Abstract
In this paper, we focus on multiobjective linear programming problems involving random variable coefficients in objective functions and constraints. Using the concept of chance constrained conditions, such multiobjective stochastic linear programming problems are transformed into deterministic ones based on the variance minimization model under expectation constraints. After introducing fuzzy goals to reflect the ambiguity of the decision maker’s judgements for objective functions, we propose an interactive fuzzy satisficing method to derive a satisficing solution for them as a fusion of the stochastic programming and the fuzzy one. The application of the proposed method to an illustrative numerical example shows its usefulness.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manage Sci 17:141–164
Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, London
Caballero R, Cerda E, Munoz MM, Rey L, Stancu-Minasian IM (2001) Efficient solution concepts and their relations in stochastic multiobjective programming. J Optim Theory Applicat 110:53–74. doi:10.1023/A:1017591412366
Charnes A, Cooper WW (1959) Chance constrained programming. Manage Sci 6:73–79
Dantzig GB (1955) Linear programming under uncertainty. Manage Sci 1:197–206. doi:10.1287/mnsc.1040.0261
Hulsurkar S, Biswal MP, Sinha SB (1997) Fuzzy programming approach to multi-objective stochastic linear programming problems. Fuzzy Sets and Systems 88:173–181. doi:10.1016/S0165-0114(96)00056-5
Liu B, Iwamura K (1998) Chance constrained programming with fuzzy parameters. Fuzzy Sets and Systems 94:227–237. doi:10.1016/S0165-0114(96)00236-9
Luhandjula MK (1987) Multiple objective programming problems with possibilistic coefficients. Fuzzy Sets Syst 21:135–145. doi:10.1016/0165-0114(87)90159-X
Luhandjula MK (2006) Fuzzy stochastic linear programming: survey and future research directions. Eur J Operat Res 174:1353–1367. doi:10.1016/j.ejor.2005.07.019
Rommelfanger H (1996) Fuzzy linear programming and applications. Eur J Operat Res 92:512–527. doi:10.1016/0377-2217(95)00008-9
Sakawa M (1993) Fuzzy sets and interactive multiobjective optimization. Plenum Press, New York
Sakawa M, Kato K, Nishizaki I (2003) An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model. Eur J Operat Res 145:665–672. doi:10.1016/S0377-2217(02)00150-9
Sakawa M, Yano H, Yumine T (1987) An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application. IEEE Trans Syst Man Cybern SMC 17:654–661. doi:10.1109/TSMC.1987.289356
Slowinski R, Teghem J (eds) Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty. Kluwer, Dordrecht
Stancu-Minasian IM (1990) Overview of different approaches for solving stochastic programming problems with multiple objective functions. In: Slowinski R, Teghem J (eds) Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty. Kluwer, Dordrecht, pp 71–101
Teghem J, Dufrane D, Thauvoye M, Kunsch P (1986) STRANGE: an interactive method for multi-objective linear programming under uncertainty. Eur J Operat Res 26:65–82. doi:10.1016/0377-2217(86)90160-8
Urli B, Nadeau R (2004) PROMISE/scenarios: an interactive method for multiobjective stochastic linear programming under partial uncertainty. Eur J Operat Res 155:361–372. doi:10.1016/S0377-2217(02)00859-7
Wang G-Y, Qiao Z (1993) Linear programming with fuzzy random variable coefficients. Fuzzy Sets Syst 57:295–311. doi:10.1016/0165-0114(93)90025-D
Wets RJB (1996) Challenges in stochastic programming. Math Program 75:115–135. doi:10.1007/BF02592149
Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45–55. doi:10.1016/0165-0114(78)90031-3
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kato, K., Sakawa, M. An interactive fuzzy satisficing method based on variance minimization under expectation constraints for multiobjective stochastic linear programming problems. Soft Comput 15, 131–138 (2011). https://doi.org/10.1007/s00500-010-0540-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-010-0540-z