[go: up one dir, main page]

Skip to main content
Log in

Exact solutions of nonlinear heat- and mass-transfer equations

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The method of generalized separation of variables for solving nonlinear steady and unsteady heat- and mass-transfer equations is outlined. New exact solutions of one-, two-, and three-dimensional heat equations are obtained. Anisotropic media with a nonlinear heat source of general form are considered for the case in which the main thermal diffusivities show a power or an exponential dependence on the spatial coordinates. Equations with a logarithmic heat source are analyzed in detail. The results obtained are applied to the problem of thermal explosion in an anisotropic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carslaw, H.S. and Jaeger, J.C.,Conduction of Heat in Solids, Oxford: Clarendon, 1959, 2nd ed. Translated under the titleTeploprovodnost’ tverdykh tel, Moscow: Nauka, 1964.

    Google Scholar 

  2. Kutateladze, S.S.,Osnovy teorii teploperedachi (Fundamentals of the Heat-Transfer Theory), Moscow: Atomizdat, 1979.

    Google Scholar 

  3. Lykov, A.V.,Teoriya teploprovodnosti (Heat Conduction Theory), Moscow: Vysshaya Shkola, 1967.

    Google Scholar 

  4. Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M.,Matematicheskaya teoriya goreniya i vzryva (Mathematical Theory of Combustion and Explosion), Moscow: Nauka, 1980.

    Google Scholar 

  5. Gupalo, Yu.P., Polyanin, A.D., and Ryazantsev, Yu.S.,Massoteploobmen reagiruyushchikh chastits s potokom (Mass and Heat Transfer between Reactive Particles and Flow), Moscow: Nauka, 1985.

    Google Scholar 

  6. Levich, V.G.,Fiziko-khimicheskaya gidrodinamika (Physicochemical Fluid Dynamics), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  7. Clift, R., Grace, J.R., and Weber, M.E.,Bubbles, Drops and Particles, New York: Academic, 1978.

    Google Scholar 

  8. Bretsznajder, S.,Wlasności gazów i cieczy, Warsaw: Naukowo-techniczne, 1962. Translated under the titleSvoistva gazov i zhidkostei, Leningrad: Khimiya, 1966.

    Google Scholar 

  9. Dil’man, V.V. and Polyanin, A.D.,Metody model’nykh uravnenii i analogii (Model Equation and Analog Methods), Moscow: Khimiya, 1988.

    Google Scholar 

  10. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K.,The Properties of Gases and Liquids, New York: McGraw-Hill, 1977. Translated under the titleSvoistva gazov i zhidkostei, Leningrad: Khimiya, 1982.

    Google Scholar 

  11. Sherwood, T.K., Pigford, R.L., and Wilke, C.R.,Mass Transfer, New York: McGraw-Hill, 1975. Translated under the titleMassoperedacha, Moscow: Khimiya, 1982.

    Google Scholar 

  12. Kutepov, A.M., Polyanin, A.D., Zapryanov, Z.D.,et al., Khimicheskaya gidrodinamika (Chemical Fluid Dynamics), Moscow: Byuro Kvantum, 1996.

    Google Scholar 

  13. Chemical Engineer’s Handbook, Perry, J.H., Ed., New York: McGraw-Hill, 1963, 4th ed. Translated under the titleSpravochnik inzhenera-khimika, Leningrad: Khimiya, 1969.

    Google Scholar 

  14. Frank-Kamenetskii, D.A.,Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.

    Google Scholar 

  15. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., and Mikhailov, A.P.,Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii (Quasilinear Parabolic Equations: Problems with Sharpening), Moscow: Nauka, 1987.

    Google Scholar 

  16. Barenblatt, G.I.,Podobie, avtomodel’nost’, promezhutochnaya asimptotika (Similarity, Self-similarity, and Intermediate Asymptotics), Moscow: Gidrometeoizdat, 1978.

    Google Scholar 

  17. Sedov, L.I.,Metody podobiya i razmernosti v mekhanike (Similarity and Dimensionality Methods in Mechanics), Moscow: Nauka, 1972.

    Google Scholar 

  18. Ovsyanikov, L.V.,Gruppovoi analiz differentsial’nykh uravnenii (Group Analysis of Differential Equations), Moscow: Nauka, 1978.

    Google Scholar 

  19. Loitsyanskii, L.G.,Laminarnyi pogranichnyi sloi (Laminar Boundary Layer), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  20. Schlichting, H.,Boundary-Layer Theory, New York: McGraw-Hill, 1968. Translated under the titleTeoriya pogranichnogo sloya, Moscow: Nauka, 1974.

    Google Scholar 

  21. Robillard, L., On a Series Solution for the Laminar Boundary Layer along a Moving Wall,J. Appl. Mech., 1971, vol. 38, no. 2, p. 550.

    Google Scholar 

  22. Samarskii, A.A. and Sobol’, I.M., Examples of the Numerical Calculation of Temperature Waves,Zh. Vychisl. Mat. Mat. Fiz., 1963, vol. 3, no. 4, p. 702.

    Google Scholar 

  23. Dorodnitsyn, V.A., On Invariant Solutions to the Equation of Nonlinear Heat Conduction with a Source,Zh. Vychisl. Mat. Mat. Fiz., 1982, vol. 22, no. 6, p. 1393.

    Google Scholar 

  24. Zaitsev, V.F. and Polyanin, A.D.,Spravochnik po differentsial’nym uravneniyam s chastnymi proizvodnymi (tochnye resheniya) (Handbook of Partial Differential Equations: Exact Solutions), Moscow: Mezhdunarodnaya Programma Obrazovaniya, 1996.

    Google Scholar 

  25. CRC Handbook of Lie Group to Differential Equations, Ibragimov, N.H., Ed., Boca Raton: CRC, 1994, vol. 1.

    Google Scholar 

  26. Galaktionov, V.A. and Posashkov, S.A., On New Exact Solutions to Parabolic Equations with Quadratic Nonlinearities,Zh. Vychisl. Mat. Mat. Fiz., 1989, vol. 29, no. 4, p. 497.

    Google Scholar 

  27. Solitons, Bullough, R.K. and Caudry, P.J., Eds., Berlin: Springer, 1980. Translated under the titleSolitony, Moscow: Mir, 1983.

    Google Scholar 

  28. Polyanin, A.D., Vyaz’min, A.V., Zhurov, A.I., and Kazenin, D.A.,Spravochnik po tochnym resheniyam uravnenii teploi massoperenosa (Handbook of Exact Solutions to Heat- and Mass-Transfer Equations), Moscow: Faktorial, 1998.

    Google Scholar 

  29. Galaktionov, V.A., Posashkov, S.A., and Svirshchevskii, S.R., Generalized Separation of Variables in Differential Equations with Polynomial Right-Hand Sides,Differentsial’nye Uravneniya, 1995, vol. 31, no. 2, p. 253.

    Google Scholar 

  30. Kersner, R., On Some Properties of Weak Solutions of Quasilinear Generate Parabolic Equations,Acta Math. Acad. Sci. Hung., 1978, vol. 32, no. 3/4, p. 301.

    Google Scholar 

  31. Berman, V.S., Vostokov, V.V, and Ryazantsev, Yu.S., Multiplicity of Steady States with Chemical Reaction,Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1982, no. 3, p. 171.

  32. Vol’pert, A.I. and Khudyaev, S.I.,Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki (Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics), Moscow: Nauka, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyanin, A.D., Zhurov, A.I. & Vyaz’min, A.V. Exact solutions of nonlinear heat- and mass-transfer equations. Theor Found Chem Eng 34, 403–415 (2000). https://doi.org/10.1007/BF02827383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02827383

Keywords

Navigation