Abstract
The mass of the lower extremity muscles is a clinically significant metric. Manual segmentation of these muscles is a time-consuming task. Most of the segmentation methods for the thigh muscles are based on statistical models and atlases which need manually segmented datasets. The goal of this work is an automatic segmentation of the thigh muscles with only one initial segmented slice. A new automatic method is proposed for concurrent individual thigh muscles segmentation using a hybrid level set method and anatomical information of the muscles. In the proposed method, the muscle regions are extracted by the Fast and Robust Fuzzy C-Means Clustering (FRFCM) method, and then a contour is determined for each muscle which changes according to the muscle shape variation through its length. The anatomical information is used to control the contours variations and to refine the final boundaries. The method was validated by 22 CT datasets. The average dice similarity coefficient (DSC) of the method for individual muscle segmentation with one and two initial slices were 89.29 ± 2.59 (%) and 91.77 ± 1.87 (%), respectively. Also, the average symmetric surface distances (ASSDs) were 0.93 ± 0.29 mm and 0.64 ± 0.18 mm. Furthermore, applying to ten MRI datasets, the average DSC and ASSD for muscles were 90.9 ± 2.61 (%) and 0.71 ± 0.33 mm, respectively. The quantitative and intuitive results of the proposed method show the effectiveness of this method in segmentation of large and small muscles in CT and MR images. The consumed computation time is lower than the previous works, and this method does not need any training datasets.












Similar content being viewed by others
References
McDermott MM, Ferrucci L, Guralnik J, Tian L, Liu K, Hoff F, Liao Y, Criqui MH: Pathophysiological changes in calf muscle predict mobility loss at 2-year follow-up in men and women with peripheral arterial disease. Circulation 120(12):1048-1055,2009
Seymour J, Spruit M, Hopkinson N, Natanek S, Man W-C, Jackson A, Gosker H, Schols A, Moxham J, Polkey M: The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J 36(1):81-88,2010
Emery AE: The muscular dystrophies. Lancet 359(9307) 687-695,2002
Yokota F, Otake Y, Takao M, Ogawa T, Okada T, Sugano N, Sato Y: Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method. Int J Comput Assist Radiol Surg 1-10,2018.
Uemura K, Takao M, Sakai T, Nishii T, Sugano N: Volume increases of the gluteus maximus, gluteus medius, and thigh muscles after hip arthroplasty. J Arthroplast 31(4):906-912.e1,2016
Andrews S, Hamarneh G: The generalized log-ratio transformation: learning shape and adjacency priors for simultaneous thigh muscle segmentation. IEEE Trans Med Imaging 34(9): 1773-1787,2015
Andrews S, Hamarneh G, Yazdanpanah A, HajGhanbari B, Reid WD: Probabilistic multi-shape segmentation of knee extensor and flexor muscles, International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2011, pp. 651-658.
Jolivet E, Dion E, Rouch P, Dubois G, Charrier R, Payan C, Skalli W: Skeletal muscle segmentation from MRI dataset using a model-based approach. Comput Methods Biomech Biomed Eng 2(3) (2014) 138-145.
Baudin P-Y, Azzabou N, Carlier PG, Paragios N: Automatic skeletal muscle segmentation through random walks and graph-based seed placement, Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, IEEE, 2012, pp. 1036-1039.
Baudin P-Y, Azzabou N, Carlier PG, Paragios N: Prior knowledge, random walks and human skeletal muscle segmentation, International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, 2012, pp. 569-576.
Südhoff I, de Guise JA, Nordez A, Jolivet E, Bonneau D, Khoury V, Skalli W: 3D-patient-specific geometry of the muscles involved in knee motion from selected MRI images. Med Biol Eng Comput 47(6):579-587,2009.
Le Troter A, Fouré A, Guye M, Confort-Gouny S, Mattei J-P, Gondin J, Salort-Campana E, Bendahan D: Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. MAGMA 29(2) (2016) 245-257.
Yokota F: Automated muscle segmentation from 3D CT data of the hip using a hierarchical multi-atlas method, 12th annual meeting of CAOS-international proceedings, 2012, pp. 30-32.
Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G: Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI. J Magn Reson Imaging 43(3):601-610,2016.
Tan C, Yan Z, Zhang S, Belaroussi B, Yu HJ, Miller C, Metaxas DN: An automated and robust framework for quantification of muscle and fat in the thigh, Pattern Recognition (ICPR), 2014 22nd International Conference on, IEEE, 2014, pp. 3173-3178.
Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O: Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI. J Magn Reson Imaging 41(6):1558-1569,2015.
Yao J, Kovacs W, Hsieh N, Liu C-Y, Summers RM: Holistic segmentation of intermuscular adipose tissues on thigh MRI, International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2017, pp. 737-745.
Ghosh S, Ray N, Boulanger P: A Structured Deep-Learning Based Approach for the Automated Segmentation of Human Leg Muscle from 3D MRI, 2017 14th Conference on Computer and Robot Vision (CRV), IEEE, 2017, pp. 117-123.
Ahmad E, Goyal M, McPhee JS, Degens H, Yap MH: Semantic segmentation of human thigh quadriceps muscle in magnetic resonance images, arXiv preprint arXiv:1801.00415 (2018).
Blaak E: Gender differences in fat metabolism, Curr Opin Clin Nutr Metab Care 4(6):499-502,2001.
Otake Y, Yokota F, Fukuda N, Takao M, Takagi S, Yamamura N, O’Donnell LJ, Westin C-F, Sugano N, Sato Y: Patient-Specific Skeletal Muscle Fiber Modeling from Structure Tensor Field of Clinical CT Images, International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2017, pp. 656-663.
Kemnitz J, Eckstein F, Culvenor AG, Ruhdorfer A, Dannhauer T, Ring-Dimitriou S, Sänger AM, Wirth W: Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas. MAGMA 30(5):489-503,2017.
Prescott JW, Best TM, Swanson MS, Haq F, Jackson RD, Gurcan MN: Anatomically anchored template-based level set segmentation: application to quadriceps muscles in MR images from the Osteoarthritis Initiative. J Digit Imaging 24(1):28-43,2011
Kemnitz J, Eckstein F, Culvenor A, Ruhdorfer A, Dannhauer T, Ring-Dimitriou S, Sänger A, Wirth W: Validation of a 3D thigh muscle and adipose tissue segmentation method using statistical shape models. Osteoarthr Cartil 26:S457-S458,2018.
Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P:The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Internet Res 15(11):2013
Kroon D-J, Slump CH, Maal TJ: Optimized anisotropic rotational invariant diffusion scheme on cone-beam CT, International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2010, pp. 221-228.
Abdolali F, Zoroofi RA, Otake Y, Sato Y: Automatic segmentation of maxillofacial cysts in cone beam CT images. Comput Biol Med 72 (2016) 108-119.
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC: N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310-1320,2010
J.C. Bezdek, R. Ehrlich, W. Full, FCM: The fuzzy c-means clustering algorithm, Comput Geosci 10(2-3) (1984) 191-203.
Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Syst, 2018
Kroon D-J, Slump CH: MRI modalitiy transformation in demon registration, Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on, IEEE, 2009, pp. 963-966.
Chan TF, Vese LA: Active contours without edges. IEEE Trans Image Process 10(2):266-277,2001
Taha AA, Hanbury A: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool, BMC Med Imaging 15(1):29,2015
Bischof H, Raicu D, Rau A: Comparison and Evaluation of Methods for Liver Segmentation from CT Datasets, 2009.
Acknowledgment
The authors would like to sincerely acknowledge the valuable comments and supports of Professor Yoshinobu Sato and Dr. Yoshito Otake, both from Nara Institute of Science and Technology (NAIST), Japan, throughout this research.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Molaie, M., Zoroofi, R.A. A Knowledge-Based Modality-Independent Technique for Concurrent Thigh Muscle Segmentation: Applicable to CT and MR Images. J Digit Imaging 33, 1122–1135 (2020). https://doi.org/10.1007/s10278-020-00354-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10278-020-00354-w