[go: up one dir, main page]

Skip to main content
Log in

Parametric and nonparametric tests for speckled imagery

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Synthetic aperture radar (SAR) has a pivotal role as a remote imaging method. Obtained by means of coherent illumination, SAR images are contaminated with speckle noise. The statistical modeling of such contamination is well described according to the multiplicative model and its implied \(\fancyscript{G}^0\) distribution. The understanding of SAR imagery and scene element identification is an important objective in the field. In particular, reliable image contrast tools are sought. Aiming the proposition of new tools for evaluating SAR image contrast, we investigated new methods based on stochastic divergence. We propose several divergence measures specifically tailored for \(\fancyscript{G}^0\) distributed data. We also introduce a nonparametric approach based on the Kolmogorov–Smirnov distance for \(\fancyscript{G}^0\) data. We devised and assessed tests based on such measures, and their performances were quantified according to their test sizes and powers. Using Monte Carlo simulation, we present a robustness analysis of test statistics and of maximum likelihood estimators for several degrees of innovative contamination. It was identified that the proposed tests based on triangular and arithmetic-geometric measures outperformed the Kolmogorov–Smirnov methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allende H, Frery AC, Galbiati J, Pizarro L (2006) M-estimators with asymmetric influence functions: the GA0 distribution case. J Stat Comput Simul 76(11):941–956

    Article  MathSciNet  MATH  Google Scholar 

  2. Andai A (2009) On the geometry of generalized Gaussian distributions. J Multivar Anal 100(4):777–793

    Article  MathSciNet  MATH  Google Scholar 

  3. Anfinsen SN, Doulgeris AP, Eltoft T (2009) Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans Geosci Remote Sens 47(11): 3795–3809

    Article  Google Scholar 

  4. Blacknell D, Blake AP, Oliver CJ (1995) High resolution SAR clutter texture analysis and simulation. In: SPIE conference synthetic aperture radar and passive microwave sensing, vol 2584. Paris, France, pp 101–108

  5. Bustos OH, Lucini MM, Frery AC (2002) M-estimators of roughness and scale for GA0-modelled SAR imagery. EURASIP J Appl Signal Process 2002(1): 105–114

    Article  MATH  Google Scholar 

  6. Cribari-Neto F, Frery AC, Silva MF (2002) Improved estimation of clutter properties in speckled imagery. Comput Stat Data Anal 40(4):801–824

    Article  MathSciNet  MATH  Google Scholar 

  7. Cribari-Neto F, Zarkos SG (1999) R: yet another econometric programming environment. J Appl Econom 14:319–329

    Article  Google Scholar 

  8. Daba JS, Bell MR (1994) Statistical distributions of partially developed speckle based on a small number of constant scatterers with random phase. In: Geoscience and remote sensing symposium IGARSS ’94. vol 4, pp 2338–2341

  9. Donohue KD, Rahmati M, Hassebrook LG, Gopalakrishnan P (1993) Parametric and nonparametric edge detection for speckle degraded images. Opt Eng 32(8):1935–1946

    Article  Google Scholar 

  10. Doornik JA (1999) Object-oriented matrix programming using Ox, 3 edn.

  11. Doulgeris AP, Eltoft T (2010) Scale mixture of Gaussian modelling of polarimetric SAR data. EURASIP J Adv Signal Process 2010(874592)

  12. Fox AJ (1972) Outliers in time series. J Royal Stat Soc Ser B (Methodological) 34(3):350–363

    MathSciNet  MATH  Google Scholar 

  13. Freitas CC, Frery AC, Correia AH (2005) The polarimetric G distribution for SAR data analysis. Environmetrics 16(1):13–31

    Article  MathSciNet  Google Scholar 

  14. Frery AC, Correia AH, Freitas CC (2007) Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Trans Geosci Remote Sens 45:3098–3109

    Article  Google Scholar 

  15. Frery AC, Cribari-Neto F, Souza MO (2004) Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP J Appl Signal Process 2004(16):2476–2491

    Article  MATH  Google Scholar 

  16. Frery AC, Muller HJ, Yanasse CCF, Sant’Anna SJS (1997) A model for extremely heterogeneous clutter. IEEE Trans Geosci Remote Sens 35(3): 648–659

    Article  Google Scholar 

  17. Frery AC, Nascimento ADC, Cintra RJ (2010) Contrast in speckled imagery with stochastic distances. In: International conference on image processing (ICIP), Hong Kong, pp 26–29

  18. Frery AC, Sant’Anna SJS, Mascarenhas NDA, Bustos OH (1997) Robust inference techniques for speckle noise reduction in 1-look amplitude SAR images. Appl Signal Process 4:61–76

    Google Scholar 

  19. Galland F, Nicolas JM, Sportouche H, Roche M, Tupin F, Réfrégier P (2009) Unsupervised synthetic aperture radar image segmentation using Fisher distributions. IEEE Trans Geosci Remote Sens 47(8): 2966–2972

    Article  Google Scholar 

  20. Gambini J, Mejail M, Jacobo-Berlles J, Frery AC (2008) Accuracy of edge detection methods with local information in speckled imagery. Stat Comput 18(1):15–26

    Article  MathSciNet  Google Scholar 

  21. Gao G (2010) Statistical modeling of SAR images: a survey. Sensors 10:775–795

    Article  Google Scholar 

  22. Goudail F, Réfrégier P (2004) Contrast definition for optical coherent polarimetric images. IEEE Trans Pattern Anal Mach Intell 26(7):947–951

    Article  Google Scholar 

  23. Gudnason J, Cui J, Brookes M (2009) HRR automatic target recognition from superresolution scattering center features. IEEE Trans Aerosp Electron Syst 45(4): 1512–1524

    Article  Google Scholar 

  24. Hoekman DH, Quiñones MJ (2000) Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon. IEEE Trans Geosci Remote Sens 38: 685–696

    Article  Google Scholar 

  25. Horn R (1996) The DLR airborne SAR project E-SAR. In: Geoscience and remote sensing symposium, vol 3. IEEE Press, New Jersey, pp 1624–1628

  26. Inglada J, Mercier G (2007) A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens 45(5):1432–1445

    Article  Google Scholar 

  27. Karoui I, Fablet R, Boucher JM, Pieczynski W, Augustin JM (2008) Fusion of textural statistics using a similarity measure: Application to texture recognition and segmentation. Pattern Anal Appl 11(3-4):425–434

    Article  MathSciNet  Google Scholar 

  28. Kersten PR, Lee JS, Ainsworth TL (2005) Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans Geosci Remote Sens 43(3): 519–527

    Article  Google Scholar 

  29. Kuruoglu EE, Zerubia J (2004) Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans Image Process 13(4):527–533

    Article  Google Scholar 

  30. Lee JS, Hoppel KW, Mango SA, Miller AR (1994) Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans Geosci Remote Sens 32(5): 1017–1028

    Article  Google Scholar 

  31. Lim DH, Ju Jang S (2002) Comparison of two-sample tests for edge detection in noisy images. J Royal Stat Soc Ser D (the statistician) 51(1):21–30

    Article  MathSciNet  Google Scholar 

  32. Maillard P, Clausi DA (2005) Comparing classification metrics for labeling segmented remote sensing images. In: Computer and robot vision proceedings of the 2nd Canadian conference on computer and robot vision (CRV 2005), pp 421–428

  33. Manolova A, Guérin-Dugué A (2008) Classification of dissimilarity data with a new flexible Mahalanobis-like metric. Pattern Anal Appl 11(3-4):337–351

    Article  Google Scholar 

  34. Marghany M, Hashim M (2010) Texture entropy algorithm for automatic detection of oil spill from RADARSAT-1 SAR data. Int J Phys Sci 5(9): 1475–1480

    Google Scholar 

  35. Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8(18):1–4

    Google Scholar 

  36. Mejail ME, Frery AC, Jacobo-Berlles J, Bustos OH (2001) Approximation of distributions for SAR images: Proposal, evaluation and practical consequences. Lat Am Appl Res 31:83–92

    Google Scholar 

  37. Mejail ME, Jacobo-Berlles J, Frery AC, Bustos OH (2003) Classification of SAR images using a general and tractable multiplicative model. Int J Remote Sens 24(18): 3565–3582

    Article  Google Scholar 

  38. Mercier G, Moser G, Serpico S (2008) Conditional copulas for change detection in heterogeneous remote sensing images. IEEE Trans Geosci Remote Sens 46(5):1428–1441

    Article  Google Scholar 

  39. Morio J, Réfrégier P, Goudail F, Dubois-Fernandez PC, Dupuis X (2008) Information theory-based approach for contrast analysis in polarimetric and/or interferometric SAR images. IEEE Trans Geosci Remote Sens 46(8):2185–2196

    Article  Google Scholar 

  40. Nascimento ADC, Cintra RJ, Frery AC (2010) Hypothesis testing in speckled data with stochastic distances. IEEE Trans Geosci Remote Sens 48(1): 373–385

    Article  Google Scholar 

  41. Oliver C, Quegan S (1998) Understanding synthetic aperture radar images. Artech House

  42. Salicrú M, Menéndez ML, Pardo L, Morales D (1994) On the applications of divergence type measures in testing statistical hypothesis. J Multivar Anal 51:372–391

    Article  MathSciNet  MATH  Google Scholar 

  43. Silva M, Cribari-Neto F, Frery AC (2008) Improved likelihood inference for the roughness parameter of the GA0 distribution. Environmetrics 19(4):347–368

    Article  MathSciNet  Google Scholar 

  44. Smirnov NV (1933) Estimate of deviation between empirical distribution functions in two independent. Mosc Univ Math Bull 2(2):3–16

    Google Scholar 

  45. Tison C, Nicolas JM, Tupin F, Maitre H (2004) A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans Geosci Remote Sens 42(10): 2046–2057

    Article  Google Scholar 

  46. Vasconcellos KLP, Frery AC, Silva LB (2005) Improving estimation in speckled imagery. Comput Stat 20(3):503–519

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang Q (2005) Research on detection methods of vehicle targets from sar images based on statistical model. Master’s thesis, National University of Defence Technology, Hunan, China

  48. Zhang YD, Wu LN, Wei G (2009) A new classifier for polarimetric SAR. Prog Electromagn Res 94:83–104

    Article  Google Scholar 

  49. Ziou D, Bouguila N, Allili MS, El-Zaart A (2009) Finite gamma mixture modeling using minimum message length inference: application to SAR image analysis. Int J Remote Sens 30: 771–792

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to CNPq and FACEPE for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato J. Cintra.

Computational information

Computational information

Simulations of the (h, ϕ)-distance based parametric tests were performed in Ox programming environment [10]; function QAGI was employed for numerical integration. The Kolmogorov–Smirnov test was coded in R and function ks.test was called [35]. The computation time of the triangular and arithmetic-geometric distances took typically less than one and four millisecond, respectively, when performed in a Pentium processor at 3.20 GHz. We used the George Marsaglia’s multiply-with-carry with 52 bits pseudorandom number generator, which has an approximate period of 28222.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cintra, R.J., Frery, A.C. & Nascimento, A.D.C. Parametric and nonparametric tests for speckled imagery. Pattern Anal Applic 16, 141–161 (2013). https://doi.org/10.1007/s10044-011-0249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0249-3

Keywords

Navigation