[go: up one dir, main page]

Skip to main content
Log in

Abstract

Recently a smooth compactification of the space of linear systems withn states,m inputs, andp outputs has been discovered. In this paper we obtain a concrete interpretation of this compactification as a space of discrete-time behaviors. We use both homogeneous polynomial representations and generalized firstorder representations, and provide a realization theory to link these to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Callier and C. A. Desoer.Multivariable Feedback Systems. Springer-Verlag, New York, 1982.

    Google Scholar 

  2. P. A. Fuhrmann,Linear Systems and Operators in Hilbert Space. McGraw-Hill, New York, 1981.

    Google Scholar 

  3. A. H. W. Geerts and J. M. Schumacher. Impulsive-smooth behavior in multimode systems. Part II: Minimality and equivalence.Automatica, 32(6):819–832, 1996.

    Google Scholar 

  4. A. H. W. Geerts and J. M. Schumacher. Impulsive-smooth behavior in multimode systems. Part I: State-space and polynomial representations.Automatica, 32(5):747–758, 1996.

    Google Scholar 

  5. H. Glüsing-Lüerßen. Continuous state representations for AR systems.Math. Control Signals Systems, 8(1):82–95, 1995.

    Google Scholar 

  6. M. L. J. Hautus and M. Heymann. Linear feedback-an algebraic approach.SIAM J. Control, 16:83–105, 1978.

    Google Scholar 

  7. T. Kailath.Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

    Google Scholar 

  8. M. Kuijper and J. M. Schumacher. Realization of autoregressive equations in pencil and descriptor form.SIAM J. Control Optim., 28(5):1162–1189, 1990.

    Google Scholar 

  9. V. G. Lomadze. Finite-dimensional time-invariant linear dynamical systems: Algebraic theory.Acta Appl. Math., 19:149–201, 1990.

    Google Scholar 

  10. J. W. Nieuwenhuis and J. C. Willems. Deterministic ARMA models. In J. L. Lions and A. Bensoussan, editors,Analysis and Optimization of Systems (Proc. 7th Internat. Conf. Anal. Opt. Syst., Antibes, June 25–27, 1986), LNCIS 83, pages 429–439. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  11. M. S. Ravi and J. Rosenthal. A smooth compactification of the space of transfer functions with fixed McMillan degree.Acta Appl. Math., 34:329–352, 1994.

    Google Scholar 

  12. M. S. Ravi and J. Rosenthal. A general realization theory for higher-order linear differential equations.Systems Control Lett., 25(5):351–360, 1995.

    Google Scholar 

  13. M. S. Ravi, J. Rosenthal, and J. M. Schumacher. A realization theory for homogeneous AR-systems, an algorithmic approach. InProc. IFAC Conference on System Structure and Control, Nantes, 1995, pages 183–188.

  14. J. Rosenthal and J. M. Schumacher. Realization by inspection. CWI Report BS-R9534, December 1995. To appear inIEEE Trans. Automat. Control.

  15. J. M. Schumacher. Transformations of linear systems under external equivalence.Linear Algebra Appl., 102:1–33, 1988.

    Google Scholar 

  16. J. C. Willems. From time series to linear system. Part I: Finite-dimensional linear time invariant systems.Automatica, 22:561–580, 1986.

    Google Scholar 

  17. J. C. Willems. Models for dynamics. In U. Kirchgraber and H. O. Walther, editors,Dynamics Reported, volume 2, pages 171–269. Wiley, New York, 1989.

    Google Scholar 

  18. J. C. Willems. Paradigms and puzzles in the theory of dynamical systems.IEEE Trans. Automat. Control, 36(3):259–294, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This author was supported in part by NSF Grant DMS-94-00965. The research for this paper was carried out in part while he was a visitor at CWI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, M.S., Rosenthal, J. & Schumacher, J.M. Homogeneous behaviors. Math. Control Signal Systems 10, 61–75 (1997). https://doi.org/10.1007/BF01219776

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01219776

Key words

Navigation