \wedge {\dots } \wedge \textsc {e} \textsc {x} \varphi _{n},V)\). □
Proposition 12 Let \(V\subseteq \mathcal {A}\) be a set of atoms and φ a μ-formula in x-class. There is a μ-formula ψ in x-class such that ψ ≡Fμ(φ,V ).
Proof
Suppose the degree of temporal operators in φ is degree(φ) = n; we prove this result by inducting the degree n of φ.
- Base case. :
-
n = 0. φ is a formula that may contain free variables. Then, we have Fμ(φ,V ) = Forget(φ,V ) by Theorem 7 and Proposition 8 (vi).
- Step case. :
-
Suppose Fμ(φ1,V ) is in x-class for any formula φ1 with degree(φ1) ≤ k. We prove Fμ(φ2,V ) is in x-class for any formula φ2 with degree(φ2) = k + 1.
φ2 can be transformed into the disjunction (denoted as \(\varphi ^{\prime }\)) of formulas with the form (1) and \(degree(\varphi ^{\prime }) \leq k+1\) since there will not introduce new nested modal operators during the transformation.
Without loss of generality, suppose
and φi,j (1 ≤ i ≤ x, 1 ≤ j ≤ ni) are formulas with degree(φi,j) ≤ k.
According to Lemma 2 and Proposition 8, we have
Therefore, we have \(\textsc {F}_{\mu }(\varphi ^{\prime }, V)\) in x-class by induction hypothesis. □
Proposition 13 Let φ be a μ-sentence and \(p\in \mathcal {A}\). If φ is a disjunctive μ-formula, then Fμ(φ,{p}) can be computed in linear time in the size of φ.
Proof
Fμ(φ,{p}) can be computed by simultaneously substituting the literals p and ¬p with ⊤ provided the context φ is disjunctive.
In this case, we need only to scan φ once, and this can be done in linear time in the size of φ. □
Proposition 14 (Model Checking) Given a finite Kripke structure \({\mathcal M}\), a μ-sentence φ, and \(V\subseteq \mathcal {A}\). We have:
-
(i)
deciding \({\mathcal M} \models ^{?} \textsc {F}_{\mu }(\varphi , V)\) is in Exptime,
-
(ii)
if φ is a disjunctive μ-formula, then deciding \({\mathcal M} \models ^{?} \textsc {F}_{\mu }(\varphi , V)\) is in NP∩co-NP.
Proof
For a given μ-formula, constructing a μ-automaton (also called modal automaton [49]) Aφ can be done in polynomial time if it is a disjunctive μ-formula, else in ExptimeFootnote 1. We prove (ii), then (i) can be proved similarly.
Let Aφ be a μ-automaton such that, for any Kripke structure \({\mathcal N}\), Aφ accepts \({\mathcal N}\) iff \({\mathcal N} \models \varphi\), where Aφ = (Q,Σp,Σr,q0,δ,Ω) with Σp = Var(φ). Without loss of generality, we assume \(V \subseteq \textit {Var}(\varphi )\) and V = {p}. Therefore we can construct a μ-automaton \({\mathcal B}= (Q, {\Sigma }_{p} - V, {\Sigma }_{r}, q_{0}, \delta ^{\prime }, {\Omega })\) such that, for any q ∈ Q and \(L\subseteq {\Sigma }_{p} - V\),
It has been proved in [45] that, for each Kripke structure \({\mathcal N}\), \({\mathcal B}\) accepts \({\mathcal N}\) iff there is a model \({\mathcal N}^{\prime }\) of φ s.t. \({\mathcal N} \leftrightarrow _{\{p\}} {\mathcal N}^{\prime }\), i.e. \({\mathcal B}\) corresponds to a μ-sentence which is equivalent to Fμ(φ,V ) by the definition of forgetting in μ-calculus.
In this case, the problem \({\mathcal M} \models ^{?} \textsc {F}_{\mu }(\varphi , V)\) is reduced to decide whether \({\mathcal B}\) accepts \({\mathcal M}\). The automaton \({\mathcal B}\) accepts a Kripke structure \({\mathcal M}=(S, r, R,L)\) from the root r iff Eve has a winning strategy in the parity game \({\mathcal G}({\mathcal M}, {\mathscr{B}})\) from the position (r,q0), which is in NP∩co-NP [49]. □
Theorem 15 (Entailment) Let φ and ψ be two μ-sentences and V be a set of atoms. Then, we have.
-
(i)
Deciding Fμ(φ,V )⊧?ψ is Exptime-complete,
-
(ii)
Deciding \(\psi \models ^{?} \textsc {F}_{\mu }(\varphi , V)\) is in Exptime,
-
(iii)
Deciding \(\textsc {F}_{\mu }(\varphi , V) \models ^{?} \textsc {F}_{\mu }(\psi , V)\) is in Exptime.
Proof
Membership. Let Aφ and Aψ be the μ-automaton of φ and ψ respectively, we can construct the μ-automaton \({\mathcal B}\) of Fμ(φ,V ) from Aφ by the proof of Proposition 14. By Proposition 7.3.2 in [53] , we can obtain the complement C of Aψ in linear time, and then the intersection \(A_{C \cap {\mathcal B}}\) between C and \({\mathcal B}\) in linear time. In this case, the Fμ(φ,V )⊧?ψ is reduced to decide whether the language accepted by \(A_{C \cap {\mathcal B}}\) is empty, which is Exptime-complete (Theorem 7.5.1 of [53]).
Therefore, deciding Fμ(φ,V )⊧?ψ is in Exptime.
Hardness. Fμ(φ,V )⊧ψ if and only if ¬Fμ(φ,V ) ∨ ψ is valid. Let ψ ≡⊥, Fμ(φ,V )⊧⊥ if and only if φ⊧⊥, which is Exptime-complete [49].
(ii) This can be similarly proved as that of (i).
(iii) can be similarly proved as that of (ii) since Fμ(φ,V )⊧Fμ(ψ,V ) if and only if φ⊧Fμ(ψ,V ). □
Appendix C:: Proofs in Section 5
Proposition 17 (dual) Let V,q,φ and ψ be defined as in Definition 5. Then, ψ is an SNC (a WSC) of q on V under φ iff ¬ψ is a WSC (an SNC) of ¬q on V under φ.
Proof
-
(i)
Suppose that ψ is the SNC of q and \(\psi ^{\prime }\) is any SC of ¬q.
\(\varphi \models q \rightarrow \psi\)
⇒ \(\varphi \models \neg \psi \rightarrow \neg q\).
This shows that ¬ψ is an SC of ¬q on V under φ.
\(\varphi \models \psi ^{\prime } \rightarrow \neg q\)
⇒ \(\varphi \models q \rightarrow \neg \psi ^{\prime }\), i.e., \(\neg \psi ^{\prime }\) is an NC of q on V under φ
⇒ \(\varphi \models \psi \rightarrow \neg \psi ^{\prime }\) by assumption
⇒ \(\varphi \models \psi ^{\prime } \rightarrow \neg \psi\).
The proof of the other part of the proposition is similar.
-
(ii)
The WSC case can be proved in a similar way to the SNC case.
□
Lemma 4
Let φ and α be two μ-formulas, and q be an atom with q∉Var(φ) ∪Var(α). Then, \(\textsc {F}_{\mu }(\varphi \wedge (q\leftrightarrow \alpha ), \{q\})\equiv \varphi\).
Proof
Let \(\varphi^{\prime } =\varphi \wedge (q\leftrightarrow \alpha )\). For each model \(({\mathcal M},v)\) of \(\textsc {F}_{\mu }(\varphi ^{\prime }, \{q\})\), there is an valuation \(({\mathcal M}^{\prime },v^{\prime })\) s.t. HCode \(({\mathcal M},v)\leftrightarrow _{\{q\}}({\mathcal M}^{\prime },v^{\prime })\) and \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi ^{\prime }\). It’s evident that \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi\), and then \(({\mathcal M},v) \models \varphi\) since IR(φ,{q}) and \(({\mathcal M},v)\leftrightarrow _{\{q\}}({\mathcal M}^{\prime },v^{\prime })\).
Let \(({\mathcal M},v) \in \textit {Mod}(\varphi )\) with \({\mathcal M}=(S, s, R, L)\). We construct \(({\mathcal M}^{\prime },v^{\prime })\) with \({\mathcal M}^{\prime } = (S, s, R, L^{\prime })\) as follows:
It is obvious that \({\mathcal M}^{\prime } \leftrightarrow _{\{q\}} {\mathcal M}\), then there is a {q}-bisimulation \({\mathscr{B}}\) between \({\mathcal M}\) and \({\mathcal M}^{\prime }\). Moreover, let \(v^{\prime }(X) = {\mathscr{B}}(v(X))\) for each \(X\in {\mathcal V}\).
Therefore, we have \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi\), \(({\mathcal M}^{\prime },v^{\prime }) \models q\leftrightarrow \alpha\), and \(({\mathcal M},v)\leftrightarrow _{\{q\}}({\mathcal M}^{\prime },v^{\prime })\). Hence, \(({\mathcal M}^{\prime },v^{\prime }) \models \varphi \wedge (q\leftrightarrow \alpha )\), and then \(({\mathcal M},v) \models \textsc {F}_{\mu } (\varphi \wedge (q\leftrightarrow \alpha ), \{q\})\) by \(({\mathcal M},v)\leftrightarrow _{\{q\}}({\mathcal M}^{\prime },v^{\prime })\) and \(\text {IR}(\textsc {F}_{\mu } (\varphi \wedge (q\leftrightarrow \alpha ), q), \{q\})\). □
Proposition 18 Let Γ and α be two μ-formulas, \(V \subseteq \textit {Var}(\alpha ) \cup \textit {Var}({\Gamma })\) and q be a new atom not in Γ and α. Then, a formula φ with\(\textit {Var}(\varphi ) \subseteq V\) is the SNC (WSC) of α on V under Γ iff it is the SNC (WSC) of q on V under\({\Gamma }^{\prime } = {\Gamma } \cup \{q \leftrightarrow \alpha \}\).
Proof
We prove this for SNC. The case for WSC is similar. Let SNC(φ,β,V,Γ) denote that φ is the SNC of β on V under Γ, and NC(φ,β,V,Γ) denote that φ is the NC of β on V under Γ, in which β is a formula.
(⇒) We will show \(\textit {SNC}(\varphi ,\alpha ,V,{\Gamma })\Rightarrow \textit {SNC}(\varphi ,q,V,{\Gamma }^{\prime })\). Suppose \(\varphi ^{\prime }\) is any NC of q on V under \({\Gamma }^{\prime }\).
\({\Gamma } \models \alpha \rightarrow \varphi\) (known)
⇒ \({\Gamma } \wedge (q \leftrightarrow \alpha ) \models \alpha \rightarrow \varphi\)
⇒ \({\Gamma }^{\prime } \models q \rightarrow \varphi\) (q ≡ α)
\({\Gamma }^{\prime } \models q \rightarrow \varphi ^{\prime }\) (assumption)
⇒ \({\Gamma }^{\prime } \models \alpha \rightarrow \varphi ^{\prime }\) (q ≡ α)
⇒ \(\textsc {F}_{\mu }({\Gamma }^{\prime }, \{q\}) \models \alpha \rightarrow \varphi ^{\prime }\) (\(\text {IR}(\alpha \rightarrow \varphi ^{\prime }, \{q\})\), (PP))
⇒ \({\Gamma } \models \alpha \rightarrow \varphi ^{\prime }\) (Lemma 4)
⇒ \({\Gamma } \models \varphi \rightarrow \varphi ^{\prime }\) (known: SNC(φ,α,V,Γ))
⇒ \({\Gamma }^{\prime } \models \varphi \rightarrow \varphi ^{\prime }\).
In total, φ is an NC of q on V under \({\Gamma }^{\prime }\) and for any NC \(\varphi ^{\prime }\) of q on V under \({\Gamma }^{\prime }\), there is \({\Gamma }^{\prime } \models \varphi \rightarrow \varphi ^{\prime }\). Therefore, \(\textit {SNC}(\varphi ,q,V,{\Gamma }^{\prime })\) holds.
(⇐) We will show that \(\textit {SNC}(\varphi ,q,V,{\Gamma }^{\prime })\Rightarrow \textit {SNC}(\varphi ,\alpha ,V,{\Gamma })\). Suppose \(\varphi ^{\prime }\) is any NC of α on V under Γ.
\({\Gamma }^{\prime } \models q \rightarrow \varphi\) (known)
⇒ \({\Gamma }^{\prime } \models \alpha \rightarrow \varphi\) (q ≡ α)
⇒ \(\textsc {F}_{\mu }({\Gamma }^{\prime }, \{q\}) \models \alpha \rightarrow \varphi\) (\(\text {IR}(\alpha \rightarrow \varphi , \{q\})\), (PP))
⇒ \({\Gamma } \models \alpha \rightarrow \varphi\) (Lemma 4)
\({\Gamma } \models \alpha \rightarrow \varphi ^{\prime }\) (assumption)
⇒ \({\Gamma }^{\prime } \models \alpha \rightarrow \varphi ^{\prime }\)
⇒ \({\Gamma }^{\prime } \models q \rightarrow \varphi ^{\prime }\) (q ≡ α)
⇒ \({\Gamma }^{\prime } \models \varphi \rightarrow \varphi ^{\prime }\) (known: \(\textit {SNC}(\varphi ,q,V,{\Gamma }^{\prime })\))
⇒ \(\textsc {F}_{\mu }({\Gamma }^{\prime }, \{q\}) \models \varphi \rightarrow \varphi ^{\prime }\) (\(\text {IR}(\varphi \rightarrow \varphi ^{\prime }, \{q\})\), (PP))
⇒ \({\Gamma } \models \varphi \rightarrow \varphi ^{\prime }\) (Lemma 4)
In total, φ is an NC of α on V under Γ and for any NC \(\varphi ^{\prime }\) of α on V under Γ, there is \({\Gamma } \models \varphi \rightarrow \varphi ^{\prime }\). Therefore, SNC(φ,α,V,Γ) holds. □
Proposition 20 Let Γ be a μ-formula, q be an atom, and \(V\subseteq \textit {Var}({\Gamma })\).
-
(i)
If φ is an NC of q on V under Γ, and ψ is the WSC of q on V under Γ ∧ φ, then φ ∧ ψ is the WSC of q on V under Γ.
-
(ii)
If ψ is an SC of q on V under Γ and φ is the SNC of q on V under Γ ∧¬ψ, then φ ∨ ψ is the SNC of q on V under Γ.
Proof
-
(i)
Suppose \(\varphi ^{\prime }\) is an SC of q on V under Γ, i.e. \({\Gamma } \models \varphi ^{\prime } \rightarrow q\).
\({\Gamma } \wedge \varphi \models \psi \rightarrow q\) (known)
⇒ Γ∧ φ ∧ ψ⊧q
⇒ \({\Gamma } \models \varphi \wedge \psi \rightarrow q\).
\({\Gamma } \models q \rightarrow \varphi\) and \({\Gamma } \models \varphi ^{\prime } \rightarrow q\) (known, assumption)
⇒ \({\Gamma } \models \varphi ^{\prime } \rightarrow \varphi\) and \({\Gamma } \wedge \varphi \models \varphi ^{\prime } \rightarrow q\)
⇒ \({\Gamma } \wedge \varphi ^{\prime } \models \varphi\) and \({\Gamma } \wedge \varphi \models \varphi ^{\prime } \rightarrow \psi\) since ψ is the WSC of q on V under Γ ∧ φ
⇒ \({\Gamma } \wedge \varphi ^{\prime } \models \varphi\) and \({\Gamma } \wedge \varphi ^{\prime } \models \psi\)
⇒ \({\Gamma } \models \varphi ^{\prime }\rightarrow \varphi \wedge \psi\).
Therefore, φ ∧ ψ is an SC of q on V under Γ. In addition, for any SC \(\varphi ^{\prime }\) of q on V under Γ, there is \({\Gamma } \models \varphi ^{\prime }\rightarrow \varphi \wedge \psi\). Hence, φ ∧ ψ is the WSC of q on V under Γ.
-
(ii)
Let SNC(φ,β,V,Γ) (WSC(φ,β,V,Γ)) denote that φ is the SNC (WSC) of β on V under Γ, and NC(φ,β,V,Γ) (SC(φ,β,V,Γ)) denote that φ is an NC (SC) of β on V under Γ, in which β is a formula.
\({\Gamma } \models \psi \rightarrow q\) (known)
⇒ \({\Gamma } \models \neg q \rightarrow \neg \psi\), i.e., NC(¬ψ,¬q,V,Γ)
SNC(φ,q,V,Γ ∧¬ψ) implies WSC(¬φ,¬q,V,Γ ∧¬ψ) by Proposition 17.
NC(¬ψ,¬q,V,Γ) and WSC(¬φ,¬q,V,Γ ∧¬ψ)
⇒ \(\textit {NC}(\neg \psi , q^{\prime }, V, {\Gamma } \wedge (q^{\prime } \leftrightarrow \neg q))\) and \(\textit {WSC}(\neg \varphi , q^{\prime },V,{\Gamma } \wedge (q^{\prime } \leftrightarrow \neg q) \wedge \neg \psi )\) with \(q^{\prime }\) is a new atom not in Γ ∧¬q ∧¬ψ (Prop. 18)
⇒ \(\textit {WSC}(\neg \varphi \wedge \neg \psi , q^{\prime },V,{\Gamma } \wedge (q^{\prime } \leftrightarrow \neg q))\) (i)
⇔ WSC(¬φ ∧¬ψ,¬q,V,Γ) (Prop. 18)
⇒ SNC(φ ∨ ψ,q,V,Γ) (Prop. 17) □
Theorem 21 Let ψ and φ be two μ-sentences, \(variable(\varphi ) \subseteq V\subseteq \textit {Var}(\varphi )\), q ∈Var(φ) − V and \(\textit {Var}(\psi ) \subseteq V\). Then, we have
-
(i)
deciding whether ψ is an NC (SC) of q on V under φ is Exptime-complete;
-
(ii)
deciding whether ψ is an SNC (a WSC) of q on V under φ is in Exptime.
Proof
We prove the NC (SNC) part, the SC (WSC) part can be proved similarly.
-
(i)
ψ is an NC of q on V under φ iff \(\varphi \models q \rightarrow \psi\), deciding whether \(\varphi \models q \rightarrow \psi\) is Exptime-complete [49].
-
(ii)
ψ is an SNC of q on V under φ iff ψ ≡Fμ(φ ∧ q, (Var(φ) ∪{q}) − V ). According to Corollary 16, it is in Exptime.
□
Theorem 22 Let \(V \subseteq \mathcal A\) and φ be a μ-sentence. Then there is a μ-sentence ψ such that:
where both \({\mathcal M}\) and \({\mathcal M}^{\prime }\) are initial structures.
Proof
Let ψ = Fμ(φ,V ). For each initial structure \({\mathcal M}\), if \({\mathcal M} \models \psi\) then there is an initial structure \({\mathcal M}^{\prime }\) s.t. \({\mathcal M}^{\prime } \models \varphi\) and \({\mathcal M} \leftrightarrow _{V} {\mathcal M}^{\prime }\).
In addition, for any initial structure \({\mathcal M}\) and \({\mathcal M}^{\prime } \in \textit {Mod}(\varphi )\) with \({\mathcal M} \leftrightarrow _{V} {\mathcal M}^{\prime }\), there is \({\mathcal M} \models \psi\) due to IR(ψ,V ). □
Theorem 24 Let Γ and φ be μ-sentences. Then, we have:
Proof
\({\mathcal M}^{\prime }\in \textit {Mod}({\Gamma } \diamond _{\mu } \varphi )\)
⇔ There is \({\mathcal M} \models {\Gamma }\) and a minimal set \(V_{min} \subseteq \mathcal {A}\) s.t. \({\mathcal M}^{\prime } \in \textit {Mod}(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M})\), Vmin) ∧ φ)
⇔ There is \({\mathcal M} \models {\Gamma }\) and \(V_{min}\subseteq \mathcal {A}\) s.t. \({\mathcal M} \leftrightarrow _{V_{min}} {\mathcal M}^{\prime }\), \({\mathcal M}^{\prime } \models \varphi\), and Vmin is a minimal subset of \(\mathcal {A}\) s.t. \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M})\), Vmin) ∧ φ consistent
⇔ There is \({\mathcal M} \models {\Gamma }\) s.t. for all \({\mathcal M}^{\prime \prime }\models \varphi\), we have \({\mathcal M}^{\prime } \leq _{{\mathcal M}} {\mathcal M}^{\prime \prime }\)
⇔ \({\mathcal M}^{\prime } \in Min(\textit {Mod}(\varphi ), \leq _{{\mathcal M}})\). □
Theorem 25 Knowledge update operator ◇μ satisfies Katsuno and Mendelzon’s update postulates (U1)-(U8).
Proof
For (U1), we know that \(\textit {Mod}({\Gamma } \diamond _{\mu } \varphi ) \subseteq \textit {Mod}(\varphi )\) by Theorem 24, hence Γ ◇μφ⊧φ.
(U2). \({\mathcal M}^{\prime }\in \textit {Mod}({\Gamma } \diamond _{\mu } \varphi )\)
⇔ There is \({\mathcal M} \models {\Gamma }\) s.t. for any \({\mathcal M}^{\prime \prime } \models \varphi\) and \(V \subseteq \mathcal {A}\), \({\mathcal M}^{\prime \prime } \leftrightarrow _{V} {\mathcal M}\) implies \({\mathcal M}^{\prime } \leftrightarrow _{V} {\mathcal M}\)
⇔ There is \({\mathcal M} \models {\Gamma }\) and Vmin = ∅ s.t. \({\mathcal M}^{\prime } \leftrightarrow _{V_{min}} {\mathcal M}\) due to Γ⊧φ
⇔ \({\mathcal M}^{\prime }\models {\Gamma }\).
It is easy to show that ◇μ satisfies (U3) and (U4).
(U5). \({\mathcal M}^{\prime }\models ({\Gamma } \diamond _{\mu } \varphi ) \wedge \psi\)
⇒ There is \({\mathcal M} \models {\Gamma }\) s.t. for any \({\mathcal M}^{\prime \prime } \models \varphi \wedge \psi\) and \(V \subseteq \mathcal {A}\), \({\mathcal M}^{\prime \prime } \leftrightarrow _{V} {\mathcal M}\) implies \({\mathcal M}^{\prime } \leftrightarrow _{V} {\mathcal M}\)
⇒ There is \({\mathcal M} \models {\Gamma }\), \(V_{min} \subseteq \mathcal {A}\) s.t. \({\mathcal M}^{\prime } \leftrightarrow _{V_{min}} {\mathcal M}\) with Vmin is a minimal subset of \(\mathcal {A}\) satisfy those properties, and \({\mathcal M}^{\prime } \models \varphi \wedge \psi\)
⇒ \({\mathcal M}^{\prime } \models {\Gamma } \diamond _{\mu } (\varphi \wedge \psi )\).
(U6). \({\mathcal M}^{\prime }\models {\Gamma } \diamond _{\mu } \varphi\)
⇔ There is \({\mathcal M} \models {\Gamma }\) s.t. for any \({\mathcal M}^{\prime \prime } \models \varphi\) and \(V \subseteq \mathcal {A}\), \({\mathcal M}^{\prime \prime } \leftrightarrow _{V} {\mathcal M}\) implies \({\mathcal M}^{\prime } \leftrightarrow _{V} {\mathcal M}\)
⇔ There is \({\mathcal M} \models {\Gamma }\) and \(V_{min} \subseteq \mathcal {A}\) s.t. \({\mathcal M}^{\prime } \leftrightarrow _{V_{min}} {\mathcal M}\) with Vmin is a minimal subset of \(\mathcal {A}\) s.t. \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}_{1}), V_{min}) \wedge \varphi\) and \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}_{1}), V_{min}) \wedge \psi\) consistent due to Γ ◇μφ⊧ψ and Γ ◇μψ⊧φ (Otherwise, suppose that V ⊂ Vmin s.t. \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}_{1}), V) \wedge \psi\) is consistent as well. Then, \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}_{1}), V)\) ∧ φ should also be consistent by Γ ◇μφ⊧ψ, which contradicts to the fact that Vmin is the minimal set of atoms s.t. \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}_{1}), V_{min}) \wedge \varphi\) is consistent.)
⇔ There is \({\mathcal M} \models {\Gamma }\) s.t. for any \({\mathcal M}^{\prime \prime } \models \psi\) and \(V \subseteq \mathcal {A}\), \({\mathcal M}^{\prime \prime } \leftrightarrow _{V} {\mathcal M}\) implies \({\mathcal M}^{\prime } \leftrightarrow _{V} {\mathcal M}\)
⇔ \({\mathcal M}^{\prime } \models {\Gamma } \diamond _{\mu } \psi\)
(U7). \({\mathcal M}^{\prime } \models ({\Gamma } \diamond _{\mu } \varphi ) \wedge ({\Gamma } \diamond _{\mu } \psi )\) and \({\mathcal M}\) is the unique model of Γ
⇒ There is two minimal set \(V_{1}, V_{2} \subseteq \mathcal {A}\) s.t. \({\mathcal M} \leftrightarrow _{V_{1}} {\mathcal M}^{\prime }\) and \({\mathcal M} \leftrightarrow _{V_{2}} {\mathcal M}^{\prime }\)
⇒ There is two minimal set \(V_{1}, V_{2} \subseteq \mathcal {A}\) s.t. \({\mathcal M}^{\prime } \models \textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}), V_{1}) \wedge \varphi\) and \({\mathcal M}^{\prime } \models \textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}),\) V2) ∧ ψ consistent
⇒ \({\mathcal M}^{\prime } \models \textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}), V_{1} \cap V_{2})\), \({\mathcal M}^{\prime } \leftrightarrow _{V_{1} \cap V_{2}} {\mathcal M}\), and V1 = V2
⇒ V1 is a minimal set s.t. \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}), V_{1}) \wedge (\varphi \vee \psi )\) is consistent (Otherwise, suppose that V3 ⊂ V1 s.t. \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}), V_{3}) \wedge (\varphi \vee \psi )\) is satisfiable. Then \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}), V_{3}) \wedge \varphi\) or \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}), V_{3}) \wedge \psi\) is satisfiable. Without loss of generality, suppose that \(\textsc {F}_{\mu }({\mathcal F}_{\mathcal {A}}({\mathcal M}), V_{3}) \wedge \varphi\) is satisfiable, V1 is not the minimal set, a contradiction.)
⇒ \({\mathcal M}^{\prime } \models {\Gamma } \diamond _{\mu } (\varphi \vee \psi )\).
(U8). \({\mathcal M} \models ({\Gamma }_{1} \vee {\Gamma }_{2}) \diamond _{\mu } \varphi\)
⇔ There is an \({\mathcal M}_{1} \models {\Gamma }_{1}\) (or \({\mathcal M}_{1} \models {\Gamma }_{2}\)) and a minimal set Vmin s.t. \({\mathcal M} \leftrightarrow _{V_{min}} {\mathcal M}_{1}\)
⇔ \({\mathcal M} \models ({\Gamma }_{1} \diamond _{\mu } \varphi ) \vee ({\Gamma }_{2} \diamond _{\mu } \varphi )\). □
Rights and permissions
About this article
Cite this article
Feng, R., Wang, Y., Qian, R. et al. Knowledge forgetting in propositional μ-calculus. Ann Math Artif Intell 91, 1–43 (2023). https://doi.org/10.1007/s10472-022-09803-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-022-09803-4