Abstract
This paper proposes a comparative empirical study on algorithms for clustering. We tested the method proposed in [2] using distinct synthetic and real (gene expression) datasets. We chose synthetic datasets with different spatial complex to verify the applicability of the algorithm. We also evaluated the IT algorithm in real-life problems by using microarray gene expression datasets. Compared with simple but still spread used classical algorithms k-means, hierarchical clustering and finite mixture of Gaussians, the IT algorithm showed to be more robust for both proposed scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araujo, D., Dória Neto, A., Martins, A., Melo, J.: Comparative study on dimension reduction techniques for cluster analysis of microarray data. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1835–1842 (August 2011)
de Araújo, D., Neto, A.D., Melo, J., Martins, A.: Clustering Using Elements of Information Theory. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 397–406. Springer, Heidelberg (2010)
Chowdary, D., Lathrop, J., Skelton, J., Curtin, K., Briggs, T., Zhang, Y., Yu, J., Wang, Y., Mazumder, A.: Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative. J. Mol. Diagn. 8(1), 31–39 (2006)
Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2001)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)
Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River (1988)
Kuncheva, L., Hadjitodorov, S., Todorova, L.: Experimental comparison of cluster ensemble methods. In: 2006 9th International Conference on Information Fusion, pp. 1–7 (July 2006)
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)
van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality Reduction: A Comparative Review (2007), http://www.cs.unimaas.nl/l.vandermaaten/dr/DR_draft.pdf
Martins, A.M., Dória Neto, A., Costa, J.D., Costa, J.A.F.: Clustering using neural networks and kullback-leibler divergency. In: Proc. of IEEE International Joint Conference on Neural Networks, vol. 4, pp. 2813–2817.
Principe, J.C.: Information theoretic learning, ch. 7. John Wiley (2000)
Príncipe, J.: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives. Information Science and Statistics. Springer (2010)
Principe, J.C., Xu, D.: Information-theoretic learning using renyi’s quadratic entropy. In: Proceedings of the First International Workshop on Independent Component Analysis and Signal Separation, Aussois, pp. 407–412 (1999)
Rao, S., de Medeiros Martins, A., Príncipe, J.C.: Mean shift: An information theoretic perspective. Pattern Recogn. Lett. 30(3), 222–230 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Araújo, D., Neto, A.D., Martins, A. (2012). Comparative Study on Information Theoretic Clustering and Classical Clustering Algorithms. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-33266-1_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33265-4
Online ISBN: 978-3-642-33266-1
eBook Packages: Computer ScienceComputer Science (R0)