[go: up one dir, main page]

Skip to main content

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6991))

Included in the following conference series:

  • 1120 Accesses

Abstract

We present an approach to prove safety (collision freedom) of multi-lane motorway traffic with lane-change manoeuvres. This is ultimately a hybrid verification problem due to the continuous dynamics of the cars. We abstract from the dynamics by introducing a new spatial interval logic based on the view of each car. To guarantee safety, we present two variants of a lane-change controller, one with perfect knowledge of the safety envelopes of neighbouring cars and one which takes only the size of the neighbouring cars into account. Based on these controllers we provide a local safety proof for unboundedly many cars by showing that at any moment the reserved space of each car is disjoint from the reserved space of any other car.

This research was partially supported by the German Research Council (DFG) in the Transregional Collaborative Research Center SFB/TR 14 AVACS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated vehicles. IEEE Transactions on Automatic Control 43, 522–539 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing and merging. Technical Report UCB-ITS-PRR-99-13, California Partners for Advanced Transit and Highways (PATH), Univ. of California at Berkeley (1999)

    Google Scholar 

  3. Werling, M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling traffic in urban scenarios. In: Proc. IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, pp. 168–173 (2008)

    Google Scholar 

  4. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. International Journal of Control 79, 395–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems based on l-complete approximations. Discrete Event Dynamic Systems 12, 83–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of hybrid systems. In: Proc. IFAD Conf. on Analysis and Design of Hybrid Systems, St. Malo, France, pp. 389–394 (2003)

    Google Scholar 

  7. Habets, L.C.G.J.M., Collins, P., van Schuppen, J.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on Automatic Control 51, 938–948 (2006)

    Article  MathSciNet  Google Scholar 

  8. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18, 10–19 (1985)

    Article  Google Scholar 

  9. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. Information Processing Letters 40, 269–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schäfer, A.: A Calculus for Shapes in Time and Space. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  12. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Hoare, C.A.R.: Communicating sequential processes. CACM 21, 666–677 (1978)

    Article  MATH  Google Scholar 

  15. Hilscher, M., Linker, S., Olderog, E.R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic maenoeuvres. Report 79, SFB/TR 14 AVACS (2011); ISSN: 1860-9821, avacs.org

  16. Varaija, P.: Smart cars on smart roads: problems of control. IEEE Transactions on Automatic Control AC-38, 195–207 (1993)

    Article  MathSciNet  Google Scholar 

  17. Hsu, A., Eskafi, F., Sachs, S., Varaija, P.: Protocol design for an automated highway system. Discrete Event Dynamic Systems 2, 183–206 (1994)

    Article  Google Scholar 

  18. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed railway control system. IEEE Trans. on Software Engineering 26, 687–701 (2000)

    Article  Google Scholar 

  19. Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic Verification of Parametric Specifications with Complex Topologies. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I., Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Schäfer, A.: Axiomatisation and decidability of multi-dimensional duration calculus. Information and Computation 205, 25–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hilscher, M., Linker, S., Olderog, ER., Ravn, A.P. (2011). An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres. In: Qin, S., Qiu, Z. (eds) Formal Methods and Software Engineering. ICFEM 2011. Lecture Notes in Computer Science, vol 6991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24559-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24559-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24558-9

  • Online ISBN: 978-3-642-24559-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics