Abstract
Anomaly-induced transport phenomena in presence of strong external electromagnetic fields are explored within a 4D field theory defined holographically as U(1)V × U(1)A Maxwell-Chern-Simons theory in Schwarzschild-AdS5. Two complementary studies are reported. In the first one, we present results on the Ohmic conductivity, diffusion constant, chiral magnetic conductivity, and additional anomaly-induced transport coefficients as functions of external e/m fields. Next, gradient resummation in a constant background magnetic field is performed. All-order resummed constitutive relations are parameterised by four momenta-dependent transport coefficient functions (TCFs). A highlight of this part is a thorough study of non-dissipative chiral magnetic waves (CMW) in strong magnetic fields.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
H.-U. Yee, Holographic Chiral Magnetic Conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [INSPIRE].
A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [INSPIRE].
Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography: Part I, JHEP 11 (2016) 093 [arXiv:1608.08595] [INSPIRE].
Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography: Part II, Eur. Phys. J. C 77 (2017) 194 [arXiv:1609.09054] [INSPIRE].
Y. Bu, T. Demircik and M. Lublinsky, Nonlinear chiral transport from holography, JHEP 01 (2019) 078 [arXiv:1807.08467] [INSPIRE].
Y. Bu, T. Demircik and M. Lublinsky, Gradient resummation for nonlinear chiral transport: an insight from holography, Eur. Phys. J. C 79 (2019) 54 [arXiv:1807.11908] [INSPIRE].
S. Lin and H.-U. Yee, Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling, Phys. Rev. D 88 (2013) 025030 [arXiv:1305.3949] [INSPIRE].
A. Boyarsky, J. Fröhlich and O. Ruchayskiy, Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe, Phys. Rev. Lett. 108 (2012) 031301 [arXiv:1109.3350] [INSPIRE].
A. Boyarsky, J. Fröhlich and O. Ruchayskiy, Magnetohydrodynamics of Chiral Relativistic Fluids, Phys. Rev. D 92 (2015) 043004 [arXiv:1504.04854] [INSPIRE].
C. Manuel and J.M. Torres-Rincon, Dynamical evolution of the chiral magnetic effect: Applications to the quark-gluon plasma, Phys. Rev. D 92 (2015) 074018 [arXiv:1501.07608] [INSPIRE].
X.-G. Huang, Electromagnetic fields and anomalous transports in heavy-ion collisions — A pedagogical review, Rept. Prog. Phys. 79 (2016) 076302 [arXiv:1509.04073] [INSPIRE].
D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions — A status report, Prog. Part. Nucl. Phys. 88 (2016) 1 [arXiv:1511.04050] [INSPIRE].
V. Koch et al., Status of the chiral magnetic effect and collisions of isobars, Chin. Phys. C 41 (2017) 072001 [arXiv:1608.00982] [INSPIRE].
Y. Bu and M. Lublinsky, Linearly resummed hydrodynamics in a weakly curved spacetime, JHEP 04 (2015) 136 [arXiv:1502.08044] [INSPIRE].
Y. Bu, M. Lublinsky and A. Sharon, U(1) current from the AdS/CFT: diffusion, conductivity and causality, JHEP 04 (2016) 136 [arXiv:1511.08789] [INSPIRE].
M. Lublinsky and E. Shuryak, How much entropy is produced in strongly coupled quark-gluon Plasma (sQGP) by dissipative effects?, Phys. Rev. C 76 (2007) 021901 [arXiv:0704.1647] [INSPIRE].
M. Lublinsky and E. Shuryak, Improved Hydrodynamics from the AdS/CFT, Phys. Rev. D 80 (2009) 065026 [arXiv:0905.4069] [INSPIRE].
Y. Bu and M. Lublinsky, All order linearized hydrodynamics from fluid-gravity correspondence, Phys. Rev. D 90 (2014) 086003 [arXiv:1406.7222] [INSPIRE].
Y. Bu and M. Lublinsky, Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics, JHEP 11 (2014) 064 [arXiv:1409.3095] [INSPIRE].
Y. Bu, M. Lublinsky and A. Sharon, Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient resummation, JHEP 06 (2015) 162 [arXiv:1504.01370] [INSPIRE].
A. Vilenkin, Equilibrium parity-violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080.
K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].
S. Pu, S.-Y. Wu and D.-L. Yang, Chiral Hall Effect and Chiral Electric Waves, Phys. Rev. D 91 (2015) 025011 [arXiv:1407.3168] [INSPIRE].
D.T. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [INSPIRE].
M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev. D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].
X.-G. Huang and J. Liao, Axial Current Generation from Electric Field: Chiral Electric Separation Effect, Phys. Rev. Lett. 110 (2013) 232302 [arXiv:1303.7192] [INSPIRE].
D.O. Rybalka, E.V. Gorbar and I.A. Shovkovy, Hydrodynamic modes in a magnetized chiral plasma with vorticity, Phys. Rev. D 99 (2019) 016017 [arXiv:1807.07608] [INSPIRE].
I.A. Shovkovy, D.O. Rybalka and E.V. Gorbar, The overdamped chiral magnetic wave, in 13th Conference on Quark Confinement and the Hadron Spectrum (Confinement XIII), Maynooth Ireland (2018) [arXiv:1811.10635] [INSPIRE].
D.E. Kharzeev and H.-U. Yee, Chiral Magnetic Wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [INSPIRE].
K. Landsteiner, Y. Liu and Y.-W. Sun, Negative magnetoresistivity in chiral fluids and holography, JHEP 03 (2015) 127 [arXiv:1410.6399] [INSPIRE].
M. Ammon, S. Grieninger, A. Jimenez-Alba, R.P. Macedo and L. Melgar, Holographic quenches and anomalous transport, JHEP 09 (2016) 131 [arXiv:1607.06817] [INSPIRE].
E.V. Gorbar, I.A. Shovkovy, S. Vilchinskii, I. Rudenok, A. Boyarsky and O. Ruchayskiy, Anomalous Maxwell equations for inhomogeneous chiral plasma, Phys. Rev. D 93 (2016) 105028 [arXiv:1603.03442] [INSPIRE].
M. Ammon, M. Kaminski, R. Koirala, J. Leiber and J. Wu, Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP 04 (2017) 067 [arXiv:1701.05565] [INSPIRE].
M. Haack, D. Sarkar and A. Yarom, Probing anomalous driving, JHEP 04 (2019) 034 [arXiv:1812.08210] [INSPIRE].
G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].
H.B. Zeng, Y. Tian, Z.Y. Fan and C.-M. Chen, Nonlinear Transport in a Two Dimensional Holographic Superconductor, Phys. Rev. D 93 (2016) 121901 [arXiv:1604.08422] [INSPIRE].
H.-B. Zeng, Y. Tian, Z. Fan and C.-M. Chen, Nonlinear Conductivity of a Holographic Superconductor Under Constant Electric Field, Phys. Rev. D 95 (2017) 046014 [arXiv:1611.06798] [INSPIRE].
S. Janiszewski and M. Kaminski, Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev. D 93 (2016) 025006 [arXiv:1508.06993] [INSPIRE].
T. Demircik and U. Gürsoy, Holographic equilibration in confining gauge theories under external magnetic fields, Nucl. Phys. B 919 (2017) 384 [arXiv:1605.08118] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1903.00896
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bu, Y., Demircik, T. & Lublinsky, M. Chiral transport in strong fields from holography. J. High Energ. Phys. 2019, 71 (2019). https://doi.org/10.1007/JHEP05(2019)071
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2019)071