Abstract
We develop an online-algorithm for multiplication of real numbers which runs in time O(M(n)log(n)), where M denotes the Schönhage-Strassen-bound for integer multiplication which is defined by M(m)=m log(m) log log(m), and n refers to the output precision (1/2)n. Our computational model is based on Type-2-machines: The real numbers are given by infinite sequences of symbols which approximate the reals with increasing precision. While reading more and more digits of the input reals, an algorithm for a real function produces more and more precise approximations of the desired result. An algorithm M is called online, if for every n ∈ ℕ the input-precision, which M requires for producing the result with precision (1/2)n, is approximately the same as the topologically necessary precision.
This work was supported by the Deutsche Forschungsgemeinschaft.
Preview
Unable to display preview. Download preview PDF.
References
L. Blum, M. Shub, S. Smale: On a theory of computation and complexity over the real numbers, Bull. Amer. Math. Soc. 21, pp. 1–46 (1989)
J. Duprat, Y. Herreros, J. M. Muller: Some results about on-line computation of functions, Proc. 9th IEEE Symposium on Computer Arithmetic, IEEE Computer Society Press, Los Alamitos, pp. 112–118 (1989)
M. Fischer, L. Stockmeyer: Fast On-line Integer Multiplication, Journal of Computer and System Sciences 9 (1974)
H.J. Hoover: Feasible real functions and arithmetic circuits, SIAM Journal of Computing 19, pp. 182–204 (1990)
Ker-I Ko: Complexity Theory of Real Functions, Birkhäuser, Boston (1991)
B. Landgraf: Schnelle beinahe Online-Multiplikation reeller Zahlen, Diplomarbeit, Fernuniversität Hagen (1995)
N. Müller: Computational Complexity of Real Functions and Real Numbers, Informatik Berichte Nr. 59, Fernuniversität Hagen (1986)
M. Paterson, M. Fischer, A. Meyer: An Improved Overlap Argument For On-Line Multiplication, SIAM-AMS Proceedings Volume 7 (1974)
M. Pour-El, J. Richards: Computability in Analysis and Physics, Springer-Verlag, Berlin, Heidelberg (1989)
A. Schönhage, V. Strassen: Schnelle Multiplikation großer Zahlen, Computing 7, (1971)
M. Schröder: Topological Spaces Allowing Type 2 Complexity Theory, in: Workshop on Computability and Complexity in Analysis, Informatik Berichte Nr. 190, Fernuniversität Hagen (1995)
K. Weihrauch: On the Complexity of Online Computations of Real Functions, Journal of Complexity 7, pp. 340–394 (1991)
K. Weihrauch: Computability, Springer-Verlag, Berlin, Heidelberg (1987)
K. Weihrauch: A Simple Introduction to Computable Analysis, Informatik Berichte Nr. 171, Fernuniversität Hagen (1995)
K. Weihrauch: A Foundation of Computable Analysis, in: EATCS Bulletin Nr. 57, pp. 167–182 (October 1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schröder, M. (1997). Fast online multiplication of real numbers. In: Reischuk, R., Morvan, M. (eds) STACS 97. STACS 1997. Lecture Notes in Computer Science, vol 1200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023450
Download citation
DOI: https://doi.org/10.1007/BFb0023450
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62616-9
Online ISBN: 978-3-540-68342-1
eBook Packages: Springer Book Archive